進階搜尋


下載電子全文  
系統識別號 U0026-2307201723511900
論文名稱(中文) 台南都會區都市碳收支地圖之建置及分析
論文名稱(英文) Establishment and analysis of urban carbon budget map in Tainan metropolitan area
校院名稱 成功大學
系所名稱(中) 建築學系
系所名稱(英) Department of Architecture
學年度 105
學期 2
出版年 106
研究生(中文) 吳佩儒
研究生(英文) Pei-Ru Wu
學號 N76041212
學位類別 碩士
語文別 中文
論文頁數 74頁
口試委員 指導教授-林子平
口試委員-莊振義
口試委員-趙又嬋
中文關鍵字 二氧化碳排放  二氧化碳吸收  都市二氧化碳系統  GIS  減碳對策 
英文關鍵字 CO2 emissions  CO2 absorption  urban CO2 system  geographic information system  solar potential  carbon-reduction 
學科別分類
中文摘要 隨著都市高度發展及擴張,都市能源耗用使二氧化碳排放量急遽成長,二氧化碳減量工作已成為各國重要課題。過去相關研究中,多數受限於從上而下的過大尺度資料,且多選用單一的空間或時間尺度,對碳收支現象的呈現及說明有限。因此,本研究以台南都會區為對象,結合都市空間資訊及統計數據資料庫,計算台南都會區二氧化碳系統內外情況,包含建築物電力及燃氣使用、道路運輸等二氧化碳排放源,系統內綠地、水體等具有二氧化碳吸收功能。以GIS建立200×200m網格的碳收支現況地圖。結果可得知在二氧化碳排放集中於高都市化區,即人口密度大於5000人/km2區域。在高都市化區以建築物的二氧化碳排放量最大(占總排放量54%),且因台灣高溫及空調使用特性,夏季二氧化碳排放量高於冬季11%;低都市化區二氧化碳排放則以道路運輸比例最高(87%),季節差異不顯著。利用其結果進一步以50×50m網格探討不同都市類型的四個案例區域,所得之結果也發現綠地對二氧化碳吸收量的成效有限,因此本研究採用三大減碳對策並評估分析其效益,整體結果以建築屋頂PV發電具有最佳減碳效益,在30%屋頂面積設置太陽能板情況下,四個案例區域的減碳效益介於4.5-31.1 kgCO2/m2‧yr,因夏季空調耗能,整體太陽能替代率冬季大於夏季。而交通運輸減碳效益受到區域內二氧化碳排放組成的影響,交通運輸碳排比例越高,減碳效益也越高。本研究貢獻為以高解析度網格呈現碳收支結果並量化太陽能發電減碳潛力,提出使都市運作排放的二氧化碳減少環境衝擊的調適策略,確保都市及周圍環境的永續性,提供未來都市規劃政策與環境氣候變遷調適適當的建議。
英文摘要 As urban areas continue to develop and expand, carbon dioxide (CO2) emissions from their energy use are growing exponentially. Previous studies have provided a limited understanding of carbon budgets because they have used top-down data on a single spatial or temporal scale. In this study, urban spatial and statistical data for metropolitan Tainan are used to explore the CO2 system of the city and estimate the amount of CO2 emissions from road traffic, the use of electricity and gas in buildings, and the amount of CO2 absorbed by green spaces. Innovative annual and monthly carbon budget maps composed of 200 × 200-m grids are developed for the city through a geographic information system (GIS). An analysis of the result maps yields the following findings: First, CO2 emissions are concentrated in over-urbanized areas. Buildings account for the majority of CO2 emissions (54%) and produced 11% more CO2 in summer than in winter (owing to air-conditioning usage). Second, road traffic is the main source of CO2 emissions for under-urbanized areas (87%), and emissions from traffic exhibit insignificant seasonal variation. Based on these findings, the carbon budgets of four different over-urbanized areas are formulated and presented on 50 × 50-m grids. The results suggest that green spaces in these areas absorb limited amounts of CO2. Therefore, this study assesses the annual and monthly carbon-reduction potential of rooftops equipped with solar panels occupying 30% of their area. The annual carbon-reduction potential for focused areas was 4.5–31.1 kg CO2 m-2 yr-1, and the solar energy replacement rate is higher in winter. In summary, this study presents carbon budgets in high-resolution grids, and proposes reduction strategies for reducing CO2 emissions from urban activities to improve the sustainability of urban areas and their environs and inform urban planning and climate change adaptation.
論文目次 第一章、 緒論 1
第一節、 研究背景與動機 1
第二節、 研究目的 3
第三節、 研究流程 3
第二章、 文獻回顧 5
第一節、 都市區域碳收支系統 5
第二節、 都市減碳對策相關文獻 10
第三節、 計算項目中參數之背景與方法 16
第三章、 研究方法 22
第一節、 研究範圍與對象 22
第二節、 評估範圍界定 23
第三節、 研究工具 25
第四節、 資料庫蒐集與計算網格尺寸 28
第五節、 碳收支計算方法 30
第六節、 減碳對策之研擬 34
第四章、 結果與討論 40
第一節、 台南都會區碳收支 40
第二節、 核心區域碳收支系統 45
第三節、 核心區域減碳對策比較 48
第五章、 結論與建議 52
第一節、 結論 52
第二節、 研究限制 52
第三節、 建議 53
參考文獻 54
附錄一、行政區背景描述與碳收支比較表 58
附錄二、台南都會區二氧化碳收支的區域組成 59
附錄三、台南都會區住商建築夏季日夜能源耗用地圖 60
附錄四、不同屋頂面積情境下的太陽能替代率 61
附錄五、臺南市市區道路交通量調查及分析(2015) 65
附錄六、交通運輸之計算邊界定義及二氧化碳排放量計算方法整理 71
附錄七、綠地植栽二氧化碳吸收量之計算方法整理 73
參考文獻 英文文獻:
1. Christen, A., Coops, N.C., Crawford, B.R., Kellett, R., Liss, K.N., Olchovski, I., Tooke, T.R., Laan, M., Voogt, J.A., Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements, Atmospheric Environment 45 (2011) 6057-6069
2. Chang, C.T., Lin, T.P., Estimation of carbon dioxide emissions from the traffic in the street blocks of Taichung City, International Congress on Engineering and Information(2015), Kyoto, Japan.
3. Chang, H.W., Liberty Times Net, http://news.ltn.com.tw/news/business/paper/816595
4. Chiang, L.Y., Chen, T.L., Chang, H.S., Using Carbon Neutral Aspect to investigate the carbon footprint of energy consumption, Forum of Urban Planning 14, 2010
5. EnergyPlus manual, https://energyplus.net/documentation (last access: 2017-04-09)
6. Jochem, A., Höfle, B., Rutzinger, M., Extraction of Vertical Walls from Mobile Laser Scanning Data for Solar Potential Assessment, Remote Sensing, 3 (2011), 650-667.
7. Kellett , R., Christen, A., Coops, N.C., Laan, M., Crawford, B., Tooke, T.R., Olchovski, I., A systems approach to carbon cycling and emissions modeling at an urban neighborhood scale, 2013
8. Kotthaus, S., Grimmond, C.S.B., Identification of Micro-scale Anthropogenic CO2, heat and moisture sources-Processing eddy covariance fluxes for a dense urban environment, Atmospheric Environment 57 (2012) 301-316
9. Kotthaus, S., Grimmond, C.S.B., Energy exchange in a dense urban environment –Part II: Impact of spatial heterogeneity of the surface, Urban Climate 10 (2014) 281–307
10. Lietzke, B., Vogt, R., Feigenwinter, C., Parlow, E., On the controlling factors for the variability of carbon dioxide flux in a heterogeneous urban environment, International Journal of Climatology Int. J. Climatol. 35 (2015) 3921–3941
11. Lin, F.Y, Lin, T.P., Hwang, R.L., Using geospatial information and building energy simulation to construct urban residential energy use map with high resolution for Taiwan cities, Energy and Building(2017) (in press)
12. Lebel, L., Garden, P., Banaticla, M.R.N., Lasco, R.D., Contreras, A., Mitra, A.P., Sharma, C., Nguyen, H.T., Ool, G.L., Sari, A., Integrating carbon management into the development strategies of urbanizing regions in Asia, Journal of Industrial Ecology11(2007), 61–81.
13. Lin, T.P., Carbon dioxide emissions from transport in Taiwan’s national parks, Tourism Management 31 (2010) 285–290
14. Mohajeri, N., Upadhyay, G., Gudmundsson, A., Assouline, D., Kämpf, J., Scartezzini, J.L., Effects of urban compactness on solar energy potential, Renewable Energy 93 (2016) 469-482
15. Regvat, R., Hämmerle, M., Marx, S., König, K., Höfle, B., 3D-Punktbasierte Solarpotenzialanalyse für Gebäudefassaden mit freien Geodaten, AGIT-Symposium Salzburg (2014)196-204, ISBN 978-3-87907-543-0.
16. Sovacool, B.K., Brown, M.A., Twelve metropolitan carbon footprints: A preliminary comparative global assessment, Energy Policy38(2010)4856–4869
17. Stewart, I.D., Kennedy, C.A., Metabolic heat production by human and animal populations in cities, International Journal of Biometeorology Metabolic heat production by human and animal populations in cities (2016)
18. Site catalogue for noise protection systems with yield forecast for potential photovoltaic applications, Reports of the Federal Highway Research Institute, 2015
19. Santos, T., Gomes, N., Freire, S., Brito, M.C., Santos, L., Tenedório, J.A., Applications of solar mapping in the urban environment, Applied Geography 51 (2014) 48-57
20. Takebayashi, H., Ishii, E., Moriyama, M., Sakaki, A., Nakajima, S., Ueda, H., Study to examine the potential for solar energy utilization based on the relationship between urban morphology and solar radiation gain on building rooftops and wall surfaces, Solar Energy 119 (2015) 362–369
21. The Voxel Octree Solar Toolkit, https://github.com/giscience/vostok (last access: 2017-04-09)
22. Ueyama, M., Ando, T., Diurnal, weekly, seasonal, and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan, Atmos. Chem. Phys 16 (2016) 14727–14740
23. Velasco, E., Roth, M., Tan, S.H., Quak, M., Nabarro, S.D.A., Norford, L., The role of vegetation in the CO2 flux from a tropical urban neighbourhood, Atmos. Chem. Phys. 13 (2013) 10185–10202
24. Velasco, E., Perrusquia, R., Jimenez, E., Hernandez, F., Camacho, P., Rodríguez, S., Retama, A., Molina, L.T., Sources and sinks of carbon dioxide in a neighborhood of Mexico City, Atmospheric Environment 97 (2014) 226-238
25. Wang, B.C., Chou, F.Y., Lee, Y.J., Ecological footprint of Taiwan: A discussion of its implications for urban and rural sustainable development, Computers, Environment and Urban Systems 36 (2012) 342–349
26. Wang, S., Fang, C., Wang, Y., Huang, Y., Ma, H., Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis, Ecological Indicators 49 (2015) 121–131
27. Yajie, D., Beicheng, X., Weidong, C., Carbon footprint of urban areas: An analysis based on emission sources account model, Environmental science&policy44 (2014) 181-189


中文文獻:
1. 江玲穎、陳姿伶、張學聖,碳平衡觀點探討縣市能源消費碳足跡,2010
2. 呂錫民,我國陸上運輸節能分析與評估,2013
3. 林孟儒,因應全球二氧化碳減量生態趨勢之都市綠化政策研究-以台北市為例,2002
4. 林淑儀,台北地區都市公園綠地碳貯存效果之評估-衛星遙測資料之應用,2013
5. 林憲德、林子平、蔡耀賢,綠建築評估手冊-BC版,2015
6. 林憲德,碳足跡,2015
7. 張又升,建築物生命週期二氧化碳減量評估,2002
8. 陳介慧,建築用電密度標準之研究,2009
9. 陳信宏,遙測技術於台北市都市綠地之碳吸存監測研究,2011
10. 黃寶萱,以都市代謝觀點探討都市化與二氧化碳排放與吸存量之關聯性,2014
11. 黃穎俊,二氧化碳及甲烷通量觀測與排放量建立-以台灣七股濕地為例,2015
12. 劉柏漢,臺南七股海岸濕地之碳吸存量之估算,2014
13. 戴誥芬,都市土地使用與二氧化碳濃度影響之關聯研究,2010
14. 運輸部門節約能源使用及減少溫室氣體排放之規畫研究,交通部運輸研究所、中鼎工程股份有限公司,2001
15. 運輸部門能源需求預測之研究,交通部運輸研究所,2003
16. 我國燃料燃燒之二氧化碳排放統計與分析,經濟部能源局,2015
17. 臺南市市區道路交通量調查及分析,2015
18. 陽光屋頂百萬座,經濟部能源局,http://mrpv.org.tw/page/overview. (last access: 2017-04-09)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw