進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2307201811303600
論文名稱(中文) 發展近紅外擴散相關光譜儀應用於非侵入性監測腦血流動力學
論文名稱(英文) Development of Near-Infrared Diffuse Correlation Spectroscopy for Noninvasive Monitoring Brain Hemodynamics
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 黃伊岑
研究生(英文) I-Tseng Huang
學號 P86051121
學位類別 碩士
語文別 英文
論文頁數 43頁
口試委員 指導教授-陳家進
口試委員-黃執中
口試委員-林哲偉
口試委員-曲桐
中文關鍵字 擴散相關性光譜儀  近紅外光譜  腦血流速 
英文關鍵字 diffuse correlation spectroscopy  near-infrared spectroscopy  cerebral blood flow. 
學科別分類
中文摘要 腦血流是一個重要的生物標記物,因為它控制著大腦中的氧氣供應,代謝消耗和副產物清除。腦血流監測一個有前景的應用是顱內壓的推導。臨界閉合壓力是評估顱內壓的非侵入性方法。當腦血流接近零時,臨界閉合壓力由動脈血壓表示。為了量測血流速,經顱都普勒超音波血流計是一種可以測量大動脈血流速度的非侵入性臨床儀器。然而,此儀器有幾個限制包括穿透深度以及它需要醫療人員對準目標血管。因此,經顱都普勒超音波血流計不適用於長期測量腦血流速,但是可作為驗證工具。對於腦血流的非侵入性和長期監測,近紅外光能夠穿透人類顱骨,已被用於基於擴散相關光譜學技術監測腦活動和腦血流量。本研究的目的是開發用於腦血流監測的近紅外光擴散光譜儀系統,並為未來的顱內壓測量奠定基礎。
擴散相關光譜儀是一種光學方法基於近紅外光利用雷射波長為785nm的具有連續波性質和長相干長度(> 10m)射入組織。經由測量組織光子的散斑波動,單光子計算模組收集由腦血管內的紅細胞散射的單光子。最終經由計算自相關函數可以得到腦血流。在驗證上,我們測試擴散相關光譜儀在組織仿體流速,選用脂肪注射液作為散射物質以及墨水作為吸收物質。然而,在傳統的擴散相關光譜儀的時間解析度過低,沒有辦法偵測在一個脈波內的血流。因此我們研發了一個快速的擴散相關光譜儀。此儀器基於光子時間記錄版介面以及其FPGA模組作為紀錄光子到達時間的紀錄。利用注射幫浦製造不同流速,結果顯示流速在0.01-10ml/min呈現一個非線性而10-115ml/min為線性的良好結果。結果顯示,相關儀(R^2=0.8637-0.9414,p<0.0001)和cRIO(R^2=0.8469-0.9621,p<0.0001)具有良好的線性回歸。而在進一步驗證在大鼠頸總動脈塞閉實驗,在阻塞時血流瞬間的降低。然而,大鼠吸入高氧與低氧實驗中,我們也發現在低氧時血流緩慢下降。
快速的擴散相關光譜儀已經成功地建立在不同流速的仿體和頸總動脈結紮(CCAL)動物模型的下進行驗證。 此外,在氣體實驗中,擴散相關光譜儀測量與雷射都普勒流量計相關性良好。 我們的研究表明,擴散相關光譜儀系統可用於腦血流的非侵入性測量,可用於將來用於腦血管相關疾病的顱內壓測量。
英文摘要 Cerebral blood flow (CBF) is an important biomarker because it controls the supply of oxygen, metabolic consumption, and byproduct clearance in the brain. One promising application of CBF monitoring is the derivation of intracranial pressure (ICP). Critical closing pressure (CrCP) is a non-invasive approach of estimating ICP. CrCP is derived from arterial blood pressure (ABP) when CBF approaches zero. To measure blood flow velocity, transcranial Doppler ultrasonography (TCD) is a commonly non-invasive instrument for measuring blood velocity in large arterials. However, there are some limits about ultrasound in penetration depth and the need for medical person to aim at the vessel target. Therefore, TCD is not suitable for a long-term measurement of blood flow velocity but can be used as verification tool. For non-invasive and long-term monitoring of CBF, near-infrared (NIR) light for being able to penetrate human skull has been used to monitor brain activities and cerebral blood flow based on diffuse correlation spectroscopy (DCS) technique. The aim of this study was to develop a NIR-DCS system for CBF monitoring and layout the foundation for future ICP measurement.
DCS is an optics technique based on NIR light with continuous wave properties and long coherence length (> 10 m) at a laser wavelength of 785 nm emitter to the tissue. By measuring speckle fluctuation of the photon of tissue. A single-photon counting module collects single photons scattered by red blood cells (RBCs) in the cerebrovascular. CBF can finally be obtained by calculating the autocorrelation function. For verification, the developed DCS system was tested on tissue flow tubes contain lipofundin as the scattering material and ink as the absorbing material. However, traditional DCS has low time resolution which cannot derive the pulsatile blood flow. Therefore, we developed a fast DCS device using FPGA modules based photon-time-documenting board, which can record photon arrival times. Syringe pump was used to provide different flow rates for comparing the estimation performance of traditional DCS and fast DCS. The flow rate results show that nonlinear at 0.01-10 ml/min and linearity at 10-115 ml/min. In phantom tests, our result show good linear regression between correlator ( R^2=0.8637~0.9414,p<0.0001 ) and cRIO (R^2=0.8469~0.9621,p<0.0001). To further verify the experimental closure of the common carotid artery in rats, the blood flow was instantaneously reduced at the time of occlusion. However, in the experiment of inhalation of hyperoxia and hypoxia in rats, we also found that blood flow decreased slowly during hypoxia.
A fast DCS has been successfully built for verification in different flow velocities of phantom and for common carotid artery ligation (CCAL) animal model. Moreover, DCS measurements correlate well with laser Doppler flowmeter during gas experiment. Our study indicates that DCS system can be used for noninvasive measurement of CBF which can be future used for ICP measurement in cerebrovascular related diseases.
論文目次 摘要 (I)
ABSTRACT (III)
CONTENTS (V)
LIST OF FIGURES (VI)
LIST OF TABLES (VIII)
LIST OF ABBREVIATIONS (IX)
CHAPTER I INTRODUCTION (1)
Near-infrared diffuse correlation spectroscopy (DCS) (4)
The aims of this study (8)
CHAPTER II MATERIALS AND METHODS (9)
Diffuse correlation spectroscopy (9)
System setup of DCS (11)
Flow phantom experiment (18)
Acrylic cavity flow experiment (19)
Animal experiment (20)
CHAPTER III RESULTS (26)
Autocorrelation function (26)
System validation (27)
Dynamic phantom flow experiment (30)
Animal experiment - Protocol 1: CBF measurements during common carotid artery ligation (CCAL). (33)
Animal experiment - Protocol 2: CBF measurements during hyperoxia and hypoxia. (35)
Animal experiment - Protocol 3: Comparison of CBF measurements by DCS and Laser Doppler Flowmeter (LDF) during hyperoxia and hypoxia. (35)
CHAPTER Ⅳ DISCUSSION (38)
Fast DCS device (38)
Dynamic liquid phantom part (38)
S-D distance (39)
CCAL model (40)
Gas inhaling model (40)
Conclusion and future work (41)
REFERENCES (42)
參考文獻 Berne, B. J., & Pecora, R. (2000). Dynamic light scattering: with applications to chemistry, biology, and physics: Courier Corporation.
Boas, D., & Yodh, A. (1997). Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. JOSA A, 14(1), 192-215.
Boas, D. A. (1996). Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications. Graduate School of Arts and Sciences, University of Pennsylvania.
Boas, D. A., Campbell, L., & Yodh, A. G. (1995). Scattering and imaging with diffusing temporal field correlations. Physical review letters, 75(9), 1855.
Brown, W. (1993). Dynamic Light Scattering: The Method and Some Applications, Clarendon: Oxford.
Buckley, E. M., Cook, N. M., Durduran, T., Kim, M. N., Zhou, C., Choe, R., . . . Licht, D. J. (2009). Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound. Optics express, 17(15), 12571-12581.
Cheung, C., Culver, J. P., Takahashi, K., Greenberg, J. H., & Yodh, A. (2001). In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies. Physics in medicine and biology, 46(8), 2053.
Chu, B. (2007). Laser light scattering: basic principles and practice: Courier Corporation.
Cooper, D. J., Rosenfeld, J. V., Murray, L., Arabi, Y. M., Davies, A. R., D'urso, P., . . . Reilly, P. (2011). Decompressive craniectomy in diffuse traumatic brain injury. New England Journal of Medicine, 364(16), 1493-1502.
de Riva, N., Budohoski, K. P., Smielewski, P., Kasprowicz, M., Zweifel, C., Steiner, L. A., . . . Czosnyka, M. (2012). Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocritical care, 17(1), 58-66.
Dietsche, G., Ninck, M., Ortolf, C., Li, J., Jaillon, F., & Gisler, T. (2007). Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue. Applied optics, 46(35), 8506-8514.
Diop, M., Verdecchia, K., Lee, T.-Y., & St Lawrence, K. (2011). Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements. Biomedical optics express, 2(7), 2068-2081.
Duong, T. Q. (2007). Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats. Brain research, 1135, 186-194.
Durduran, T., Kim, M. N., Buckey, E. M., Zhou, C., Yu, G., Choe, R., . . . Yodh, A. G. (2008). Diffuse Optical Monitoring of Cerebral Oxygen Metabolism at the Bedside in Cerebrovascular Disorders. Paper presented at the Frontiers in Optics.
Durduran, T., & Yodh, A. G. (2014). Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement. Neuroimage, 85 Pt 1, 51-63. doi:10.1016/j.neuroimage.2013.06.017
He, L., Lin, Y., Shang, Y., Shelton, B. J., & Yu, G. (2013). Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements. Journal of biomedical optics, 18(3), 037001-037001.
Holloway, K. L., Barnes, T., Choi, S., Bullock, R., Marshall, L. F., Eisenberg, H. M., . . . Marmarou, A. (1996). Ventriculostomy infections: the effect of monitoring duration and catheter exchange in 584 patients. Journal of neurosurgery, 85(3), 419-424.
Irwin, D., Dong, L., Shang, Y., Cheng, R., Kudrimoti, M., Stevens, S. D., & Yu, G. (2011). Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements. Biomedical optics express, 2(7), 1969-1985.
Kidwell, C., Alger, J., & Saver, J. (2003). Evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke, 34(11), 2729-2735.
Kim, M., Durduran, T., Frangos, S., Buckley, E., Zhou, C., Yu, G., . . . Detre, J. (2008). Validation of diffuse correlation spectroscopy against xenon CTCBF in humans after traumatic brain injury or subarachnoid hemorrhage. Paper presented at the Neurocritical Care Society Annual Meeting.
Kim, M. N., Durduran, T., Frangos, S., Edlow, B. L., Buckley, E. M., Moss, H. E., . . . Maloney-Wilensky, E. (2010). Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocritical care, 12(2), 173-180.
Koning, G., Lyngfelt, E., Svedin, P., Leverin, A.-L., Jinnai, M., Gressens, P., . . . Hagberg, H. (2018). Magnesium sulphate induces preconditioning in preterm rodent models of cerebral hypoxia-ischemia. International Journal of Developmental Neuroscience.
Lin, Y., He, L., Shang, Y., & Yu, G. (2012a). Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement. Journal of biomedical optics, 17(1), 010502.
Lin, Y., He, L., Shang, Y., & Yu, G. (2012b). Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement. Journal of biomedical optics, 17(1), 0105021-0105023.
O'Reilly, J. P., Kolodziejski, N. J., McAdams, D., Fernandez, D. E., Stapels, C. J., & Christian, J. F. (2017). A capillary-mimicking optical tissue phantom for diffuse correlation spectroscopy. Paper presented at the Design and Quality for Biomedical Technologies X.
Panerai, R. (2003a). The critical closing pressure of the cerebral circulation. Medical Engineering and Physics, 25(8), 621-632.
Panerai, R. (2003b). The critical closing pressure of the cerebral circulation. Medical engineering & physics, 25(8), 621-632.
Passos, D., Hebden, J. C., Pinto, P., & Guerra, R. (2005). Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution. Journal of biomedical optics, 10(6), 064036.
Rice, S. O. (1944). Mathematical analysis of random noise. Bell Labs Technical Journal, 23(3), 282-332.
Shang, Y., Chen, L., Toborek, M., & Yu, G. (2011). Diffuse optical monitoring of repeated cerebral ischemia in mice. Optics express, 19(21), 20301-20315.
Siesjo, B. K. (1978). Brain energy metabolism.
Simon, B., Mani, S. E., Keshava, S. N., Alexander, M., & Aaron, S. (2018). Role of noninvasive imaging of cerebral arterial system in ischemic stroke: Comparison of transcranial color-coded doppler sonography with magnetic resonance angiography. Journal of Clinical Imaging Science, 8(1), 19.
Steiner, L., & Andrews, P. (2006). Monitoring the injured brain: ICP and CBF. BJA: British Journal of Anaesthesia, 97(1), 26-38.
Wang, D., Parthasarathy, A. B., Baker, W. B., Gannon, K., Kavuri, V., Ko, T., . . . Yodh, A. G. (2016). Fast blood flow monitoring in deep tissues with real-time software correlators. Biomed Opt Express, 7(3), 776-797. doi:10.1364/BOE.7.000776
Yu, G., Durduran, T., Zhou, C., Cheng, R., & Yodh, A. (2011). Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow. Handbook of Biomedical Optics, 195-216.
Zhou, C., Eucker, S. A., Durduran, T., Yu, G., Ralston, J., Friess, S. H., . . . Yodh, A. G. (2009). Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury. Journal of biomedical optics, 14(3), 034015-034015-034011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw