進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2307201909321900
論文名稱(中文) 精進移動式重力測量系統
論文名稱(英文) Advanced Approach for Moving-based INS/GNSS Gravimetry System
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 107
學期 2
出版年 108
研究生(中文) 林政安
研究生(英文) Cheng-An Lin
學號 P68011068
學位類別 博士
語文別 英文
論文頁數 115頁
口試委員 指導教授-江凱偉
共同指導教授-郭重言
口試委員-楊名
口試委員-卓大靖
口試委員-蕭宇伸
口試委員-曾國欣
中文關鍵字 移動式重力測量系統  無人機  零速更新模式 
英文關鍵字 Moving-based gravimetry system  UAV  ZUPT mode 
學科別分類
中文摘要 地球重力場在大地測量、地球物理及地球科學中為重要的資訊,過去全球重力成果主要是由重力衛星(例如CHAMP、GRACE與GOCE)提供,區域性成果由高精度重力儀觀測量提供。雖然重力衛星可快速提供大範圍重力場資訊,但其空間解析度因距離地表較遠而不足;利用重力儀可獲得高精度、高空間解析度的重力場資訊,但作業需大量的時間和人力,且容易受到環境的影響。
基於小範圍資源探勘與地球物理等領域的研究應用,重力衛星和重力儀無法滿足空間解析度及效率的需求,因此,必須發展適用的解決方案。隨著測量技術與感測器規格的精進提升,整合慣性導航系統與全球導航衛星系統發展移動式重力測量系統,已被驗證可提供足夠精度的重力成果,其特色在於多酬載平台的設計與量測、自由的空間解析度調整、作業程序簡單,可大幅提升作業效率並提供高精度、高空間解析度的重力成果。
本論文利用車載平台與無人機發展移動式重力測量系統,基於過去資料解算、濾波處理、誤差改正演算法研究其精進方法,並發展動態與靜態零速更新兩種施測模式進行重力擾動向量成果分析,車載重力測量系統在動態模式於平面向的精度約為13 mGal,而垂直向的精度約為3 mGal;無人機載重力測量系統在動態模式於平面向的精度為6–11 mGal,而垂直向的精度約為4 mGal,而靜態零速更新模式的三維精度,不論是利用車載平台或無人機皆可達到3 mGal以內。因此,透過不同實驗場景與環境條件的實測,本論文所發展的移動式重力測量系統結合動態與靜態零速更新模式能夠提供可靠的重力測量成果,且具備未來於相關大地測量應用的可能性。
英文摘要 Earth’s gravity field is an important information in geodesy, geophysics and geoscience. Over past decades, the missions of satellite gravimetry and the high-grade gravimeter have provided global and local gravimetry results, respectively. Although the satellite gravimetry can efficiently determine the large-scale gravity field, the satellite orbit is far away from the ground which makes its low spatial resolution. On the other hand, the usage of gravimeter can provide accurate gravity field in high spatial resolution, but the drawbacks of field work are not only labor- and time-consuming but also easily affected by environmental conditions.
According to the regional applications or researches of resource exploration and geophysics, both of satellite gravimetry and gravimeter cannot meet the requirements in terms of spatial resolution and efficiency. Therefore, the development of suitable solution is necessary. With the improvements in survey techniques and sensor specifications, the moving-based gravimetry system developed from integration of Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) has been proven to provide gravimetry results with sufficient accuracies. According to the advantages including the design and measure with multi-payload, free spatial resolution, and easy field procedure, the moving-based gravimetry system can efficiently obtain gravimetry result in high accuracy and spatial resolution.
Based on the previous research in data processing, low-pass filtering, and error compensation, the moving-based gravimetry systems by using land-vehicle and Unmanned Aircraft Vehicle (UAV) with advanced approach are developed in this thesis. In addition, the kinematic and Zero Velocity Update (ZUPT) modes are implemented as measure methods for evaluating the results of gravity disturbance vector. For the land-vehicle system, the results in kinematic mode show that accuracies are approximately 13 mGal and 3 mGal for the horizontal and vertical components, respectively. The accuracy in ZUPT mode is evaluated within 3 mGal. Furthermore, the results from UAV-borne system in kinematic mode show that accuracies are approximately 6–11 mGal and 4 mGal for the horizontal and vertical components, respectively. The accuracy in ZUPT mode is also within 3 mGal. According to the various scenarios and conditions in the experiments, the moving-based gravimetry systems combining kinematic and ZUPT modes developed in this thesis are able to provide reliable gravimetry results and with potential for geodetic applications in the future.
論文目次 摘要 I
ABSTRACT II
ACKNOWLEDGMENTS IV
LIST OF TABLES IX
LIST OF FIGURES XI
GLOSSARY OF ACRONYMS XV
Chapter 1 Introduction 1
1.1 Earth’s Gravity Field 3
1.2 Gravimetry Review 4
1.2.1 Terrestrial gravimetry 4
1.2.2 Satellite gravimetry 6
1.2.3 Airborne and shipborne gravimetry 7
1.2.4 Moving-based INS/GNSS gravimetry 9
1.3 Problem Statements and Objectives 10
1.4 Thesis Outline 12
Chapter 2 Inertial Navigation System 14
2.1 Introduction 15
2.2 Inertial Sensors 16
2.2.1 Accelerometer 16
2.2.2 Gyroscope 17
2.2.3 Measurement errors 17
2.3 IMU Calibration 19
2.4 INS Mechanization 20
2.4.1 Coordinate frames and transformations 20
2.4.2 Integration of navigation equations 25
Chapter 3 Global Navigation Satellite System 29
3.1 Introduction 29
3.2 GNSS Structure 31
3.2.1 GPS 31
3.2.2 GLONASS 32
3.2.3 Galileo 33
3.2.4 BeiDou 33
3.3 Observation Types 35
3.3.1 Code pseudo-range measurement 35
3.3.2 Carrier-phase measurement 36
3.3.3 Doppler measurement 36
3.4 Error Sources 37
3.4.1 Clock error 38
3.4.2 Ephemeris error 38
3.4.3 Ionosphere and troposphere refractions 38
3.4.4 Multipath error 40
3.5 Advanced Techniques 41
3.5.1 PPP 41
3.5.2 DGNSS 42
Chapter 4 Moving-based INS/GNSS Gravimetry System 43
4.1 Dynamic Acceleration 43
4.2 Kinematic Acceleration 45
4.2.1 Numerical differentiation 45
4.2.2 Acceleration computation from DGNSS and PPP positions 46
4.3 Integration of INS/GNSS 51
4.4 Gravity from INS/GNSS 53
4.5 Proposed System and Advanced Approach 58
4.5.1 Implementation of system and design 58
4.5.2 Data processing and smoothing 65
4.5.3 Estimation of gravity disturbance using KF 68
4.5.4 Measure methods 72
4.5.5 Spatial resolution 73
Chapter 5 Results and Discussions 75
5.1 Feasibility of INS/GNSS Gravimetry System 75
5.2 Accuracy Assessment of Land-vehicle System 79
5.2.1 Consistency at ZUPT points 79
5.2.2 Comparison with high-grade relative gravimeter 85
5.2.3 Repeatability in line segments 86
5.3 Evaluation of UAV-borne System 92
5.3.1 Repeatability in line segments 98
5.3.2 Consistency at ZUPT points 101
5.4 Summary 103
Chapter 6 Conclusions and Future Works 105
6.1 Conclusions 105
6.2 Future works 106
6.2.1 Progress in algorithm 106
6.2.2 Applications with UAV-borne system 106
6.2.3 Exploration from moving-based gravimetry system 109
References 110
參考文獻  Becker, D. (2016): Advanced Calibration Methods for Strapdown Airborne Gravimetry, M.Sc. Thesis, Technische Universität Darmstadt, Germany.
 Becker, D., Becker, M., Olesen, A.V., Nielsen, J.E., and Forsberg, R. (2016): Latest results in strapdown airborne gravimetry using an iMAR RQH unit. Proceedings of the 4th IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM), Saint Petersburg, Russia.
 Brozena, J.M. (1984): A Preliminary Analysis of the NRL Airborne Gravimetry System. Geophysics, 49(7), Page 1060–1069.
 Bruton, A.M., Glennie, C.L., and Schwarz, K.P. (1999): Differentiation for High-Precision GPS Velocity and Acceleration Determination. GPS Solutions, 2(4), Page 7–21.
 Bruton, A.M. (2000): Improving the Accuracy and Resolution of SINS/DGPS Airborne Gravimetry. UCGE Reports Number 20145, The University of Calgary, Calgary, Alberta, Canada.
 Chandler, V.W. (1994): Gravity Investigation for Potential Ground-water Resources in Rock County, Minnesota. In Report of Investigations, Minnesota Geological Survey, Minnesota, USA. RI-44.
 Chiang, K.W. (2004): INS/GPS Integration Using Neural Networks for Land Vehicular Navigation Applications. UCGE Reports Number 20209, The University of Calgary, Calgary, Alberta, Canada.
 Chiang, K.W., Duong, T.T., Liao, J.K., Lai, Y.C., Chang, C.C., Cai, J.M., and Huang, S.C. (2012): On-Line Smoothing for an Integrated Navigation System with Low-Cost MEMS Inertial Sensors, Sensors, 12(12), Page 17372–17389.
 Chiang, K.W., Lin, C.A., and Kuo, C.Y. (2015): A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan, Sensors, 15(10), Page 25039–25054.
 Conley, R., Cosentino, R., Hegarty, C.J., Kaplan, E.D., Leva, J.L., de Haag, M.U., and Van Dyke, K. (2006): Performance of Stand-Alone GPS. In Understanding GPS: Principles and Applications. Norwood, MA: Artech House, 2nd Edition, Page 301–378.
 de Boor, C. (1978): A Practical Guide to Splines. Springer-Verlag, New York.
 Deurloo, R.A. (2011): Development of a Kalman Filter Integrating System and Measurement Models for a Low-cost Strapdown Airborne Gravimetry System. Ph.D. Thesis, Department of Geosciences, Environment and Spatial Planning, Facility of Sciences, University of Porto, Porto, Portugal.
 Deurloo, R., Bastos, L., and Bos, M. (2012): On the Use of UAVs for Strapdown Airborne Gravimetry. In Geodesy for Planet Earth; International Association of Geodesy Symposia, Springer-Verlag: Berlin/Heidelberg, Germany, 136, Page 255–261.
 Dow, J.M., Neilan, R.E., and Rizos, C. (2009): The international GNSS service in a changing landscape of global navigation satellite systems. Journal of Geodesy, 83(3–4), Page 191–198.
 El-Diasty, M., and Pagiatakis, S. (2008): Calibration and stochastic modelling of inertial navigation sensor errors. Journal of Global Positioning Systems, 7(2), Page 170–182.
 El-Sheimy, N. (2003): Inertial Techniques and INS/DGPS Integration. Lecture Notes ENGO 623, Department of Geomatics Engineering, The University of Calgary, Calgary, Alberta, Canada.
 El-Sheimy, N., Hou, H., and Niu, X. (2008): Analysis and modeling of inertial sensors using Allan variance. Instrumentation and Measurement, IEEE Transactions, 57(1), Page 140–149.
 Farrell, J., and Barth, M. (1998): The Global Positioning System & Inertial Navigation. McGraw-Hill Professional.
 Forsberg, R., and Olesen, A.V. (2010): Airborne Gravity Field Determination. In Sciences of Geodesy - I: Advances and Future Directions, Springer-Verlag, Page 83–104.
 Gerlach, Ch., Dorobantu, R., Ackermann, Ch., Kjørsvik, N.S., and Boedecker, G. (2010): Preliminary Results of a GPS/INS Airborne Gravimetry Experiment Over the German Alps. In Gravity, Geoid and Earth Observation; International Association of Geodesy Symposia, Springer-Verlag: Berlin/Heidelberg, Germany, 135, Page 3–9.
 Gleason, S., and Gebre-Egziabher, D. (2009): GNSS Applications and Methods. Artech House.
 Glennie, C.L. (1999): An analysis of airborne gravity by strapdown INS/DGPS. Ph.D. Thesis, Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada.
 Glennie, C.L., and Schwarz, K.P. (1999): A comparison and analysis of airborne gravimetry results from two strapdown inertial/DGPS systems. Journal of Geodesy, 73(6), Page 311–321.
 Glennie, C.L., Schwarz, K.P., Bruton, A.M., Forsberg, R., Olesen, A.V., and Keller, K. (2000): A comparison of stable platform and strapdown airborne gravity. Journal of Geodesy, 74(5), Page 383–389.
 Grejner-Brzezinska, D.A. (1997): Airborne Integrated Mapping System: Positioning Component. Proceedings of 53rd ION Annual Meeting, Albuquerque, New Mexico, USA, Page 225–235.
 Grejner-Brzezinska, D.A., and Wang, J. (1998): Gravity modeling for high-accuracy GPS/INS integration, Navigation, 45(3), Page 209–220.
 Grewal, M.S., Weill, L.R., and Andrews, A.P. (2007): Global Positioning Systems, Inertial Navigation, and Integration. JohnWiley & Sons, Inc., 2nd Edition.
 Groves, P.D. (2008): Range Error Sources, in Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House, Page 245–246.
 Gruber, Th., Bamber, J.L., Bierkens, M.F.P., Dobslaw, H., Murböck, M., Thomas, M., van Beek, L.P.H., van Dam, T., Vermeersen, L.L.A., and Visser, P.N.A.M. (2011): Simulation of the time-variable gravity field by means of coupled geophysical models. Earth System Science Data, 3, Page 19–35.
 Gumert, W.R. (1995): Third Generation Aerogravity System. Proceedings of IAG Symposium G4 Airborne Gravity Field Determination, XXI General Assembly of the IUGG, Boulder, Colorado, USA, Page 153–161.
 Hannah, J. (2001): Airborne Gravimetry: A Status Report. Department of Surveying, University of Otago, Dunedin, New Zealand.
 Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E. (2008): GNSS - Global Navigation Satellite Systems, Springer-Verlag, Wien, Austria.
 Ip, A.W.L., El-Sheimy, N., and Mostafa, M.M.R. (2004): System Performance Analysis of INS/DGPS Integrated System for Mobile Mapping System (MMS). Proceeding of The 4th International Symposium on Mobile Mapping Technology, Kunming, China.
 Jekeli, C., and Kwon, J.H. (1999): Results of Airborne Vector (3-D) Gravimetry. Geophysical Research Letters, 26(3), Page 3533–3536.
 Jekeli, C. (2001): Inertial Navigation System with Geodetic Application. Walter de Gruyter: Berlin, Germany/New York, NY, USA.
 Johannessen, J.A., and Aguirre-Martinez, M. (1999): The Four Candidate Earth Explorer Core Missions – Gravity Field and Steady-State Ocean Circulation. Reports for mission selection 1, European Space Agency, ESA SP-1233.
 Kaplan, E.D., Leva, J.L., Milbert, D., and Pavloff, M.S. (2006): Fundamentals of Satellite Navigation, in Understanding GPS: Principles and Applications. Norwood, MA: Artech House, 2nd Edition, Page 21–65.
 Killpatrick, J. (1967): The Laser Gyro. IEEE Spectrum.
 Kincaid, D., and Cheney, W. (1996): Numerical Analysis. Brooks/Cole Publishing Company, Pacific Grove, etc.
 Kleusberg, A., Peyton, D., and Wells, D. (1990): Airborne Gravimetry and the Global Positioning System. Proceedings of Position Location and Navigation Symposium, 1990 IEEE, Las Vegas, Nevada, USA, Page 273–278.
 Krempasky, J. (1999): Terminal Area Navigation Using Relative GPS Bias States with a Terrain Scene. Navigation, 46(2).
 Kreye, C., and Hein, G.W. (2003): GNSS Based Kinematic Acceleration Determination for Airborne Vector Gravimetry Methods and Results. Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), Portland, Oregon, USA, Page 2679–2691.
 Kwon, J.H. (2000): Airborne Vector Gravimetry Using GPS/INS. Ph.D. Thesis, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio, USA.
 Kwon, J.H., and Jekeli, C. (2001): A new approach for airborne vector gravimetry using GPS/INS. Journal of Geodesy, 74(10), Page 690–700.
 LaCoste, L.J.B., Ford, J., Bowles, R., and Archer, K. (1982): Gravity Measurements in an Airplane Using State-of-the-Art Navigation and Alitmetry. Geophysics, 47(5), Page 832–838.
 Li, X. (2007): Moving Base INS/GPS Vector Gravimetry on a Land Vehicle. Ph.D. Thesis, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio, USA.
 Li, X., and Jekeli, C. (2008): Ground-Vehicle INS/GPS Gravimetry. Geophysics, 73(2): I, Page 1–10.
 Li, X. (2011): Strapdown INS/DGPS airborne gravimetry tests in the Gulf of Mexico. Journal of Geodesy, 85, Page 597–605.
 Lin, C.A., Chiang, K.W., and Kuo, C.Y. (2017): Development of INS/GNSS UAV-Borne Vector Gravimetry System. IEEE Geoscience and Remote Sensing Letters, 14(5), Page 759–763.
 Olesen, A.V. (2003): Improved airborne scalar gravimetry for regional gravity field mapping and geoid determination. Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
 Parkinson, B.W. (1995): GPS Error Analysis, in Global Positioning System: Theory and Applications. American Institute of Aeronautics and Astronautics, Inc., Washington, D.C., USA, Page 469–483.
 Parkinson, B.W., and Spilker Jr., J.J. (1995): Overview of GPS Operation and Design, in Global Positioning System: Theory and Applications. American Institute of Aeronautics and Astronautics, Inc., Washington, D.C., USA, Page 29–55.
 Rauch, H., Tung, F., and Striebel, C. (1965): Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3, Page 1445–1450.
 Salychev, O.S., Bykovsky, A.V., Voronov, V.V., Schwarz, K.P., Liu, Z., Wei, M., and Peneka, J. (1994): Determination of Gravity and Deflections of the Vertical for Geophysical Applications Using the ITC-2 platform. Proceedings of International Symposium on Kinematic Systems in Geodesy, Geodynamics and Navigation, Calgary, Alberta, Canada.
 Sampietro, D., Mansi, A.H., and Capponi, M. (2018): A New Tool for Airborne Gravimetry Survey Simulation. Geosciences, 8(8), 292.
 Schwarz, K.P., and Wei, M. (1994): Some unsolved problems in airborne gravimetry. Proceedings of International Association of Geodesy Symposium, Gravity and geoid joint symposium of the International Gravity Commission and the International Geoid Commission; Springer, Berlin, Page 131–150.
 Schwarz, K.P., and Li, Z. (2005): An introduction to airborne gravimetry and its boundary value problems. Geodetic Boundary Value Problems in View of the One Centimeter Geoid, Page 312–358.
 Schwarz, K.P. (2006): Simultaneous Determination of Position and Gravity from INS/DGPS. Wissenschaftliche Arbeiten der Fachrichtung Geodaesie und Geoinformatik der Universitaet Hannover, Hannover, 258, Page 141–148.
 Seeber, G. (1993): Satellite Geodesy. Walter de Gruyter & Co.
 Shin, E.H. (2001): Accuracy Improvement of Low Cost INS/GPS for Land Applications. UCGE Reports Number 20156, The University of Calgary, Calgary, Alberta, Canada.
 Titterton, D., and Weston, J.L. (2004): Strapdown inertial navigation technology. The Institution of Engineering and Technology.
 Torge, W. (1991): Geodesy. Walter de Gruyter: Berlin, Germany/New York, NY, USA, 2nd Edition, Page 11–19.
 Toth, C. (1997): Direct Sensor Platform Orientation: Airborne Integrated Mapping System (AIMS). ISPRS Comm. III, Vol. XXXII, part 3-2W3, Page 148–155.
 Zahzam, N., Bonnin, A., Theron, F., Cadoret, M., Bidel, Y., and Bresson, A. (2016): New advances in the field of cold atom interferometers for onboard gravimetry. In Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM), International Association of Geodesy (IAG).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw