進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2307201820273500
論文名稱(中文) 二氧化鈦系列材料於非揮發性記憶體之應用與探討
論文名稱(英文) Investigation of Titanium Oxide–Based Materials Applied to Nonvolatile Memory Devices
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 106
學期 2
出版年 107
研究生(中文) 陳世翔
研究生(英文) Shi–Xiang Chen
學號 Q18001234
學位類別 博士
語文別 英文
論文頁數 97頁
口試委員 指導教授-張守進
召集委員-黃柏仁
口試委員-陳志方
口試委員-許渭州
口試委員-陳英忠
口試委員-陳進祥
口試委員-薛漢鼎
口試委員-王俊凱
口試委員-王祥辰
中文關鍵字 二氧化鈦  鈦酸鋅  非揮發性記憶體  電阻式隨機存取記憶體  多位元儲存 
英文關鍵字 TiO2  Zn2TiO4  nonvolatile memory (NVM)  resistive random access memory (RRAM)  multi–bit storage 
學科別分類
中文摘要 隨著科技的迅速發展,近年來記憶體已經成為不可或缺的半導體元件,為了追求更卓越的性能,記憶體不斷朝著尺寸微縮的目標前進。而快閃記憶體(Flash memory)在浮動閘極(Floating Gate)結構上的節點技術面臨其物理極限,新型非揮發性記憶體元件如相變化記憶體(PCRAM)、磁阻式記憶體(MRAM)、以及電阻式記憶體(RRAM)之研究日趨重要。由於電阻式記憶體擁有高存取速度、低耗能、結構簡單化、高操作週期、高儲存容量、與CMOS製程高度相容、非破壞讀取以及非揮發性等優勢,因此受到學術界及產業界的矚目,在下世代記憶體元件中具有極高發展潛力,故本篇論文聚焦於電阻式記憶體作研究及探討。在本論文中,我們以金屬氧化物二氧化鈦系列材料作為電阻式隨機存取記憶體元件的阻值切換層(resistive switching layer),並探討元件的特性。
首先,在室溫下,我們研究以ITO/TiO2/Pt為架構的電阻式記憶體的製備方式與特性。根據穿透式電子顯微鏡(TEM)及能量色散X光光譜(EDS)分析製備的TiO2薄膜,並以X光繞射分析(XRD)以及TEM電子繞射分析薄膜的晶格方向。製備完成的元件,在100 mV的操作電壓下,具有雙極性(bipolar)切換特性,並可在直流電壓的操作下完成超過100次的阻值切換(resistive switching),以及超過10000秒的記憶體穩定(retention)特性。在元件的高低阻態切換過程中,載子傳導機制是由歐姆傳輸(Ohmic conduction mechanism)主導。
另一部分則是敘述在室溫下,以二氧化鈦(TiO2)系列之鈦酸鋅(Zn2TiO4)薄膜為阻值切換層製備之電阻式記憶體的製備方式與特性。以ITO/Z2TiO4/Pt為電阻式記憶體的架構,在100 mV的操作電壓下,具有雙極性(bipolar)切換特性,並可在直流電壓的操作下完成超過500次的阻值切換(resistive switching)。這裡利用在set操作中不同的限制電流,此元件可以獲得四個不同的電阻狀態(resistive state)。在100mV的操作電壓下,這四個阻態擁有著超過10000秒的穩定的記憶特性,四個阻態彼此之間可以被清楚的區分開來。從電流–電壓圖可以發現,在高阻態中,元件於低操作電壓時電流傳導機制首先是由在Zn2TiO4薄膜中本質載子所導致的歐姆傳輸機制主導;而在高操作電壓時會轉為空間電荷限制電流機制(space charge limited current,SCLC)。而在低阻態中,電流傳輸由歐姆傳輸機制所主導。此外,製備完成的電阻式記憶體有著良好的耐用性與可靠度。本研究中, TiO2–based材料Zn2TiO4為第一次被應用於電阻式記憶體,並且經由控制set動作之限制電流,可以得到穩定的多位元儲存(2 –bit per cell)成果。
英文摘要 Due to the floating gate structure gradually approach its physical limitation in Flash memories. Emerging non–volatile memories such as phase change random access memory (PCRAM), magnetic random access memory (MRAM), and resistive random access memory (RRAM) are widely investigated. There are some advantages such as CMOS fully compatibility, high speed operation, good reliability, and high capacity in RRAM devices. In this case, RRAM exhibits high potential for the next generation. In this dissertation, some kinds of resistive random access memory (RRAM) devices with various kinds of TiO2–based materials served as the resistive switching layers are fabricated, researched, and investigated.
First, the fabrication and characterization of a RRAM with a ITO/TiO2/Pt structure at room temperature are reported. According to the transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) analysis, the characteristic of fabricated TiO2 thin film layer was measured and investigated. The fabricated device exhibits bipolar resistance switching behavior over one hundred DC switching cycles and shows stable retention characteristics for over 104 seconds under a 100 mV stress. It is also found that the electrical conduction mechanism is Ohmic conduction during whole resistive switching steps.
The other part is described the fabrication and analysis of the Zn2TiO4 RRAM cell at room temperature. From the I–V measurements, four different resistive states are obtained by applying different current compliance value in set process. These four resistance states show good retention characteristics without any degradation and can be clearly distinguished from one another by more than 104 seconds under 100 mV bias voltage. Furthermore, it is found that the fabricated ITO/Z2TiO4/Pt RRAM cell is durable and reliable. It is found that the current conduction in high resistive state is first dominated by Ohmic conduction caused by the intrinsic carriers in the Zn2TiO4 thin film and then turned to SCLC mechanism. In low resistance state, the current conduction mechanism is dominated by Ohmic conduction mechanism.
論文目次 Abstract (in Chinese) I
Abstract (in English) III
Acknowledgements V
Chapter 1 Introduction 1
1–1 Background and overview of semiconductors 1
1–1–1 Introduction of semiconductors 1
1–1–2 Introduction of semiconductor devices 2
1–1–2–1 Extended Gate Field Effect Transistor (EGFET) 3
1–1–2–2 Ultraviolet Photodetectors (UV PDs) 4
1–1–2–3 Resistive Random Access Memory (RRAM) 5
1–1–3 Introduction of semiconductor memories 6
1–2 Development of Resistance RAM (RRAM) 10
1–2–1 Basic RRAM Concepts 10
1–2–2 Development of Multi Bits applications in RRAM 12
1–3 Motivation 12
Chapter 2 Electron transportation Theory of RRAM 23
2–1 The Resistive Switching Mechanism of RRAM 23
2–1–1 Filamentary Model 24
2–1–1–1 Joule Heating Effect (Thermochemical Effect) 25
2–1–1–2 Redox Processes by Cation Migration 26
2–1–1–3 Redox Processes by Anion Migration 27
2–1–2 Modified Schottky Barrier Model 28
2–2 The Mechanism of Current Conduction 29
2–2–1 Ohmic Conduction 29
2–2–2 Tunneling Conduction 30
2–2–2–1 Direction Tunneling 30
2–2–2–2 Fowler–Nordheim (F–N) Tunneling 31
2–2–3 Schottky Emission 32
2–2–4 Poole–Frenkel (P–F) Emission 33
2–2–5 Space–Charge–Limit–Current (SCLC) 34
Chapter 3 Investigation of Titanium Oxide Applied to RRAM Devices 39
3–1 Introduction 39
3–2 Experimental Procedure 40
3–3 Results and Discussion 41
3–4 Summary 46
Chapter 4 Investigation of Zinc Titanate Applied to RRAM Devices 56
4–1 Introduction 56
4–2 Experimental Procedure 57
4–3 Results and Discussion 58
4–4 Summary 67
Chapter 5 Conclusions and Further Recommendations 89
8–1 Conclusions 89
8–2 Further Recommendations 90
References 92

參考文獻 [1] L. Hoddeson, E. Braun, J. Teichmann, and S. Weart, Out of the Crystal Maze: Chapters in the History of Solid State Physics. New York: Oxford University Press, 1992.
[2] M. Riordan, L. Hoddeson, and C. Herring, “The invention of the transistor”, Rev. Mod. Phys., vol. 71, no. 2, pp. S336–S345, 1999.
[3] W. Shockley, M. Sparks, G. K. Teal, “pn junction transistors”, Physical Review, vol. 83, pp. 151, 1951.
[4] K. Dawon,"Electric field controlled semiconductor device." U.S. Patent No. 3,102,230. 27 Aug. 1963.
[5] J. A. Armstrong, “Solid state technology and the computer: 40 years later small is still beautiful”, Solid State Technol., vol. 30, no. 12, pp. 81–83, 1987.
[6] S. X. Chen, S. P. Chang, and S. J. Chang, “Investigation of InN nanorod–based EGFET pH sensors fabricated on quartz substrate,” Digest Journal of Nanomaterials and Biostructures, vol. 9, no. 4, pp. 1505–1511, 2014.
[7] C. P. Yang, S. P. Chang, S. J. Chang, S. X. Chen, M. H. Hsu, W. J. Tung, W. L. Huang, T. H. Chang, C. J. Chiu, and W. Y. Weng, “Bandgap Engineered Ultraviolet Photodetectors with Gallium–Zinc–Oxide via Co–Sputtering Method,” ECS Journal of Solid State Science and Technology, vol. 7, no. 7, pp. Q3083–Q3088, 2018.
[8] S. X. Chen, S. P. Chang, and S. J. Chang, “Low–voltage operation of ultra thin TiO2 resistive random access memory,” 10th International Symposium on Advanced Plasma Science and its Applications for Nitrides and Nanomaterials/11th International Conference on Plasma–Nano Technology & Science (ISPlama2018/IC–PLANTS2018), AiChi, Japan, 64, March 4–8, 2018.
[9] W. N. Papian, "The MIT magnetic–core memory." Papers and discussions presented at the Dec. 8–10, 1953, eastern joint AIEE–IRE computer conference: information processing systems–reliability and requirements. ACM, pp. 37–42, 1953.
[10] D. Kahng and S. M. Sze, "A Floating Gate and its Application to Memory Devices," Bell Syst. Tech. J., vol. 46, pp. 1288–1295, 1967.
[11] Y. Xie, “Modeling, architecture, and applications for emerging memory technologies,” IEEE Des. Test Comput., vol. 28, pp. 44–50, 2011.
[12] D. Jiang, M. Zhang, Z. Huo, Q. Wang, J. Liu, Z. Yu, X. Yang, Y. Wang, B. Zhang, J. Chen, and M. Liu, “A study of cycling induced degradation mechanisms in Si nanocrystal memory devices,” Nanotechnology, vol. 22, 254009, 2011.
[13] A. Ney and J. S. Harris, “Reconfigurable magnetologic computing using the spin flop switching of a magnetic random access memory cell,” Appl. Phys. Lett., vol. 86, 013502, 2005.
[14] T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice–like structure,” Appl. Phys. Lett., vol. 88, 122114, 2006.
[15] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal–Oxide RRAM,” Proc. IEEE, vol. 100, pp. 1951–1970, 2012.
[16] G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, “Status and outlook of emerging nonvolatile memory technologies,” in IEEE Intl. Electron Devices Meeting, 2004, pp. 567–570.
[17] R. Waser and M. Aono, “Nanoionics–based resistive switching memories,” Nature Mater., vol. 6, pp. 833–840, 2007.
[18] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges,” Adv. Mater., vol. 21, pp. 2632–2663, 2009.
[19] W. K. Hsieh and S. J. Chang, "Bipolar Resistive Switching Characteristics of TaO2 RRAM," Science of Advanced Materials, vol. 8, pp. 1108–1111, 2016.
[20] S. Maikap, D. Jana, M. Dutta, and A. Prakash, “Self–compliance RRAM characteristics using a novel W/TaOx/TiN structure,” Nanoscale Res. Lett., vol. 9, pp. 292, 2014.
[21] Son, J. Yeog, et al. "NiO resistive random access memory nanocapacitor array on graphene," ACS nano, vol. 4, pp. 2655–2658, 2010.
[22] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 85, pp. 5655–5657, 2004.
[23] W. S. Jung, et al. "A ZnO cross–bar array resistive random access memory stacked with heterostructure diodes for eliminating the sneak current effect," Applied Physics Letters, vol. 98, pp. 233505, 2011.
[24] M. C. Chen, et al. "Bipolar resistive switching characteristics of transparent indium gallium zinc oxide resistive random access memory." Electrochemical and Solid–State Letters, vol. 13, pp. H191–H193, 2010.
[25] W. K. Hsieh, K. T. Lam, and S. J. Chang, "Bipolar Ni/ZnO/HfO2/Ni RRAM with multilevel characteristic by different reset bias," Materials Science in Semiconductor Processing, vol. 35, pp. 30–33, 2015.
[26] D. Panda, C. Y. Huang, and T. Y. Tseng, “Resistive switching characteristics of nickel silicide layer embedded HfO2 film,” Appl. Phys. Lett., vol. 100, pp. 112901, 2012.
[27] W. Y. Chang, Y. T. Ho, T. C. Hsu, F. Chen, M. J. Tsai, and T. B. Wu, “Influence of crystalline constituent on resistive switching properties of TiO2 memory films,” Electrochem. Solid State Lett., vol. 12, pp. H135–H137, 2009.
[28] H. Y. Jeong, et al. "A low–temperature–grown TiO2–based device for the flexible stacked RRAM application." Nanotechnology, vol. 21, pp. 115203, 2010.
[29] H. Y. Lee, P. S. Che, T. Y. Wu, Y. S. Che, C. C. Wan, P. J. Tzen, C. H. Lin, F. Chen, C. H. Lien, and M. J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” in Tech. Dig. IEEE Int. Electron Devices Meeting, 2008, pp. 1–4.
[30] S. Y. Wang, C. W. Huang, D. Y. Lee, T. Y. Tseng, and T. C. Chang, “Multilevel resistive switching in Ti/CuxO/Pt memory devices,” J. Appl. Phys., vol. 108, 114110, 2010.
[31] W. C. Chien, Y. C. Chen, E. K. Lai, Y. Y. Lin, K. P. Chang, Y. D. Yao, P. Lin, J. Gong, S. C. Tsai, and C. H. Lee, “High–speed multilevel resistive RAM using RTO WOX,” in International Conference on Solid State Devices and Materials (SSDM), 2009, pp. 1206–1207.
[32] M. Terai, Y. Sakotsubo, S. Kotsuji, and H. Hada, “Resistance Controllability of Ta2O5/TiO2 Stack ReRAM for Low–Voltage and Multilevel Operation,” IEEE Electron Device Lett., vol. 31, pp. 204–206, 2010.
[33] C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, “High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application,” Appl. Phys. Lett., vol. 91, pp. 223510, 2007.
[34] K. Hosotani, S. G. Park, Y. Nishi, “Electric field ependent switching and degradation of Resistance Random Access Memory”, IEEE International Integrated Reliability Workshop (IRW) Final Report, pp.11, 2009.
[35] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama, “Low Power and High Speed Switching of Ti–doped NiO ReRAM under the Unipolar Voltage Source of less than 3V”, International Electron Devices Meeting (IEDM), pp.767, 2007.
[36] X. P. Wang, Y. Y. Chen, L. Pantisano, L. Goux, M. Jurczak, G. Groeseneken, and D. J. Wouters, “Effect of anodic interface layers on the unipolar switching of HfO2–based resistive RAM”, International Symposium on VLSI Technology Systems and Applications (VLSI–TSA), pp.140, 2010.
[37] W. C. Chien, Y. R. Chen, Y. C. Chen, Alfred T. H. Chuang, F. M. Lee, Y. Y. Lin, E. K. Lai, Y. H. Shih, K. Y. Hsieh, and C. Y. Lu, “A forming–free WOx resistive memory using a novel self–aligned field enhancement feature with excellent reliability and scalability”, International Electron Devices Meeting (IEDM), pp. 19–2, 2010.
[38] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, vol. 11, pp. 28–36, 2008.
[39] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn, “Growth model for filamentary streamers in an ambient field,” IEEE T. Dielect. El. In., vol. 10, pp. 73–79, 2003.
[40] M. Fujimoto, et al. “TiO2 anatase nanolayer on TiN thin film exhibiting high–speed bipolar resistive switching,” Appl. Phys. Lett., vol. 89, 223509, 2006.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw