進階搜尋


 
系統識別號 U0026-2307201608270400
論文名稱(中文) 影響高科技產業員工對於數位學習使用意圖因素之探討-以光電產業為例
論文名稱(英文) Investigating the Influential Factors of High-Tech Industry Employees’ Intentions to Use e-Learning — A Case Study of the Optoelectronics Industry
校院名稱 成功大學
系所名稱(中) 工程科學系碩士在職專班
系所名稱(英) Department of Engineering Science (on the job class)
學年度 104
學期 2
出版年 105
研究生(中文) 陳暉奇
研究生(英文) Hui-Chi Chen
學號 n97031010
學位類別 碩士
語文別 中文
論文頁數 109頁
口試委員 指導教授-黃悅民
召集委員-鄭淑真
口試委員-黃天麒
口試委員-黃永銘
口試委員-吳婷婷
中文關鍵字 數位學習  使用意圖  結合科技接受模式與計畫行為理論(C-TAM-TPB)  解構式計畫行為理論(Decomposed TPB)  知覺有趣性  知覺價值 
英文關鍵字 E-learning  Behavioral Intention to Use  Combined-TAM-TPB  Decomposed-TPB  Perceived Playfulness  Perceived Value 
學科別分類
中文摘要 時代不斷演進,科技發展日新月異,許多公司都已導入數位學習來作為員工訓練以及知識管理的方針,企業灌輸員工於使用上應避免流於形式,因此提高數位學習的使用意願與成效顯得相對重要,一來可引領新進員工快速融入環境;二來也能培養舊有員工對於專業知識的汲取,甚至於職涯規畫,更是企業長期以來穩定發展與獲利的不二法門。本研究旨在探討高科技產業員工對於數位學習之使用意圖因子,根據結合科技模式與計畫行為理論(Combined TAM-TPB),以及解構式計畫行為理論(Decomposed TPB)中同儕影響 (Peer Influence)、上級主管影響(Superior’s Influence)、自我效能(Self Efficacy)、資源助益環境(Resource Facilitating Conditions)四個概念等相關文獻,並加入知覺有趣性(Perceived Playfulness)與知覺價值(Perceived Value)的新觀點,試圖激盪出新的思維。
本研究對象為曾經使用過公司數位學習系統的員工進行前測與正式問卷調查,一共發放350份正式問卷,有效回收283份,資料分析包含:樣本資料的敘述性統計、以個人背景類別變項之分析、問卷信度與效度分析,並藉由迴歸與路徑分析探討彼此間關聯性,實證證明了此模型架構具有足夠之解釋力與配適度,更適用在現代光電科技產業,透過各變數的分析探究能使得高科技企業更了解影響著員工對於數位學習使用意圖的重要因子,以提供未來在規畫、導入、實作、維護數位學習系統需考量的重要因素,進而增進使用意圖,如此一來後續帶來的成效性也能成為公司獲利成長的基石。
本研究經實證與分析,結果顯示:(1)高科技產業員工個人背景之年齡、教育程度、畢業學院、數位學習使用經歷等變項對於數位學習之使用意圖無顯著差異 (2)高科技產業員工之「知覺有趣性」、「使用態度」、「知覺價值」、「知覺行為控制」、「主觀規範」等因子對於數位學習的「使用意圖」皆有正向顯著影響,又以「知覺行為控制」扮演最重要且影響最大的因子 (3)高科技產業員工於數位學習上的「知覺有趣性」會顯著影響其「知覺有用性」、「知覺易用性」 (4)高科技產業員工於數位學習的「知覺有用性」、「知覺有趣性」、「知覺易用性」皆會正向顯著影響其「使用態度」,又以知覺有趣性影響較深 (5)高科技產業員工對於數位學習的「知覺易用性」顯著影響其「知覺價值」 (6)高科技產業員工對於數位學習上的「自我效能」、「資源助益環境」顯著影響「知覺行為控制」,資源助益環境相較於自我效能上扮演較為重要之角色 (7)高科技產業員工對於數位學習上受到的「上級主管」與「同儕影響」會顯著影響其「主觀規範」,同儕影響相較於上級主管上扮演更為重要之角色 (8)本研究提出架構之各變項,對於高科技產業員工於數位學習之使用意圖具有顯著預測力,對於使用意圖整體配適度的合理解釋能力達54.5%。本研究最後依據路徑分析後驗證結果,提出實務上與未來研究等建議。
英文摘要 Progresses unceasingly along with the time, the technology development changes with each new day, many companies are introducing digital learning as staff training and knowledge management approach, enterprise instill in employees should avoid the use of a mere formality, thus increasing willingness to use and effectiveness of e-learning is relatively important, It may lead to new employees to quickly integrate into the new environment;And secondly to be able to train older workers to learn professional knowledge, and even career planning, it is long-standing and stable development of the enterprise and the only way to profit. This study was designed to investigate the intent factors of high-tech industry for employees’ intention to using e-learning, according to the combination of Technology Acceptance Model and Theory of Planned Behavior (Combined TAM-TPB) and Decomposed Theory of planned behavior (Decomposed TPB) in Peer Influence, Superior's Influence, Self Efficacy, Resource Facilitating Conditions four concepts and other related documents, and add Perceived Playfulness and Perceived Value new ideas, trying to bring out new cogitation.


論文目次 目錄
摘要 i
Abstract iii
誌謝 vi
目錄 vii
表目錄 ix
圖目錄 xi
第一章 緒論 1
第一節 背景與動機 1
第二節 研究問題 4
第三節 研究目的 4
第四節 研究流程 5
第二章 文獻探討 6
第一節 數位學習(e-Learning) 6
第二節 數位學習使用意圖 9
第三節 計畫行為理論(Theory of Planned Behavior,TPB) 20
第四節 科技接受模式(Technology Acceptance Model,TAM) 22
第五節 結合科技接受模式和計畫行為理論(Combined-TAM-TPB)、解構式計畫行為理論(Decomposed-TPB) 23
第六節 知覺有趣性(Perceived Playfulness) 27
第七節 知覺價值(Perceived Value) 28
第三章 研究方法 30
第一節 研究樣本 30
第二節 研究架構與假說 31
第三節 問卷設計與實施 39
第四章 資料分析 53
第一節 敘述性統計與類別變項分析 56
第二節 測量模型分析 62
第三節 結構模型分析 74
第四節 假說檢定 76
第五章 結論與討論 83
第一節 研究結論與討論 83
第二節 研究限制與未來建議 90
參考文獻 92
一、 中文部分 92
二、 英文部分 94
附錄一 102
附錄二 106




















參考文獻 一、 中文部分

1. 林東清 (2014)。資訊管理-e 化企業的核心競爭能力。台北:智勝文化事業股份有限公司。

2. 林清富 (2013)。光明未來,台灣光電產業的機遇和挑戰。DIGITIMES,DTF 2013 Ultra Mobile & Eco-System Forum,多元化行動裝置平台的架構趨勢與開發挑戰研討會。

3. 光電科技工業協進會(PIDA) (2015)。產業技術組趨勢報告。

4. 行政院國家科學委員會 (2008)。數位學習國家型科技計畫結案評估報告。

5. 何榮桂 (2010)。台灣數位學習推動現況與展望。數位學習創新應用-2010 數位學習國際研討會論文集,3-13。

6. 邱皓政 (2011)。當 PLS 遇上 SEM: 議題與對話。αβγ 量化研究學刊,3(1),20-53。

7. 科技商情DIGITIMES (2015)。台灣光電產業2015市場概況與未來展望。日期:2016年6月15日,取自http://digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=13&id=0000430854_UST7N89Y6T69T53UNQDHY&ct=1#ixzz4B6ZNLeAh

8. 俞洪亮、蔡義清、莊懿妃 (2010)。商管研究資料分析: SPSS 的應用 二版。台北: 華泰文化事業股份有限公司。

9. 高瑜璟 (2006)。數位學習-學習的新趨勢。高師大資訊教育研究所。日期:2016年6月15日,取自http://www.nhu.edu.tw/~society/e-j/57/57-22.htm

10. 徐嘉欣 (2011)。以科技接受模式探討公務人員數位學習之研究-以公務員資訊學習網為例。國立臺灣師範大學科技應用與人力資源發展學系碩士論文,台北。

11. 黃國禎 (2006)。數位時代的學習契機與要素。研習論壇 (71), 5-10。

12. 張振亨、陳思亮 (2014)。數位學習 (E-Learning) 的認識與應用。

13. 張春鴻 (2002)。高級進修學校成人學生學習態度之研究。國立臺灣師範大學工業教育學系碩士論文,1台北。

14. 張鈞豪 (2013)。整合科技接受與資訊系統成功模式探討企業員工數位學習使用意願。逢甲大學科技管理系所碩士論文,台中。

15. 陳志銘 (2009)。創新數位學習模式與教學應用。

16. 曾愛華 (2012)。整合個別差異與科技接受模式以分析數位學習之採用。國立交通大學管理科學系所博士論文,新竹。

17. 資策會教育訓練處講師群 (2003)。數位學習最佳指引。台北市︰資訊工業策進會教育訓練處。

18. 資訊工業策進會 (2009)。98年度專案計畫-企業導入數位學習調查分析報告。

19. 資策會教育研究所 (2013)。2013數位學習產值調查報告。

20. 經濟部工業局 (2010)。99年度專案計畫-國內外數位學習產業現狀與產值調查分析報告。

21. 劉可德 (2011)。公務人員數位學習的科技接受模式與相關變項關係之研究。國立臺灣師範大學科技應用與人力資源發展學系博士論文,台北。

22. 劉君毅 (2007)。數位學習的現況與發展。研習資訊,24(4),115-123。

23. 劉美鳳 (2010)。資訊技術在教育應用的思考。

24. 廖珮妏 (2011)。企業導入數位學習之創新擴散通用模型與整合型科技接受模式的多層次分析。國立臺灣師範大學科技應用與人力資源發展學系博士論文,台北。

25. 鄭光庭 (2008)。運用科技接受模式探討使用者接受數位學習系統之因素探討。國立交通大學管理科學系所碩士論文,新竹。

26. 賴阿福 (2016)。數位學習科技新趨勢。T&D 飛訊第 215期。國家文官學院。

二、 英文部分

1. Ahn, T., Ryu, S., & Han, I. (2007). The impact of Web quality and playfulness on user acceptance of online retailing. Information & management, 44(3), 263-275.

2. Ajjan, H., & Hartshorne, R. (2008). Investigating faculty decisions to adopt Web 2.0 technologies: Theory and empirical tests. The internet and higher education, 11(2), 71-80.

3. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior (pp. 11-39). Springer Berlin Heidelberg.

4. Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.

5. Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS quarterly, 107-136.

6. Al-Busaidi, Kamla Ali. (2013). An empirical investigation linking learners’ adoption of blended learning to their intention of full e-learning. Behav. Inf. Technol., 32(11), 1168-1176.

7. Althunibat, Ahmad. (2015). Determining the factors influencing students’ intention to use m-learning in Jordan higher education. Computers in Human Behavior, 52, 65-71.

8. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.

9. Baker, E. W., Al-Gahtani, S. S., & Hubona, G. S. (2007). The effects of gender and age on new technology implementation in a developing country: Testing the theory of planned behavior (TPB). Information Technology & People, 20(4), 352-375.

10. Ball, Diane M & Levy, Yair (2008). Emerging Educational Technology: Assessing the Factors that Influence Instructors' Acceptance in Information Systems and Other Classrooms. Journal of Information Systems Education 19.4 (Winter 2008): 431-443.

11. Barnett, L. A. (1991). The playful child: Measurement of a disposition to play. Play & Culture, 4(6), 51-74.

12. Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS Quarterly, 25(3), 351-370.

13. Bolton, R. N., & Drew, J. H. (1991). A multistage model of customers' assessments of service quality and value. Journal of consumer research, 375-384.

14. Brady, M. K., & Cronin, J. J. (2001). Customer orientation effects on customer service perceptions and outcome behaviors. Journal of service Research, 3(3), 241-251.

15. Bruner, G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld Internet devices. Journal of business research, 58(5), 553-558.

16. Cheng, Y. M. (2012). The effects of information systems quality on nurses’ acceptance of the electronic learning system. Journal of Nursing Research, 20(1), 19-31.

17. Cheon, Jongpil, Lee, Sangno, Crooks, Steven M., & Song, Jaeki. (2012). An investigation of mobile learning readiness in higher education based on the theory of planned behavior. Computers & Education, 59(3), 1054-1064.

18. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern business research methods (pp.
295-336).

19. Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. Statistical strategies for small sample research, 2, 307-342

20. Chu, Tsai-Hsin, & Chen, Yi-Ying. (2016). With Good We Become Good: Understanding e-learning adoption by theory of planned behavior and group influences. Computers & Education, 92–93, 37-52.

21. Cronin, J. J., Brady, M. K., & Hult, G. T. M. (2000). Assessing the effects of quality, value, and customer satisfaction on consumer behavioral intentions in service environments. Journal of retailing, 76(2), 193-218

22. Csikszentmihalyi, M. (1975). Play and intrinsic rewards. Journal of humanistic psychology.

23. Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.

24. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.

25. Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30.

26. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.

27. Fornell, C., & Larcker, D. F.. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50.

28. Grewal, D., Monroe, K. B., & Krishnan, R. (1998). The effects of price-comparison advertising on buyers' perceptions of acquisition value, transaction value, and behavioral intentions. The Journal of Marketing, 46-59.

29. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (Vol. 6). Upper Saddle River, NJ: Pearson Prentice Hall.

30. Huang, Yong-Ming. (2016). The factors that predispose students to continuously use cloud services: Social and technological perspectives. Computers & Education, 97, 86-96.

31. Huang, Y. M., Huang, Y. M., Huang, S. H., & Lin, Y. T. (2012). A ubiquitous English vocabulary learning system: Evidence of active/passive attitudes vs. usefulness/ease-of-use. Computers & Education, 58(1), 273-282.

32. Huang, Y. M., Yang, S. J., & Tsai, C. C. (2009). Web 2.0 for interactive e-learning.

33. Igbaria, M., & Tan, M. (1997). The consequences of information technology acceptance on subsequent individual performance. Information & Management, 32(3), 113-121.

34. Jafari Navimipour, Nima, & Zareie, Batool. (2015). A model for assessing the impact of e-learning systems on employees’ satisfaction. Computers in Human Behavior, 53, 475-485.

35. Lee, J. W. (2010). Online support service quality, online learning acceptance, and student satisfaction. The Internet and Higher Education, 13(4), 277-283.

36. Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506-516.

37. Lee, Y. C. (2006). An empirical investigation into factors influencing the adoption of an e-learning system. Online information review, 30(5), 517-541.

38. Lee, J., Cerreto, F. A., & Lee, J. (2010). Theory of Planned Behavior and Teachers' Decisions Regarding Use of Educational Technology. Educational Technology & Society, 13(1), 152-164.

39. Lin, K. M. (2011). e-Learning continuance intention: moderating effects of user e-learning experience. Computers & Education, 56(2), 515-526.

40. Lin, C. S., Wu, S., & Tsai, R. J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & management, 42(5), 683-693.

41. Lin, S., Zimmer, J. C., & Lee, V. (2013). Podcasting acceptance on campus: The differing perspectives of teachers and students. Computers & Education, 68, 416-428.

42. Liu, S. H., Liao, H. L., & Pratt, J. A. (2009). Impact of media richness and flow on e-learning technology acceptance. Computers & Education, 52(3), 599-607.

43. Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information systems research, 2(3), 173-191.

44. McKinney, V., Yoon, K., & Zahedi, F. M. (2002). The measurement of web-customer satisfaction: An expectation and disconfirmation approach. Information systems research, 13(3), 296-315.

45. Mohammadi, Hossein. (2015). Investigating users’ perspectives on e-learning: An integration of TAM and IS success model. Computers in Human Behavior, 45, 359-374.

46. Monroe, K. B., & Krishnan, R. (1985). The effect of price on subjective product evaluations. Perceived quality, 1, 209-232.

47. Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & management, 38(4), 217-230.

48. Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.

49. Ndubisi, N. O. (2004, July). Factors influencing e-learning adoption intention: Examining the determinant structure of the decomposed theory of planned behaviour constructs. In In Proceedings of the 27th Annual Conference of HERDSA (pp. 252-262).

50. Ngai, E. W. T., Poon, J. K. L., & Chan, Y. H. C. (2007). Empirical examination of the adoption of WebCT using TAM. Computers & Education, 48(2), 250-267.

51. Nugent, C. C., Klein, P. J., & Schenk, R. (1996). Test development and validation of a back education posttest. Journal of Orthopaedic & Sports Physical Therapy, 24(2), 78-85.

52. Ong, Chorng-Shyong, Lai, Jung-Yu, & Wang, Yi-Shun. (2004). Factors affecting engineers’ acceptance of asynchronous e-learning systems in high-tech companies. Information & Management, 41(6), 795-804.

53. Padilla-Meléndez, Antonio, del Aguila-Obra, Ana Rosa, & Garrido-Moreno, Aurora. (2013). Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario. Computers & Education, 63, 306-317.

54. Park Sung Youl. (2009).An Analysis of the Technology Acceptance Model in Understanding University Students’ Behavioral Intention to Use e-Learning. Journal of Educational Technology & Society 12(3), Technology Support for Self-Organized Learners (July 2009), pp. 150-162

55. Pavlou, P. A., & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS quarterly, 115-143.

56. Petrick, J. F. (2002). Development of a multi-dimensional scale for measuring the perceived value of a service. Journal of leisure research, 34(2), 119-134.

57. Pirouz, D. M. (2006). An overview of partial least suqares. Available at SSRN 1631539.

58. Ramayah, T., Ahmad, Noor Hazlina, & Lo, May-Chiun. (2010). The role of quality factors in intention to continue using an e-learning system in Malaysia. Procedia - Social and Behavioral Sciences, 2(2), 5422-5426.

59. Robert C. Messina,jr.(2007). e-Learning Power- e-Learning in Taiwan.Taiwan:Industrial Development Bureau

60. Roca, Juan Carlos, Chiu, Chao-Min, & Martínez, Francisco José. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683-696.

61. Roca, Juan Carlos, & Gagné, Marylène. (2008). Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. Computers in Human Behavior, 24(4), 1585-1604.

62. Rogers, E. M.(1983).Diffusion of innovations.New York:The Free Press.

63. Rosenberg, M. J. (2001). E-learning: Strategies for delivering knowledge in the digital age (Vol. 3). New York: McGraw-Hill.

64. Sawang, S., Sun, Y., & Salim, S. A. (2014). It's not only what I think but what they think! The moderating effect of social norms. Computers & Education, 76, 182-189.

65. Sheth, J. N., Newman, B. I., & Gross, B. L. (1991). Why we buy what we buy: A theory of consumption values. Journal of business research, 22(2), 159-170.

66. Sweeney, J. C., & Soutar, G. N. (2001). Consumer perceived value: The development of a multiple item scale. Journal of retailing, 77(2), 203-220.

67. Taylor, S., & Todd, P.. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4), 561–570.

68. Taylor, S., & Todd, P. (1995). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. Decomposition and Crossover Effects In The Theory of Planned Behavior: A Study of Consumer Adoption Intentions, 12(2), 137-155.

69. Taylor, S., & Todd, P. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.

70. Teas, R. K., & Agarwal, S. (1997). Quality cues and perceptions of value: an examination of the mediation effects of quality and sacrifice perceptions. Iowa State University Working Paperd, 37(6).

71. Teo, T., & Noyes, J. (2011). An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: A structural equation modeling approach. Computers & Education, 57(2), 1645-1653.

72. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.

73. Venkatesh, V. and Davis, F.D.,( 2000). A theoretical extension of the technology
acceptance model: Four longitudinal field studies. Management Science,
46(2), pp.186-204

74. Woodruff, R. B., & Gardial, S. (1996). Know your customer: New approaches to understanding customer value and satisfaction. Wiley.

75. Wu, B., & Zhang, C. (2014). Empirical study on continuance intentions towards
E-Learning 2.0 systems. Behaviour & Information Technology, 33(10),1027-1038.

76. Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. The Journal of marketing, 2-22


論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw