進階搜尋


 
系統識別號 U0026-2307201416014500
論文名稱(中文) 高分子介電層和電極/主動層間接觸界面於五環素薄膜場效電晶體的效能影響
論文名稱(英文) The studies of polymer dielectrics and electrode/active layer interface on pentacene-based organic field-effect transistors
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 2
出版年 103
研究生(中文) 蔡宗達
研究生(英文) Tzung-Da Tsai
學號 L78981149
學位類別 博士
語文別 英文
論文頁數 116頁
口試委員 指導教授-郭宗枋
口試委員-賴韋志
召集委員-黃榮俊
口試委員-溫添進
口試委員-何國川
口試委員-朱治偉
中文關鍵字 五環素  有機場效電晶體  雙載子特性  負型傳導  遲滯效應 
英文關鍵字 pentacene  organic field-effect transistors  n-type conduction  hysteresis 
學科別分類
中文摘要 本論文分成兩個主題去探討,第一個主題探討有機五環素場效電晶體其遲滯效應的控制因素,第二個主題探討有機五環素場效電晶體的雙載子傳導轉換成負型單載子傳導的成因。
第一個主題有機場效電晶體的遲滯效應,使用poly(vinyl alcohol) (PVA)當作上介電層的五環素場效電晶體在轉移特性曲線上有明顯的遲滯效應的成因,而其中使用polystyrene (PS)為上介電層的有機場效電晶體沒有遲滯效應產生。實驗證實PVA上的羥基(-OH)會有雙極性而隨著電場而轉動,電場感應重新排列的羥基(-OH)會去捕抓五環素與PVA介電層界面的載子而造成遲滯效應。因此,透過無水溶劑去除PVA介電層內的水氣,使得更多的羥基能受到電場影響而有更明顯的遲滯效應產生,使得更加足夠應用於記憶體元件。
第二個主題有機場效電晶體雙載子傳導轉換成負型單載子傳導的成因,使用鋁電極的有機五環素場效電晶體經過24小時後,電洞流會隨時間下降低於起初的1/100,由雙載子(ambipolar)傳導轉變成負型載子傳導。實驗證實電洞流隨時間下降是由於鋁與五環素接觸面間發生界面氧化反應,此界面氧化反應會阻礙電洞從電極注入到五環素,此反應並未在使用銀電極發現。因此透過共混蒸五環素與鋁的方式,增加五環素與鋁的接觸面積並加速此介面氧化效應的速度,完成只有負載子傳導的五環素場效電晶體。
英文摘要 This thesis divides into two aspects for studying. The first aspect is the manipulating the hysteresis in poly(vinyl alcohol)-dielectrics organic field-effect transistors (OFETs). The second aspect is the origins in the transformation of ambipolar to n-type pentacene-based OFETs.
In the first aspect of hysteresis, it investigates the origins of hysteresis of transfer characteristics in pentacene-based OFETs under the forward and backward scan with using poly(vinyl alcohol) (PVA) as top dielectric. The experimental results confirm that the hydroxyl groups in PVA gate dielectrics are correlated re-orientated with an applied electric field. The applied gate bias partially aligns the orientations of the hydroxyl groups perpendicular to the substrate, in which the field-induced surface dipoles at the pentacene/PVA interface trap charges and cause the hysteresis. Treating PVA with an anhydrous solvent eliminates the residual moisture in the dielectrics layer, allowing for more effective control of the induced dipoles by the applied gate bias. OFETs of dehydrated-PVA dielectrics present a pronounced shift of the threshold voltage, and results in sufficient dynamic response for applications in memory elements.
In the second aspect of transformation of ambipolar to n-type, the hole currents in ambipolar pentacene-based OFETs with aluminum (Al) electrodes are decreased by the magnitude of two orders in 24 hours. The experimental results confirm that the time-dependent decrease of hole current is associated with the interfacial oxidation reaction at the Al source-drain electrodes and pentacene. The time-dependent oxidization of Al and pentacene creates an interfacial barrier to suppress the hole injection from Al electrodes into pentacene, but the similar oxidation was not observed at the interface of the pentacene and silver. Therefore, through co-evaporated the pentacene and Al process, it expands the contact surface of pentacene and Al and accelerates the reaction, and results in the fabrication of n-type only pentacene-based OFETs.
論文目次 中文摘要 I
Abstract II
致謝 III
Table of Contents IV
List of Figures VII
List of Tables XIV
Chapter 1 Introduction 1
1.1 Motivation of this research 6
1.2 Scope of this research 7
Chapter 2 Organic Semiconductors 8
2.1 Introduction 8
2.2 Conduction mechanism in conjugated molecules 9
2.3 Energy structures 12
2.3.1 HOMO and LUMO 12
2.3.2 Band gap 12
2.3.3 Density of states 14
2.4 Charge transport 16
2.4.1 Near hopping 16
2.4.2 Variable Range Hopping (VRH) 17
2.4.3 Multiple Trapping and Release (MTR) 17
2.5 OFET operation 18
2.5.1 OFET architecture 18
2.5.2 Operation mode 19
2.5.3 P-type, n-type, and ambipolar characteristics 22
2.6 Summary 26
Chapter 3 Experimental methods 27
3.1 Introduction 27
3.2 OFET fabrication 27
3.2.1 Materials and device structure 27
3.2.2 Fabrication process 31
3.3 Electrical characteristic measurements 37
3.3.1 Current voltage (I-V) measurement 37
3.3.2 Capacitance voltage (C-V) measurement 38
3.4 Surface analysis 39
3.4.1 Ultraviolet and X-ray photoelectron spectroscopy 39
3.4.2 Raman and Fourier Transform Infrared Spectroscopy 41
3.4.3 Atomic Force Microscope (AFM) 42
3.6 Summary 43
Chapter 4 Hysteresis of pentacene-based OFET 44
4.1 Introduction of hysteresis 44
4.2 Functional group effect of dielectrics 46
4.3 Hydroxyl group effect of dielectrics48
4.3.1 Sweep-dependent hysteresis 48
4.3.2 Bias-induced modulations on trapped charge 51
4.3.3 Bias-induced orientation of hydroxyl group 55
4.3.4 Water molecules control the hysteresis 59
4.3.5 Dynamic responses for memory application 68
4.4 Summary 71
Chapter 5 The the transformation of ambipolar to n-type pentacene-based OFET72
5.1 Introduction 72
5.2 Time-dependent decrease of hole current with different metal electrodes 73
5.3 The chemical interaction of metals and pentacene 76
5.3.1 Thermionic emission model for injection barrier 78
5.3.2 in-situ UPS measurement for injection barrier 80
5.3.3 in-situ XPS measurement for injection barrier 82
5.4 Time-dependent decrease of hole current under different storage temperatures 86
5.5 Morphology effect of pentacene layer 88
5.6 Effect of co-evaporated the pentacene and Al 89
5.7 Summary 91
Chapter 6 Conclusion 92
6.1 Current progress 92
6.1.1 Hysteresis for pentacene-based PVA-dielectrics OFETs 92
6.1.2 The origins in the transformation of ambipolar to n-type for pentacene-based OFETs 92
6.2 Future work 93
6.2.1 Surface energy of PS-dielectrics for n-type pentacene-based OFETs 93
6.2.2 Pentacene-based PVA-dielectrics OFETs for low voltage momery devices 95
Reference 96
Curriculum Vitae 115
Publication Papers 116
參考文獻 [1] H. Dong, X. Fu, J. Liu, Z. Wang, and W. Hu, 25th Anniversary Article: Key Points for High-Mobility Organic Field-Effect Transistors, Adv. Mater. 25, 6158 (2013).
[2] Y. Zhao, Y. Guo, and Y. Liu, 25th Anniversary Article: Recent Advances in n-Type and Ambipolar Organic Field-Effect Transistors, Adv. Mater. 25, 5372 (2013).
[3] D. Braga and G. Horowitz, High-Performance Organic Field-Effect Transistors, Adv. Mater. 21, 1473 (2009).
[4] M. Mas-Torrent and C. Rovira, Role of Molecular Order and Solid-State Structure in Organic Field-Effect Transistors, Chem. Rev. 111, 4833 (2011).
[5] M. Ahles, R. Schmechel, and H. von Seggern, Complementary Inverter Based on Interface Doped Pentacene, Appl. Phys. Lett. 87, 113505 (2005).
[6] N. Benson, M. Schidleja, C. Melzer, R. Schmechel, and H. von Seggern, Complementary Organic Field-Effect Transistors by Ultraviolet Dielectric Interface Modification, Appl. Phys. Lett. 89, 182105 (2006).
[7] T. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer, and G. Horowitz, Organic Inverter Circuits Employing Ambipolar Pentacene Field-Effect Transistors, Appl. Phys. Lett. 89, 033512 (2006).
[8] T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. Montaigne Ramil, H. Sitter, M. Cölle, and D. M. de Leeuw, High Performance N-Channel Organic Field-Effect Transistors and Ring Oscillators Based on C60 Fullerene Films, Appl. Phys. Lett. 89, 213504 (2006).
[9] T. D. Anthopoulos, S. Setayesh, E. Smits, M. Cölle, E. Cantatore, B. de Boer, P. W. M. Blom, and D. M. de Leeuw, Air-Stable Complementary-Like Circuits Based on Organic Ambipolar Transistors, Adv. Mater. 18, 1900 (2006).
[10] A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, and H. von Seggern, Light-Emitting Field-Effect Transistor Based on a Tetracene Thin Film, Phys. Rev. Lett. 91, 157406 (2003).
[11] J. Zaumseil, C. L. Donley, J. S. Kim, R. H. Friend, and H. Sirringhaus, Efficient Top-gate, Ambipolar, Light-Emitting Field-Effect Transistors Based on a Green-light-emitting Polyfluorene, Adv. Mater. 18, 2708 (2006).
[12] S. E. Burns, C. Kuhn, K. Jacobs, J. D. MacKenzie, C. Ramsdale, A. C. Arias, J. Watts, M. Etchells, K. Chalmers, P. Devine, N. Murton, S. Norval, J. King, J. Mills, H. Sirringhaus, and R. H. Friend, Printing of Polymer Thin-Film Transistors for Active-Matrix-Display Applications, J. Soc. Inf. Disp. 11, 599-603 (2003).
[13] G. H. Gelinc, H. E. A. Huitema, M. van Mil, E. van Veenendaal, P. J. G. van Lieshout, F. Touwslager, S. F. Party, S. Sohn, T. H. Whitesides, and M. D. McCreary, A Rollable, Organic Electrophoretic QVGA Display with Field-Shielded Pixel Architecture, J. Soc. Inf. Disp. 14, 113-118 (2006).
[14] S. E. Burns, W. Reeves, B. H. Pui, K. Jacobs, S. Siddique, K. Reynolds, M. Banach, D. Barclay, K. Chalmers, N. Cousins, P. Cain, L. Dassas, M. Etchells, C. Hayton, S. Markham, A. Menon, P. Too, C. Ramsdale, J. Herod, K. Saynor, J. Watts, T. von Werne, J. Mills, C. J. Curling, H. Sirringhaus, K. Amundson, and M. D. McCreary, 7.4: A Flexible Plastic SVGA e-Paper Display, Soc. Inf. Disp. (SID) Int. Symp. 37, 74-76 (2006).
[15] Sony will unveil the results of this development on May 27 at “SID (Society for Information Display) 2010 International Symposium” in Seattle, WA (May 23-28).
[16] B. Lahey, A. Girouard, W. Burleson and R. Vertegaal, PaperPhone: Understanding the Use of Bend Gestures in Mobile Devices with Flexible Electronic Paper Displays, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1303-1312 (2011).
[17] D. D'Orazio, Samsung shows off flexible AMOLED phone prototype (hands-on), The Verge. (2013).
[18] J. Lowensohn, Eyes-on: Samsung's Youm flexible-display tech at CES 2013, CNET. (2013).
[19] M. Warman, CES 2013: Samsung flexible phone prototype unveiled, London: The Daily Telegraph. (2013).
[20] H. Klauk, Organic Thin-Film Transistors, Chem. Soc. Rev. 39, 2643 (2010).
[21] D. Natali and M. Caironi, Charge Injection in Solution-Processed Organic Field-Effect Transistors: Physics, Models and Characterization Methods, Adv. Mater. 24, 1357 (2012).
[22] J.-W. Chang, C.-G. Wang, C.-Y. Huang, T.-D. Tsai, T.-F. Guo, and T.-C. Wen, Chicken Albumen Dielectrics in Organic Field-Effect Transistors, Adv. Mater. 23, 4077 (2011).
[23] M. Muskovich and C. J. Bettinger, Biomaterials-Based Electronics: Polymers and Interfaces for Biology and Medicine, Adv. Healthcare Mater. 1, 248 (2012).
[24] P. K. Weimer, The TFT- A New Thin Film Transistor, Proc. IRE 50, 1462 (1962).
[25] F. Ebisawa, T. Kurokawa and S. Nara, Electrical Properties of Polyacetylene/Polysiloxane Interface, J. Appl. Phys. 54, 3255 (1983).
[26] A. Tsumura, H. Koezuka and T. Ando, Macromolecular Electronic Device: Field‐Effect Transistor with a Polythiophene Thin Film, Appl. Phys. Lett. 49, 1210 (1986).
[27] X. Peng, G. Horowitz, D. Fichou and F. Garnier, All‐Organic Thin‐Film Transistors Made of Alpha-Sexithienyl Semiconducting and Various Polymeric Insulating Layers, Appl. Phys. Lett. 57, 2013 (1990).
[28] G. Guillaud, M. Alsadoun, M. Maitrot, J. Simon, and M. Bouvet, Field-Effect Transistors Based on Intrinsic Molecular Semiconductors, Chem. Phys. Lett. 167, 503-506 (1990).
[29] D. Shukla, S. F. Nelson, D. C. Freeman, M. Rajeswaran, W. G. Ahearn, D. M. Meyer, and J. T. Carey, Thin-Film Morphology Control in Naphthalene-Diimide-Based Semiconductors: High Mobility N-Type Semiconductor for Organic Thin-Film Transistors, Chem. Mater. 20, 7486-7491 (2008).
[30] M. Ichikawa, T. Kato, T. Uchino, T. Tsuzuki, M. Inoue, H. G. Jeon, T. Koyama, and Y. Taniguchi, Thin-Film and Single-Crystal Transistors Based on a Trifluoromethyl-Substituted Alternating(Thiophene/Phenylene)-co-Oligomer, Org. Electron. 11, 1549-1554 (2010).
[31] R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da Silva, J. L. Bredas, L. L. Miller, K. R. Mann, and C. D. Frisbie, Organic Thin Film Transistors Based on N-Alkyl Perylene Diimides:  Charge Transport Kinetics as a Function of Gate Voltage and Temperature, J. Phys. Chem. B 108, 19281-19292 (2004).
[32] O. D. Jurchescu, M. Popinciuc, B. J. van Wees, and T. T. M. Palstra, Interface-Controlled, High-Mobility Organic Transistors, Adv. Mater. 19, 688-692 (2007).
[33] H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, and Z. Bao, High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C60 Single Crystals, J. Am. Chem. Soc. 134, 2760-2765 (2012).
[34] H. Jiang, X. Yang, Z. Cui, Y. Liu , H. Li, W. Hu, Y. Liu, and D. Zhu, Phase Dependence of Single Crystalline Transistors of Tetrathiafulvalene, Appl. Phys. Lett. 91, 123505 (2007).
[35] L. Li, Q. Tang , H. Li, X. Yang, W. Hu, Y. Song, Z. Shuai, W. Xu ,Y. Liu, and D. Zhu, An Ultra Closely π-Stacked Organic Semiconductor for High Performance Field-Effect Transistors, Adv. Mater. 19, 2613-2617 (2007).
[36] H. Tada, H. Touda, M. Takada, K. Matsushige, Quasi-Intrinsic Semiconducting State of Titanyl-Phthalocyanine Films Obtained Under Ultrahigh Vacuum Conditions, Appl. Phys. Lett. 76 , 873 (2000).
[37] L. Jiang, H. Dong, Q. Meng, H. Li, M. He, Z. Wei, Y. He, and W. Hu, Millimeter-Sized Molecular Monolayer Two-Dimensional Crystals, Adv. Mater. 23, 2059-2063 (2011).
[38] V. Y. Butko, X. Chi, D. V. Lang, and A. P. Ramirez, Field-Effect Transistor on Pentacene Single Crystal, Appl. Phys. Lett. 83, 4773 (2003).
[39] S. Yoo, B. Domercq, and B. Kippelen, Efficient Thin-Film Organic Solar Cells Based on Pentacene/C60 Heterojunctions, Appl. Phys. Lett. 85, 5427 (2004).
[40] L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C.-W. Ou, P. K.-H. Ho, H. Sirringhaus, and R. H. Friend, General Observation of N-Type Field-Effect Behavior in Organic Semiconductors, Nature 434, 194 (2005).
[41] N. Benson, A. Gassmann, E. Mankel, T. Mayer, C. Melzer, R. Schmechel, and H. v. Seggern, The Role of Ca Traces in the Passivation of Silicon Dioxide Dielectrics for Electron Transport in Pentacene Organic Field Effect Transistors, J. Appl. Phys. 104, 054505 (2008).
[42] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays, Science 326, 1516 (2009).
[43] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, Effects of Hydroxyl Groups in Polymeric Dielectrics on Organic Transistor Performance, Appl. Phys. Lett. 88, 162109 (2006).
[44] M. Egginger, M. I. Vladu, R. Schwödiauer, A. Tanda, I. Frischauf, S. Bauer, and N. S. Sariciftci, Mobile Ionic Impurities in Poly(vinyl alcohol) Gate Dielectric: Possible Source of the Hysteresis in Organic Field-Effect Transistors, Adv. Mater. 20, 1018 (2008).
[45] E. Orgiu, S. Locci, B. Fraboni, E. Scavetta, P. Lugli, and A. Bonfiglio, Analysis of the Hysteresis in Organic Thin-Film Transistors with Polymeric Gate Dielectric, Org. Elec. 12, 477 (2011).
[46] M. F. Mabrook, Y. Yun, C. Pearson, D. A. Zeze, and M. C. Petty, A Pentacene-Based Organic Thin Film Memory Transistor, Appl. Phys. Lett. 94, 173302 (2009).
[47] D. K. Hwang, M. S. Oh, J. M. Hwang, J. H. Kim, and S. Im, Hysteresis Mechanisms of Pentacene Thin-Film Transistors with Polymer/Oxide Bilayer Gate Dielectrics, Appl. Phys. Lett. 92, 013304 (2008).
[48] J.-W. Chang, P.-W. Liang, M.-W. Lin, T.-F. Guo, T.-C. Wen, and Y.-J. Hsu, An Ambipolar to N-Type Transformation in Pentacene-Based Organic Field-Effect Transistors, Org. Electron. 12, 509-515 (2011).
[49] M. Pope, H. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals, J. Chem. Phys. 38, 2042 (1963).
[50] C. K. Chiang, C. R. Fincher, Y. W. P. Jr., A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Electrical Conductivity in Doped Polyacetylene, Phys. Rev. Lett. 39, 1098-1101 (1977).
[51] H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x, J. C. S. Chem. Comm. 474, 578-580 (1977).
[52] C. W. Tang, Two‐Layer Organic Photovoltaic Cell, Appl. Phys. Lett. 48, 183 (1986).
[53] H. Koezuka, A. Tsumura, and T. Ando, Field-Effect Transistor with Polythiophene Thin Film, Synth. Met. 18, 699 (1987).
[54] J. H. Burroughes, C. A. Jones, and R. H. Friend, New Semiconductor Device Physics in Polymer Diodes and Transistors, Nature 335, 137-141 (1988).
[55] C. W. Tang and S. A. VanSlyke, Organic Electroluminescent Diodes, Appl. Phys. Lett. 51, 913 (1987).
[56] C. W. Tang, S. A. VanSlyke and C. H. Chen, Electroluminescence of Doped Organic Thin Films, J. Appl. Phys. 65, 3610 (1989).
[57] Pioneer Co. (Japan). In November 1997 Pioneer Co. in Japan commercialized a monochrome 256x64 dot matrix OLED display for automotive applications.
[58] W. Brutting, Physics of Organic Semiconductors, WILEY-VCH, (2006).
[59] P. I. Djurovich, E. I. Mayo, S. R. Forrest, and M. E. Thompson, Measurement of The Lowest Unoccupied Molecular Orbital Energies of Molecular Organic Semiconductors, Org. Electron. 10, 515-520 (2009).
[60] A. Völkel, R. Street, and D. Knipp, Carrier Transport and Density of State Distributions in Pentacene Transistors, Phys. Rev. B 66, 195336 (2002).
[61] D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, and A. P. Ramirez, Anomalous-Filling-Factor-Dependent Nuclear-Spin Polarization in a 2D Electron System, Phys. Rev. Lett. 93, 086802 (2004).
[62] K. Lee, M. S. Oh, S.-j. Mun, K. H. Lee, T. W. Ha, J. H. Kim, S.-H. K. Park, C.-S. Hwang, B. H. Lee, M. M. Sung, and S. Im, Interfacial Trap Density-of-States in Pentacene- and ZnO-based Thin-Film Transistors Measured via Novel Photo-Excited Charge-Collection Spectroscopy, Adv. Mater. 22, 3260-3265 (2010).
[63] K. H. Lee, C. H. Park, K. Lee, T. Ha, J. H. Kim, J. Yun, G.-H. Lee, and S. Im, Semi-transparent organic/inorganic hybrid photo-detector using pentacene/ZnO diode connected to pentacene transistor, Org. Electron. 12, 1103-1107 (2011).
[64] L. Li, G. Meller, and H. Kosina, Temperature and Field-Dependence of Hopping Conduction in Organic Semiconductors, Microelectron. J. 38, 47-51 (2007).
[65] D. R. Lenski, A. Southard, and M. S. Fuhrer, Frequency-Dependent Complex Conductivity of an Organic Thin-Film Transistor, Appl. Phys. Lett. 94, 232103 (2009).
[66] N. F. Mott, and E. A. Davis, Electronic processes in non-crystalline materials, Clarendon Press, Oxford 1971.
[67] G. Horowitz, R. Hajlaoui, and P. Delannoy, Temperature Dependence of the Field-Effect Mobility of Sexithiophene. Determination of the Density of Traps, J. de Physique III 5, 355-371 (1995).
[68] G. Horowitz, Organic Field-Effect Transistors, Adv. Mater. 10, 356-377 (1998).
[69] A. Facchetti, M.-H. Yoon, and T. J. Marks, Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics, Adv. Mater. 17, 1705-1725 (2005).
[70] G. Horowitz, Interfaces in Organic Field-Effect Transistors, Adv. Polym. Sci. 223, 113-153 (2010).
[71] T. B. Singh, and N. S. Sariciftci, Progress in Plastic Electronics Devices, Ann. Rev. Mater. Res. 36, 199-230 (2006).
[72] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, and K. R. Mann, Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors, Chem. Mater. 16, 4436 (2004).
[73] A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, Patterning Organic Single-Crystal Transistor Arrays, Nature 444, 913-917 (2006).
[74] J. Zhang, J. P. Rabe, and N. Koch, Grain-Boundary Evolution in a Pentacene Monolayer, Adv. Mater. 20, 3254-3257 (2008).
[75] S. Liu, W. M. Wang, A. L. Briseno, S. C. B. Mannsfeld, and Z. Bao, Controlled Deposition of Crystalline Organic Semiconductors for Field-Effect-Transistor Applications, Adv. Mater. 21, 1217-1232 (2009).
[76] T. Toccoli, A. Pallaoro, N. Coppedè, S. Iannotta, F. De Angelis, L. Mariucci, and G. Fortunato, Controlling Field-Effect Mobility in Pentacene-Based Transistors by Supersonic Molecular-Beam Deposition, Appl. Phys. Lett. 88, 132106 (2006).
[77] P. Ribič, V. Kalihari, C. Frisbie, and G. Bratina, Growth of Ultrathin Pentacene Films on Polymeric Substrates, Phys. Rev. B 80, 115307 (2009).
[78] H. S. Lee, D. H. Kim, J. H. Cho, Y. D. Park, J. S. Kim, and K. Cho, Enhancement of Interconnectivity in the Channels of Pentacene Thin-Film Transistors and Its Effect on Field-Effect Mobility, Adv. Funct. Mater. 16, 1859-1864 (2006).
[79] S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Inc. , Hoboken, New Jersey 2007.
[80] W. R. Salaneck, Conjugated Polymer Surfaces and Interfaces, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 355, 789-799 (1997).
[81] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces, Adv. Mater. 11, 605-625 (1999).
[82] T.-F. Guo, and Y. Yang, In-situ Study on the Reorientation of Polymer Chains in Operating Polymer Diodes, Appl. Phys. Lett. 80, 148 (2002).
[83] J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process, Adv. Mater. 14, 915-918 (2002).
[84] J. Liu, T.-F. Guo, and Y. Yang, Effects of Thermal Annealing on the Performance of Polymer Light Emitting Diodes, J. Appl. Phys. 91, 1595 (2002).
[85] R. G. Greenler, Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques, J. Chem. Phys. 44, 310 (1966).
[86] R. He, I. Dujovne, L. Chen, Q. Miao, C. F. Hirjibehedin, A. Pinczuk, C. Nuckolls, C. Kloc, and A. Ron, Resonant Raman Scattering in Nanoscale Pentacene Films, Appl. Phys. Lett. 84, 987 (2004).
[87] Y. Hosoi, D. M. Deyra, K. Nakajima, and Y. Furukawa, Micro-Raman Spectroscopy on Pentacene Thin-Film Transistors, Mol. Cryst. Liquid Cryst. 491, 317-323 (2008).
[88] F. D. Angelis, G. Das, and E. D. Fabrizio, Analysis of the Interactions Between Pentacene Film and Air Molecules by Means of Raman Spectroscopy, Chem. Phys. Lett. 462, 234-237 (2008).
[89] M. Cazayous, A. Sacuto, G. Horowitz, P. Lang, A. Zimmers, and R. Lobo, Iodine Insertion in Pentacene Thin Films Investigated by Infrared and Raman Spectroscopy, Phys. Rev. B 70, 081309 (2004).
[90] H.-L. Cheng, W.-Y. Chou, C.-W. Kuo, Y.-W. Wang, Y.-S. Mai, F.-C. Tang, and S.-W. Chu, Influence of Electric Field on Microstructures of Pentacene Thin-Films in Field-Effect Transistors, Adv. Funct. Mater. 18, 285-293 (2008).
[91] H.-L. Cheng, W.-Y. Chou, C.-W. Kuo, F. -C. Tang, and Y.-W. Wang, Electric Field-Induced Structural Changes in Pentacene-Based Organic Thin-Film Transistors Studied by In-situ Micro-Raman Spectroscopy, Appl. Phys. Lett. 88, 161918 (2006).
[92] H. Sirringhaus, Reliability of Organic Field-Effect Transistors, Adv. Mater. 21, 3859-3873 (2009).
[93] S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, and C. D. Frisbie, Electrolyte-Gated Transistors for Organic and Printed Electronics, Adv. Mater. 25, 1822-1846 (2013).
[94] K.-J. Baeg, M. Binda , D. Natali, M. Caironi, and Y.-Y. Noh, Organic Light Detectors: Photodiodes and Phototransistors, Adv. Mater. 25, 4267-4295 (2013).
[95] X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski, and S. R. Marder, Rylene and Related Diimides for Organic Electronics, Adv. Mater. 23, 268-284 (2011).
[96] S. Z. Bisri, C. Piliego, J. Gao, and M. A. Loi, Outlook and Emerging Semiconducting Materials for Ambipolar Transistors, Adv. Mater. 26, 1176-1199 (2013).
[97] M. Kaltenbrunner, P. Stadler, R. Schwödiauer, A. W. Hassel, N. S. Sariciftci, and S. Bauer, Anodized Aluminum Oxide Thin Films for Room-Temperature-Processed, Flexible, Low-Voltage Organic Non-Volatile Memory Elements with Excellent Charge Retention, Adv. Mater. 23, 4892-4896 (2011).
[98] T.-W. Kim, H. Choi, S.-H. Oh, G. Wang, D.-Y. Kim, H. Hwang, and T. Lee, One Transistor–One Resistor Devices for Polymer Non-Volatile Memory Applications, Adv. Mater. 21, 2497-2500 (2009).
[99] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays, Science 326, 1516-1519 (2009).
[100] J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Printable Ion-Gel Gate Dielectrics for Low-Voltage Polymer Thin-Film Transistors on Plastic, Nat. Mater. 7, 900-906 (2008).
[101] H. Im, X.-J. Huang, B. Gu, and Y.-K. Choi, A Dielectric-Modulated Field-Effect Transistor for Biosensing, Nat. Nanotechnol. 2, 430-434 (2007).
[102] G. Gu, and M. G. Kane, Moisture Induced Electron Traps and Hysteresis in Pentacene-Based Organic Thin-Film Transistors, Appl. Phys. Lett. 92, 053305 (2008).
[103] N.-J. Yang, C.-S. Liao, and S.-A. Chen, Hysteresis in Conjugated Polymer Thin Film Transistors Generated by Chain Relaxation, Adv. Funct. Mater. 20, 1000-1004 (2010).
[104] J. B. Koo, C. H. Ku, S. C. Lim, S. H. Kim, and J. H. Lee, Hysteresis and Threshold Voltage Shift of Pentacene Thin-Film Transistors and Inverters with Al2O3 Gate Dielectric, Appl. Phys. Lett. 90, 133503 (2007).
[105] R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, and D. M. de Leeuw, High-Performance Solution-Processed Polymer Ferroelectric Field-Effect Transistors, Nat. Mater. 4, 243-248 (2005).
[106] K. H. Lee, G. Lee, K. Lee, M. S. Oh, S. Im, and S.-M. Yoon, High-Mobility Nonvolatile Memory Thin-Film Transistors with a Ferroelectric Polymer Interfacing ZnO and Pentacene Channels, Adv. Mater. 21, 4287-4291 (2009).
[107] K.-J. Baeg, Y.-Y. Noh, J. Ghim, B. Lim, and D.-Y. Kim, Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory, Adv. Funct. Mater. 18, 3678-3685 (2008).
[108] H. Faber, M. Burkhardt, A. Jedaa, D. Kälblein, H. Klauk, and M. Halik, Low-Temperature Solution-Processed Memory Transistors Based on Zinc Oxide Nanoparticles, Adv. Mater. 21, 3099-3104 (2009).
[109] M.-F. Chang, P.-T. Lee, S. P. McAlister, and A. Chin, A Flexible Organic Pentacene Nonvolatile Memory Based on High-κ Dielectric Layers, Appl. Phys. Lett. 93, 233302 (2008).
[110] M. Halik, H. Klauk, U. Zshieschang, G. Schmid, W. Radlik, and W. Weber, Polymer Gate Dielectrics and Conducting-Polymer Contactsfor High-Performance Organic Thin-Film Transistors, Adv. Mater. 14, 1717-1722 (2002).
[111] A. Salleo, and R. A. Street, Light-induced bias stress reversal in polyfluorene thin-film transistors, J. Appl. Phys. 94, 471 (2003).
[112] K.-J. Baeg, Y.-Y. Noh, H. Sirringhaus, and D.-Y. Kim, Controllable Shifts in Threshold Voltage of Top-Gate Polymer Field-Effect Transistors for Applications in Organic Nano Floating Gate Memory Adv. Funct. Mater. 20, 224-230 (2010).
[113] W. L. Leong, N. Mathews, S. Mhaisalkar, Y. M. Lam, T. Chen, and P. S. Lee, Micellar Poly(styrene-b-4-vinylpyridine)-Nanoparticle Hybrid System for Non-Volatile Organic Transistor Memory, J. Mater. Chem. 19, 7354-7361 (2009).
[114] S.-T. Han, Y. Zhou, and V. A. L. Roy, Towards the Development of Flexible Non-Volatile Memories, Adv. Mater. 25, 5425-5449 (2013).
[115] W. L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dötz, and S. Mhaisalkara, Towards Printable Organic Thin Film Transistor Based Flash Memory Devices, J. Mater. Chem. 21, 5203-5214 (2011).
[116] G. Gu, M. G. Kane, and S.-C. Mau, Reversible Memory Effects and Acceptor States in Pentacene-Based Organic Thin-Film Transistors, J. Appl. Phys. 101, 014504 (2007).
[117] R. D. Pietro, and H. Sirringhaus, High Resolution Optical Spectroscopy of Air-Induced Electrical Instabilities in N-type Polymer Semiconductors, Adv. Mater. 24, 3367-3372 (2012).
[118] W. L. Kalb, K. Mattenberger, and B. Batlogg, Oxygen-Related Traps in Pentacene Thin Films: Energetic Position and Implications for Transistor Performance, Phys. Rev. B. 78, 035334 (2008).
[119] S. H. Kim, S. Nam, J. Jang, K. Hong, C. Yang, D. S. Chung, C. E. Park, and W.-S. Choi, Effect of the Hydrophobicity and Thickness of Polymer Gate Dielectrics on the Hysteresis Behavior of Pentacene-Based Field-Effect Transistors, J. Appl. Phys. 105, 104509 (2009).
[120] S. H. Kim, W. M. Yun, O.-K. Kwon, K. Hong, C. Yang, W.-S. Choi, and C. E. Park, Hysteresis Behavior of Low-Voltage Organic Field-Effect Transistors Employing High Dielectric Constant Polymer Gate Dielectrics, J. Phys. D: Appl. Phys. 43, 465102 (2010).
[121] C. A. Lee, D.-W. Park, K.-D. Jung, B.-J. Kim, Y. C. Kim, J. D. Lee, and B.-G. Park, Hysteresis Mechanism in Pentacene Thin-Film Transistors with Poly(4-vinyl phenol) Gate Insulator, Appl. Phys. Lett. 89, 262120 (2006).
[122] R. Nakahara, M. Uno, T. Uemura, K. Takimiya, and J. Takeya, Flexible Three-Dimensional Organic Field-Effect Transistors Fabricated by an Imprinting Technique, Adv. Mater. 24, 5212-5216 (2012).
[123] M. Burkhardt, A. Jedaa, M. Novak, A. Ebel, K. Voïtchovsky, F. Stellacci, A. Hirsch, and M. Halik, Concept of a Molecular Charge Storage Dielectric Layer for Organic Thin-Film Memory Transistors, Adv. Mater. 22, 2525-2528 (2010).
[124] S.-M. Yoon, S. Yang, C. Byun, S.-H. K. Park, D.-H. Cho, S.-W. Jung, O.-S. Kwon, and C.-S. Hwang, Fully Transparent Non-volatile Memory Thin-Film Transistors Using an Organic Ferroelectric and Oxide Semiconductor Below 200 °C, Adv. Funct. Mater. 20, 921-230 (2010).
[125] H. S. Lee, S.-W. Min, M. K. Park, Y. T. Lee, P. J. Jeon, J. H. Kim, S. Ryu, and S. Im, MoS2 Nanosheets for Top-Gate Nonvolatile Memory Transistor Channel, Small 8, 3111-3115 (2012).
[126] L. Ley, Y. Smets, C. I. Pakes, and J. Ristein, Calculating the Universal Energy-Level Alignment of Organic Molecules on Metal Oxides, Adv. Funct. Mater. 23, 794-805 (2013).
[127] M.-W. Lin, T.-C. Wen, Y.-J. Hsu, and T.-F. Guo, Poly(ethylene oxide)-Functionalized Al Cathodes of Tunable Electron-Injection Capabilities for Efficient Polymer Light-Emitting Diodes, J. Mater. Chem. 21, 18840-18846 (2011).
[128] P. Dannetun, M. Logdlund, M. Fahlman, M. Boman, S. Stafström, W. R. Salaneck, R. Lazzaroni, C. Fredriksson, J.-L. Brédas, S. Graham, R. H. Friend, A. B. Holmes, R. Zamboni, C. Taliani, The Chemical and Electronic Structure of the Interface between Aluminum and Conjugated Polymers or Molecules, Synth. Met. 55, 212-217 (1993).
[129] T. P. Nguyen, J. Ip, P. Jolinat, P. Destruel, XPS and Sputtering Study of the Alq3/electrode Interfaces in Organic Light Emitting Diodes, Appl. Surf. Sci. 172, 75-83 (2001).
[130] N. J. Watkins, L. Yan, Y. Gao, Electronic Structure Symmetry of Interfaces between Pentacene and Metals, Appl. Phys. Lett. 80, 4384 (2002).
[131] W. J. H. van Gennip, J. K. J. van Duren, P. C. Thune, R. A. J. Janssen, and J. W. Niemantsverdriet, The Interfaces of Poly(p-phenylene vinylene) and Fullerene Derivatives with Al, LiF, and Al/LiF Studied by Secondary Ion Mass Spectroscopy and X-ray Photoelectron Spectroscopy: Formation of AlF3 Disproved, J. Chem. Phys. 117, 5031-5035 (2002).
[132] A. Crispin, A. Jonsson, M. Fahlman, W. R. Salaneck, Aluminum–Barium Interfaces on Some Processable Poly(p-phenylene vinylene) Polymers Studied by Photoelectron Spectroscopy, J. Chem. Phys. 115, 5252-5257 (2001).
[133] K. Asadi, F. Gholamrezaie, E. C. P. Smits, P. W. M. Blom, and B. de Boer, Manipulation of Charge Carrier Injection into Organic Field-Effect Transistors by Self-Assembled Monolayers of Alkanethiols, J. Mater. Chem. 17, 1947-1953 (2007).
[134] K. Asadi, I. Katsouras, J. Harkema, F. Gholamrezaie, E. C. P. Smits, P. W. M. Blom, F. Biscarini, and D. M. de Leeuw, Organic Field-Effect Transistors as a Test-Bed for Molecular Electronics: A Combined Study with Large-Area Molecular Junctions, Org. Electron. 13, 2502-2507 (2012).
[135] K. Sawabe, M. Imakawa, M. Nakano, T. Yamao, S. Hotta, Y. Iwasa, and T. Takenobu, Current-Confinement Structure and Extremely High Current Density in Organic Light-Emitting Transistors, Adv. Mater. 24, 6141-6146 (2012).
[136] Z. Wang, M. W. Alam, Y. Lou, S. Naka, and H. Okada, Enhanced Carrier Injection in Pentacene Thin-Film Transistors by Inserting a MoO3-doped Pentacene Layer, Appl. Phys. Lett. 100, 043302 (2012).
[137] N. Uyeda, T. Kobayashi, K. Ishizuka, and Y. Fujiyoshi, Crystal Structure of Ag•TCNQ, Nature 285, 95-97 (1980).
[138] M. W. Roberts, and B. R. Wells, Chemisorption of Oxygen by Aluminium, Surface Sci. 15, 325-332 (1969).
[139] V. Nádaždy, R. Durný, J. Puigdollers, C. Voz, S. Cheylan, and K. Gmucová, Experimental Observation of Oxygen-Related Defect State in Pentacene Thin Films, Appl. Phys. Lett. 90, 092112 (2007).
[140] O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Electronic Transport Properties of Pentacene Single Crystals upon Exposure to Air, Appl. Phys. Lett. 87, 052102 (2005).
[141] S. Lee, G. Jo, S.-J. Kang, G. Wang, M. Choe, W. Park, D.-Y. Kim, Y. H. Kahng, and T. Lee, Enhanced Charge Injection in Pentacene Field-Effect Transistors with Graphene Electrodes, Adv. Mater. 23, 100-105 (2011).
[142] M. Weis, M. Nakao, J. Lin, T. Manaka, and M. Iwamoto, Thermionic Emission Model for Contact Resistance in Organic Field-Effect Transistor, Thin Solid Films 518, 795-798 (2009).
[143] M.-H. Chen, and C.-I Wu, The Roles of Thermally Evaporated Cesium Carbonate to Enhance the Electron Injection in Organic Light Emitting Devices, J. Appl. Phys. 104, 113713 (2008).
[144] P. M. A. Sherwood, Introduction to Studies of Aluminum and its Compounds by XPS, Surf. Sci. Spectra 5, 1-3 (1998).
[145] M. Atreya, S. Li, E. T. Kang, K. G. Neoh, K. L. Tan, and W. Huang, Stability Studies of Poly(2-methoxy-5-(2'-ethyl hexyloxy)-p-(phenylene vinylene) [MEH-PPV], Polym. Degrad. Stab. 65, 287-296 (1999).
[146] N. Dam, M. M. Beerbom, J. C. Braunagel, and R. Schlaf, Photoelectron Spectroscopic Investigation of In-Vacuum-Prepared Luminescent Polymer Thin Films Directly from Solution, J. Appl. Phys. 97, 024909 (2005).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw