進階搜尋


 
系統識別號 U0026-2307201323234200
論文名稱(中文) 由分析ISUAL紀錄的Secondary TLEs探討雷雨雲至低電離層的耦合現象
論文名稱(英文) Exploring the Electrical Coupling of the Thundercloud and the Lower Ionosphere via the Analysis of the ISUAL Secondary TLEs
校院名稱 成功大學
系所名稱(中) 物理學系碩博士班
系所名稱(英) Department of Physics
學年度 101
學期 2
出版年 102
研究生(中文) 李立柔
研究生(英文) Li-Jou Lee
學號 L28981026
學位類別 博士
語文別 英文
論文頁數 124頁
口試委員 指導教授-許瑞榮
共同指導教授-蘇漢宗
口試委員-陳炳志
召集委員-蔡錦俊
口試委員-李羅權
口試委員-朱延祥
口試委員-劉正彥
中文關鍵字 高空短暫發光現象 
英文關鍵字 Transient luminous events(TLEs) 
學科別分類
中文摘要 高空短暫發光事件(Transient luminous events, TLEs)為發生在雷雨雲頂至電離層底部空間的大尺度發光現象,目前一般認為其發生與雷雨雲內的放電活動有關。早期的TLEs觀測大部分是從地面、飛機或太空梭上進行,然而自從福爾摩沙衛星二號其科學酬載ISUAL (Imager of Sprites and Upper Atmospheric Lightning)於2004年5月發射升空後,提供了一個由太空觀測TLEs的重要平台。在九年的觀測中,ISUAL紀錄了一些特別且含有多重TLEs的事件,其中主要有包括secondary sprites、secondary jets、secondary gigantic jets(secondary GJs)以及GJ-induced sprites。本篇論文中,由ISUAL光學資料以及極低頻電波訊號 (Ultra Low Frequency, ULF)數據,分析各類別特殊事件的產生特性,並且提出可能的引發機制。此外,我們藉由凖靜電場模擬計算,試著驗證secondary sprites及GJ-induced sprites引發機制的假設是否合理。
分析ISUAL所記錄的sprites發現,約7%的sprite事件含有二個或多個接連發生的sprite,在先導sprite發生後,在不同空間位置又接續發生另一sprite。大部份的後續sprites相對於先導sprite有水平上的位移,這類sprite常為地面觀測所紀錄且被稱為是dancing sprites。然而只有三個follow-up sprite與preceding sprites具有垂直方向的相對位移,在此我們稱為secondary sprites。根據ISUAL及ULF的資料分析,我們推測dancing sprites及secondary sprites可能與閃電之後,在雲內繼續延伸的leader有關,雲內的leader會將電荷持續傳導至地表,形成continuing current或second stroke。Dancing sprites和secondary sprites的引發差異,可能是與雲內leader延伸方向有關。當leader的延伸方向主是朝水平方向時,較易引發dancing sprites;若是朝垂直方向延伸時,則較易引發secondary sprites。凖靜電場模擬結果顯示,當雲內有垂直方向的continuing current時,在preceding sprites以下區域的電場的確會增強。
根據前人地面觀測指出,在sprites發生後,有時會引發secondary jets的產生,從雲頂向上放電至sprites底部 (~50公里)。ISUAL在衛星觀測上,也紀錄到類似的事件,除了secondary jets之外,還有另外一種類似secondary jets事件,其最終高度約至電離層底部 (~90公里),在此稱為secondary gigantic jets (secondary GJs)。從2004年7月至2012年5月,ISUAL總共紀錄了二十七個secondary jets,以及五個secondary GJs。根據secondary jets及secondary GJs的分析,我們認為形成secondary jets或是secondary GJs的主要原因為雲內殘留的負電荷的分佈及多寡,以及secondary jets/GJs發展區域的電離層高度(local ionosphere boundary)。因此,在secondary jets/GJs前發生的sprites,主要扮演的角色是造成區域的電離層高度降低,進而影響secondary jets/GJs向上的發展最終高度。
由五個secondary GJs事件中,發現三個可能由secondary GJ引發的sprites (secondary GJ-induced sprites),且這三個事件彼此有相當類似的發生序列。一開始先有一個閃電引發的sprite產生,約在30-50微秒後,有一secondary GJ由雲頂噴發至電離層底部,然後在secondary GJ發生後約一微秒後,有一新產生的sprite出現在secondary GJ的邊緣,但其間並無對應到明顯閃電訊號。因此,根據ISUAL影像、光譜以及ULF的資料分析,這三個事件中新產生的sprites有可能是由secondary GJ引發的。另外ULF資料顯示,secondary GJ電流矩的峰值 (peak current moment)比一般GJ的峰值大,此特性可能是secondary GJ較一般GJ容易引發sprite的重要原因之一。而根據凖靜電場模擬計算結果可知,放電較快速的secondary GJ在70-80公里間產生的電場,會比放電較慢的一般GJ產生的電場大,此結果符合我們推測。
英文摘要 Transient luminous events (TLEs) are large-scale luminous emissions occurring in the region between thundercloud tops and the lower ionosphere, and are closely related to the underlying thunderstorm electric activities. TLEs observation are usually carried out on the ground, onboard the spacecrafts, or on space shuttles. ISUAL (Imager of Sprites and Upper Atmospheric Lightning) payload onboard the FORMOSAT-2 satellite is the first space-borne experiment with the long-term TLEs survey as its main mission goal, and has contributed substantially toward our understanding of these natural phenomena since it was launched in May 2004. In this thesis, some multi-TLE events, mainly events contain secondary sprites, secondary jets, secondary gigantic jets (secondary GJs) or GJ-induced sprites, are analyzed using the optical and electromagnetic ULF (Ultra Low Frequency) data. The possible generating scenario for each type of secondary TLEs is proposed according to their observable features. Furthermore, quasi-electrostatic field model calculations are carried out to validate the proposed generating scenarios for secondary sprites and GJ-induced sprites.
From analyzing multi-sprite events, it was found that ~7% of them start with a classical sprite and then another sprite soon followed with a spatial displacement from the preceding sprite. Most of the multi-sprite events were dancing sprites with a horizontal shift between sprites. However, we also found three secondary sprites, that hadn’t been reported before and exhibit vertical displacements from preceding sprite. >From the analysis of spectral and ULF data, we propose that the successively occurring dancing sprites and the secondary sprites are related to the extending leaders of the cloud-to-ground lightning, which are often followed by a continuing current or even a second stroke. The dancing sprites may be induced by the subsequent leaders in the cloud extending mainly in the horizontal direction, while the secondary sprites may be triggered by the leaders extending primarily in the vertical direction. Through performing quasi-electrostatic field modeling with three different sets of input parameters, we have confirmed that the electric field in the region below the preceding sprites could be enhanced by the vertical-extending continuing current.
Previous ground observations had reported that a secondary jet sometimes formed under the preceding sprite and then propagated upward from the cloud top toward the lower edge of the preceding sprite. From ISUAL observation, beside secondary jets, we find some secondary TLEs resembling secondary jets but with higher terminal altitudes (near the lower ionosphere boundary), hence these gigantic secondary jets are termed as ‘secondary gigantic jets’ (secondary GJs for short). Between July 2004 and May 2012, ISUAL recorded 27 secondary jets and 5 secondary GJs. Combining the observational features of the secondary jets/GJs, it is believed that the factors in influencing the generation of the secondary jets/GJs include the height of the local ionosphere boundary, and more importantly the abundance and the distribution of the negative charge left in the cloud. It appears that the preceding sprite mainly exert its influence on the secondary jet/GJ by perturbing the local ionosphere height.
Three possible secondary GJ-induced sprites were recorded by ISUAL and shared a similar generating sequence. Each event began with a +CG-induced sprite, and a secondary GJ followed within ~30-50 ms. Then, 1 ms after the secondary GJ, a new sprite occurred near the GJ without a discernible, associated impulsive lightning signal. Cross-analysis of the spectral, image and electromagnetic data of these three events indicates that the new sprites were likely had been induced by the secondary GJs, and the high current moment of the secondary GJs appears to be a crucial factor for the induction of the new sprites. From the quasi-electrostatic modeling, it can be concluded that the secondary GJ, being a faster discharge, can produce a stronger electric field around 70-80 km than the typical type-I GJ.
論文目次 Chapter 1 Introduction 1
1.1 Charge Structure and Electric Discharges of Thunderstorms 1
1.1.1 Charge Structure of Thunderstorms 1
1.1.2 Electric Discharges of Thunderstorms 3
1.2 Overview of Transient Luminous Events (TLEs) 5
1.2.1 Sprites 7
1.2.2 Halos 10
1.2.3 Elves 11
1.2.4 Jets 12
1.3 Physical Conditions of the Middle Atmosphere 15
1.4 Previous Works on Secondary TLEs 17
1.4.1 Dancing Sprites (and Delay Sprites) 18
1.4.2 Sprite-Initiated Secondary Jets 19
1.5 Motivations and Aims of This work 20
Chapter 2 Instruments and Data 22
2.1 ISUAL Payload on FORMORSAT-2 22
2.1.1 Overview of ISUAL Observations 22
2.1.2 The ISUAL Imager 24
2.1.3 The ISUAL Spectrophotometer (SP) 26
2.1.4 ISUAL Array Photometer (AP) 29
2.2 The NCKU ULF Magnetic Recording System 30
Chapter 3 Secondary Sprites, Secondary Jets and Secondary Gigantic Jets from ISUAL 31
3.1 Secondary Sprites and Dancing sprites 31
3.1.1 Dancing Sprites (consecutive sprites with horizontal shifts) 32
3.1.2 Secondary Sprites 33
3.1.3 A Possible Generating Mechanism of Secondary Sprites 37
3.2 Secondary Jets 39
3.2.1 Optical and Spectral Characteristics and Possible Scenario 39
3.2.2 ULF Signal of Secondary jets 42
3.3 Secondary Gigantic Jets 44
3.3.1 Shifted Secondary Gigantic Jets 45
3.3.2 Pop-through Secondary Gigantic Jet 46
3.4 Discussions of Secondary Jets and Secondary GJs 49
Chapter 4 Secondary Gigantic Jets as Possible Inducers of Sprites 52
4.1 Analysis of ISUAL Data 53
4.1.1 Optical Data 53
4.1.2 Spectrophotometric Data 56
4.1.3 Altitude-resolved Array Photometric Data 59
4.2 Analysis of ULF Data 62
4.3 Probable Generating Mechanism and Discussions 64
Chapter 5 Quasi-Electrostatic Field Modeling 68
5.1 Overview 68
5.2 Model Formulations 69
5.2.1 Coordinate System and Charge Distribution 69
5.2.2 Evolution of Electrostatic Field and Conductivity 71
5.2.3 Modeling Method and Procedure 75
5.3 Model Results for a Typical Lightning Discharge 76
5.3.1 Positive Cloud-to-Ground Discharge (+CG) 78
5.3.2 Negative Cloud-to-Ground Discharge (-CG) 84
5.3.3 Intra-cloud Discharge (IC) 86
5.4 Secondary Sprites 88
5.4.1 Case 1: Below the Breakdown Value 90
5.4.2 Case 2: Breakdown and with a Long Continuing Current 93
5.4.3 Case 3: Breakdown, a Long Continuing Current and a Second Stroke 96
5.4.4 Discussions and Summary of the Secondary Sprite modeling 99
5.5 Secondary GJ-induced Sprites 100
5.5.1 Secondary GJs and Type-I GJs 101
5.5.2 Effects of the Persistent Ionization from the Preceding sprites 105
Chapter 6 Summary and Future Work 110
6.1 Summary 110
6.1.1 Secondary Sprites 110
6.1.2 Secondary Jets and Secondary GJs 111
6.1.3 Secondary GJ-induced sprites 112
6.2 Future Work 113
Reference 115
參考文獻 Adachi, T., H. Fukunishi, Y. Takahashi, Y. Hiraki, R. R. Hsu, H. T. Su, A. B. Chen, S. B. Mende, H. U. Frey, and L. C. Lee (2006), Electric field transition between the diffuse and streamer regions of sprites estimated from ISUAL/array photometer measurements, Geophys. Res. Lett., 33, L17803, doi:10.1029/2006GL026495.
Barrington‐Leigh, C. P., U. S. Inan, M. Stanley, and S. A. Cummer (1999), Sprites triggered by negative lightning discharges, Geophys. Res. Lett., 26(24), 3605–3608, doi:10.1029/1999GL010692.
Barrington-Leigh, C. P., U. S. Inan, and M. Stanley (2001), Identification of sprites and elves with intensified video and broadband array photometry, J. Geophys. Res. , 106 , 1741 – 1750, doi:10.1029/2000JA000073.
Boeck, W. L., O. H. Vaughan, R. J. Blakeslee, B. Vonnegut, and M. Brook (1992), Lightning induced brightening in the airglow layer, Geophys. Res. Lett., 19, 99–102.
Chang, S. C., C. L. Kuo, L. J. Lee, A. B. Chen, H. T. Su, R. R. Hsu, H. U. Frey, S. B. Mende, Y. Takahashi, and L. C. Lee (2010), ISUAL far‐ultraviolet events, elves, and lightning current, J. Geophys. Res., 115, A00E46, doi:10.1029/2009JA014861
Chen, A. B., et al. (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113, A08306, doi:10.1029/ 2008JA013101.
Alfred B. Chen, Y. J. Wu, Johnson C. Y. Chiang, Y. C. Hwang, C. L. Kuo, H.T. Su, R. R. Hsu, S. B. Mende, H. U. Frey, Y. Takahashi, L.C. Lee (2012), Sensitivity Degradation of ISUAL Instruments and its Impact on the Observations, TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 23, Issue: 1, Pages: 71-83, DOI: 10.3319/TAO.2011.06.20.01(AA)
Chern, J. L., R. R. Hsu, H. T. Su, S. B. Mende, H. Fukunishi, Y. Takahashi, and L. C. Lee (2003), Global survey of upper atmospheric transient luminous events on the ROCSAT‐2 satellite, J. Atmos. Sol. Terr. Phys., 65, 647–659, doi:10.1016/S1364-6826(02)00317-6.
Cho, M., and M. J. Rycroft (1998), Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere, J. Atmos. Sol. Terr. Phys., 60, 871–888, doi:10.1016/S1364-6826(98)00017-0.
Chou, J. K., et al. (2010), Gigantic jets with negative and positive polarity streamers, J. Geophys. Res., 115, A00E45, doi:10.1029/2009JA014831.
Cummer, S. A., U. S. Inan, T. F. Bell, and C. P. Barrington‐Leigh (1998), ELF radiation produced by electrical currents in sprites, Geophys. Res. Lett., 25(8), 1281–1284, doi:10.1029/98GL50937.
Cummer, S. A. and M. Füllekrug (2001), Unusually intense continuing current in lightning produces delayed mesospheric breakdown, Geophys. Res. Lett., 28(3), 495–498, doi:10.1029/2000GL012214.
Cummer, S. A. (2003), Current moment in sprite-producing lightning, J. Atmos. Solar Terr. Phys. 65, 499-508, doi: 10.1016/S1364-6826(02)00318-8.
Cummer, S. A., H. U. Frey, S. B. Mende, R. Hsu, H. Su, A. B. Chen, H. Fukunishi, and Y. Takahashi (2006), Simultaneous radio and satellite optical measurements of high-altitude sprite current and lightning continuing current, J. Geophys. Res., 111, A10315, doi:10.1029/2006JA011809.
Cummer, S. A., J. Li, F. Han, G. Lu, N. Jaugey, W. A. Lyons, and T. E. Nelson (2009), Quantification of the troposphere‐to‐ionosphere charge transfer in a gigantic jet, Nat. Geosci., 2, 617–620, doi:10.1038/ngeo607.
Davies, D.K. (1983), Measurements of swarm parameters in dry air, in Theoretical Notes, Not 346, Westinghouse R&D Center, Pittsburgh, Pa, May.
Franz, R. C., R. J. Nemzek, and J. R. Winckler (1990), Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System, Science, 249, 48-51, doi: 10.1126/science.249.4964.48.
Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons (1996), Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23, 2157-2160, doi: 10.1029/96GL01979.
Glukhov, V. S., V. P. Pasko, and U. S. Inan (1992), Relaxation of transient lower ionospheric disturbances caused by lightning-whistler-induced electron precipitation bursts, J. Geophys. Res., 97, pp. 16971-16979.
Greifinger, C., and P. Greifinger (1976), Transient ULF Electric and Magnetic Fields Following a Lightning Discharge, J. Geophys. Res., 81(13), 2237–2247, doi:10.1029/JA081i013p02237.
Hardman, S. F., R. L. Dowden, J. B. Brundell, J. L. Bahr, Z. Kawasaki, and C. J. Rodger (2000), Sprite observations in the Northern Territory of Australia, J. Geophys. Res., 105(D4), 4689-4698, doi: 10.1029/1999JD900325.
Harris, S. (2003), ISUAL Spectrophotometer Science Performance Test Report, Space Sciences Laboratory, UCB, Berkely, CA, Doc. 8998W7 rev B.
Heavner, M. J. (2000), Optical spectroscopic observations of sprites, blue jets, and elves: Inferred microphysical processes and their macrophysical implications, Ph.D. thesis, Univ. of Alaska Fairbanks, Fairbanks, Alaska.
Hegergerg, R. and I. D. Reid (1998), Electron drift velocities in air, Aust. J. Phys., 33,227.
Hu, W., S. A. Cummer, W. A. Lyons, and T. E. Nelson (2002), Lightning charge moment changes for the initiation of sprites, Geophys. Res. Lett., 29(8), 1279, doi:10.1029/2001GL014593.
Hu, W., S. A. Cummer, and W. A. Lyons (2007), Testing sprite initiation theory using lightning measurements and modeled electromagnetic fields, J. Geophys. Res., 112, D13115, doi:10.1029/2006JD007939.
Huang, S.‐M., C.‐L. Hsu, A. B. Chen, J. Li, L.‐J. Lee, G.‐L. Yang, Y.‐C. Wang, R.‐R. Hsu, and H.‐T. Su (2011), Effects of notch‐filtering on the ELF sferics and the physical parameters, Radio Sci., 46, RS5014, doi:10.1029/2010RS004519.
Huang, S.-M., R.-R. Hsu, L.-J. Lee, H.-T. Su, C.-L. Kuo, C.-C. Wu, J.-K. Chou, S.-C. Chang, Y.-J. Wu, and A. B. Chen (2012), Optical and radio signatures of negative gigantic jets: Cases from Typhoon Lionrock (2010), J. Geophys. Res., 117, A08307, doi:10.1029/2012JA017600.
Hsu, R. R., H. T. Su, A. B. Chen, L. C. Lee, M. Asfur, C. Price, and Y. Yair (2003), Transient luminous events in the vicinity of Taiwan, J. Atmos. Sol. Terr. Phys., 65, 561-566, doi: 10.1016/S1364-6826(02)00320-6.
Inan, U. S., T. F. Bell, and J. V. Rodriguez (1991), Heating and ionization of the lower ionosphere by lightning, Geophys. Res. Lett., 18(4), 705–708.
Krehbiel, P. R., M. Brook, R. L. Lhermitte, and C. L. Lennon (1983). Lightning charge structure in thunderstorms, in Proceedings in Atmospheric Electricity, pp. 408-410.
Krehbiel, P. R., J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A. Stanley, and H. E. Edens (2008), Upward electrical discharges from thunderstorms, Nat. Geosci., 1(4), 233–237, doi:10.1038/ngeo162.
Kuo, C.-L et al. (2005), Electric fields and electron energies inferred from the ISUAL recorded sprites, Geophys. Res. Lett., 32, 19103, DOI: 10.1029/2005GL023389.
Kuo, C. L., et al. (2007), Modeling elves observed by FORMOSAT‐2 satellite, J. Geophys. Res., 112, A11312, doi:10.1029/2007JA012407.
Kuo, C.‐L., et al. (2009), Discharge processes, electric field, and electron energy in ISUAL‐recorded gigantic jets, J. Geophys. Res., 114, A04314, doi:10.1029/2008JA013791.
Kutsyk, I. M., and L. Babich (1999), Spatial structure of optical emissions in the model of gigantic upward atmospheric discharges with participation of runaway electrons, Phys. Lett. A, 253, 75–82.
Lee, L.-J., et al. (2010), Controlling synoptic-scale factors for the distribution of transient luminous events, J. Geophys. Res., 115, A00E54, doi:10.1029/2009JA014823.
Lee, L.-J., S.-M. Huang, J.-K. Chou, C.-L. Kuo, A. B. Chen, H.-T. Su, R.-R. Hsu, H. U. Frey, Y. Takahashi, and L.-C. Lee (2012), Characteristics and generation of secondary jets and secondary gigantic jets, J. Geophys. Res., 117, A06317, doi:10.1029/2011JA017443.
Lee, L.-J., R.-R. Hsu, H.-T. Su, S.-M. Huang, J.-K. Chou, C.-L. Kuo, S.-C. Chang, Y.-J. Wu, A. B. Chen, H. U. Frey, Y. Takahashi, and L.-C. Lee (2013), Secondary gigantic jets as possible inducers of sprites, Geophys. Res. Lett. , 40 , 1462–1467, doi:10.1002/grl.50300.
Lehtinen, N. G. and U. S. Inan (2007), Possible persistent ionization caused by giant blue jets, Geophys. Res. Lett., 34, L08804, doi:10.1029/2006GL029051.
Li, J., S. A. Cummer, W. A. Lyons, and T. E. Nelson (2008), Coordinated analysis of delayed sprites with high-speed images and remote electromagnetic fields, J. Geophys. Res., 113, D20206, doi:10.1029/2008JD010008.
Li, J., S. Cummer, G. Lu, and L. Zigoneanu (2012), Charge moment change and lightning-driven electric fields associated with negative sprites and halos, J. Geophys. Res., 117, A09310, doi:10.1029/2012JA017731.
Liu, N. Y., et al. (2006), Comparison of results from sprite streamer modeling with spectrophotometric measurements by ISUAL instrument on FORMOSAT‐2 satellite, Geophys. Res. Lett., 33, L01101, doi:10.1029/ 2005GL024243.
Liu, N. Y., B. Kosar, S. Sadighi, J. R. Dwyer, and H. K. Rassoul (2012), Formation of streamer discharges from an isolated ionization column at sub-breakdown conditions, Physical Review Letters, 109, 025002.
Lu, G., et al. (2011), Lightning development associated with two negative gigantic jets, Geophys. Res. Lett., 38, L12801, doi:10.1029/2011GL047662.
Lu, G., et al. (2012), Triangulations of sprites relative to parent lighting near the Oklahoma Lightning Mapping Array, AGU fall meeting, AE43A-0255.
Luque A., U. Ebert (2009), Emergence of sprite streamers from screening-ionization waves in the lower ionosphere, Nature Geo., 2, 757-760.
Lyons, W. A. (1994), Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video, Geophys. Res. Lett., 21, 875–878.
Lyons, W. A. (1996), Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems, J. Geophys. Res., 101, 29641-29652, doi: 10.1029/96JD01866.
Lyons, W. A., R. A. Armstrong, E. A. Bering III, and E. R. Williams (2000), The hundred year hunt for the sprite, Eos Trans. AGU, 81(33), 373, doi:10.1029/00EO00278.
Marshall, R. A., and U. S. Inan (2007), Possible direct cloud-to-ionosphere current evidenced by sprite-initiated secondary TLEs, Geophys. Res. Lett., 34, L05806, doi:10.1029/2006GL028511.
McHarg, M. G., R. K. Haaland, D. Moudry, and H. C. Stenbaek-Nielsen (2002), Altitude-time development of sprites, J. Geophys. Res., 107 (A11), 1364, doi:10.1029/2001JA000283.
McHarg, M. G., H. C. Stenbaek-Nielsen, and T. Kammae (2007), Observations of streamer formation in sprites, Geophys. Res. Lett., 34, L06804, doi:10.1029/2006GL027854.
Mende, S. B., Y. S. Chang, A. B. Chen, H. U. Frey, H. Fukunishi, S. P. Geller, S. Harris, H. Heetderks, R. R. Hsu, L. C. Lee, H. T. Su, and Y. Takahashi (2004), Spacecraft based studies of transient luminous events, CORSICA summer study.
Mende, S. B., H. U. Frey, R. R. Hsu, H. T. Su, A. B. Chen, L. C. Lee, D. D. Sentman, Y. Takahashi, and H. Fukunishi (2005), D region ionization by lightning‐induced EMP, J. Geophys. Res., 110, A11312, doi:10.1029/ 2005JA011064.
Miyasato, R., M. J. Taylor, H. Fukunishi, and H. C. Stenbaek-Nielsen, Statistical Characteristics of Sprite Halo Events Using Coincident Photometric and Imaging Data (2002), Geophys. Res. Lett., 29 (21), 2033 , doi:10.1029/2001GL014480.
Moudry, D., H. Stenbaek-Nielsen, D. Sentman, and E. Wescott (2001), Fingers/embers/trolls occurring in the wake of sprites, Eos Trans. AGU, 82, Fall Meet. Suppl., Abstract AE31A-0072.
Moudry, D. R. (2003), The dynamics and morphology of sprites, PhD Thesis, Univ. of Alaska Fairbanks, Fairbanks, Alaska.
Neubert, T., T. H. Allin, H. Stenbaek-Nielsen, and E. Blanc (2001), Sprites over Europe, Geophys. Res. Lett., 28(18), 3585-3588, doi: 10.1029/2001GL013427.
Neubert, T., O. Chanrion, E. Arnone, F. Zanotti, S. Cummer, J. Li, M. Füllekrug, S. Soula, and O. van der Velde (2011), The properties of a gigantic jet reflected in a simultaneous sprite: Observations interpreted by a model, J. Geophys. Res., 116, A12329, doi:10.1029/2011JA016928.
Pasko, V. P., U. S. Inan, and T. F. Bell (1996), Blue jets produced by quasielectrostatic predischarge thundercloud fields, Geophys. Res. Lett., 23, 301–304.
Pasko, V. P., U. S. Inan, T. F. Bell, and Y. N. Taranenko (1997), Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere, J. Geophys. Res., 102(A3), 4529–4561, doi:10.1029/96JA03528.
Pasko, V. P., U. S. Inan, and T. F. Bell (1998), Spatial structure of sprites, Geophys. Res. Lett., 25, pp. 2123-2126.
Pasko, V. P., and J. J. George (2002), Three‐dimensional modeling of blue jets and blue starters, J. Geophys. Res., 107(A12), 1458, doi:10.1029/ 2002JA009473.
Pasko, V. P., M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Wood (2002), Electrical discharge from a thundercloud top to the lower ionosphere, Nature, 416, 152–154, doi:10.1038/416152a.
Pasko, V. P. (2008), Blue jets and gigantic jets: Transient luminous events between thunderstorm tops and the lower ionosphere, Plasma Phys. Control. Fusion, 50, 124050.
Pasko, V. P. (2010), Recent advances in theory of transient luminous events, J. Geophys. Res., 115, A00E35.
Petrov, N. I., and G. N. Petrova (1999), Physical mechanisms for the development of lightning discharges between a thundercloud and the ionosphere, Tech. Phys., 44, 472–475.
Qin, J., S. Celestin, and V. P. Pasko (2011), On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity, J. Geophys. Res., 116, A06305, doi:10.1029/2010JA016366.
Qin, J., S. Celestin, and V. P. Pasko (2012), Minimum charge moment change in positive and negative cloud to ground lightning discharges producing sprites, Geophys. Res. Lett., 39, L22801, doi:10.1029/2012GL053951.
Raizer, Y. P., G. M. Milikh, and M. N. Shneider (2006), On the mechanism of blue jet formation and propagation, Geophys. Res. Lett., 33(23), L23801, doi:10.1029/2006GL027697.
Raizer, Y. P., G. M. Milikh, and M. N. Shneider (2007), Leader–streamers nature of blue jets, J. Atmos. Sol. Terr. Phys., 69(8), 925–938, doi:10.1016/j.jastp.2007.02.007.
Rakov, V. A., and M. A. Uman (2003), Lightning: Physics and Effects, Cambridge Univ. Press, New York.
Rousse-Dupré, R. A., and A. V. Gurevich (1996), On runaway breakdown and upward propagating discharges, J. Geophys. Res., 101, 2297–2312, doi:10.1029/95JA03278.
Rue-Ron Hsu, Alfred B. Chen, Cheng-Ling Kuo, Han-Tzong Su, Harald Frey, Stephen Mende, Yukihiro Takahashi and Lou-Chung Lee (2009), On the Global Occurrence and Impacts of Transient Luminous Events (TLEs), AIP Corsica-TLE Conference special issue.
Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner (1995), Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites, Geophys. Res. Lett., 22, 1205-1208, doi: 10.1029/95GL00583.
São Sabbas, F. T., and M. Saba (2008), Ground-based observations of sprites and other Transient Luminous Events in Southern Brazil, Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract AE13A-0309.
Simpson, G. C., and F. J. Scrase (1937). The distribution of electricity in thunderclouds, Proc. R. Soc. Ser. A 161 , 309-352 .
Simpson, G. C., andRobinson, G. D. (1941),The Distribution of Electricity in Thunderclouds II, Proc. Roy. Soc. Lond., A117, 281–329.
Stanley, M., P. Krehbiel, M. Brook, C. Moore, W. Rison, and B. Abrahams (1999), High speed video of initial sprite development, Geophys. Res. Lett. , 26 , 3201–3204
Su, H.-T., R.-R. Hsu, A. B.-C. Chen, Y.-J. Lee, and L.-C. Lee (2002), Observation of sprites over the Asian continent and over oceans around Taiwan, Geophys. Res. Lett., 29, 3-1, doi: 10.1029/2001GL013737.
Su, H. T., R. R. Hsu, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi (2003), Gigantic jets between a thundercloud and the ionosphere, Nature, 423, 974-976.
Sukhorukov, A. I., E. V. Mishin, P. Stubbe, and M. J. Rycroft (1996), On blue jet dynamics, Geophys. Res. Lett., 23, 1625–1628.
Sukhorukov, A. I., and P. Stubbe (1998), Problems of blue jet theories, J. Atmos. Sol. Terr. Phys., 23(13), 7–9, doi:10.1016/S1364-6826(98) 00021-2.
Takahashi, Y., R. Miyasato, T. Adachi, K. Adachi, M. Sera, A. Uchida, and H. Fukunishi (2003), Activities of sprites and elves in the winter season, Japan, J. Atmos. Sol. Terr. Phys., 65, 551-560, doi: 10.1016/S1364-6826(02)00330-9.
Taylor, M. J., et al. (2008), Rare measurements of a sprite with halo event driven by a negative lightning discharge over Argentina, Geophys. Res. Lett., 35, L14812, doi:10.1029/2008GL033984.
Vadislavsky, E., Y. Yair, C. Erlick, C. Price, E. Greenberg, R. Yaniv, B. Ziv, N. a. Reicher, and A. Devir (2009), Indication for circular organization of column sprite elements associated with Eastern Mediterranean winter thunderstorms, J. Atmos. Sol. Terr. Phys., 71(17-18), 1835-1839, doi:10.1016/j.jastp.2009.07.001.
Vallance-Jones, A. (1974), Aurora, D. Reidel Publishing Co., Dordrecht.
van der Velde, O. A., W. A. Lyons, T. E. Nelson, S. A. Cummer, J. Li, and J. Bunnell (2007), Analysis of the first gigantic jet recorded over continental North America, J. Geophys. Res., 112, D20104, doi:10.1029/2007JD008575.
van der Velde, O. A., J. Bór, J. Li, S. A. Cummer, E. Arnone, F. Zanotti, M. Füllekrug, C. Haldoupis, S. NaitAmor, and T. Farges (2010), Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe, J. Geophys. Res., 115, D24301, doi:10.1029/2010JD014442.
Wait, J. R., and K. P. Spies (1964), Characteristics of the Earth-ionosphere waveguide for VLF radio waves, Tech Note 300, Natl. Bur. of Stand., Boulder, Colo.
Wescott, E. M., D. Sentman, D. Osborne, D. Hampton, and M. Heavner (1995), Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets, Geophys. Res. Lett., 22, 1209–1212, doi:10.1029/95GL00582.
Wescott, E. M., D. D. Sentman, M. J. Heavner, D. L. Hampton, D. L. Osborne, and O. H. Vaughan (1996), Blue starters: Brief upward discharges from an intense Arkansas thunderstorm, Geophys. Res. Lett., 23, 2153–2156, doi:10.1029/96GL01969.
Wescott, E. M., H. C. Stenbaek-Nielsen, D. D. Sentman, M. J. Heavner, D.R. Moudry, and F. T. São Sabbas (2001), Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors, J. Geophys. Res., 106 , 10,467–10,477.
Williams, E., et al. (2012), Resolution of the sprite polarity paradox: The role of halos, Radio Sci., 47, RS2002, doi:10.1029/2011RS004794.
Wilson, C. T. R. (1920). Investigations on lightning discharges and on the electric field of thunderstorms, Phil. Trans. R. Soc. London, Ser. A221 , 73-115 .
Wu, Y. J., et al. (2012), Occurrence of elves and lightning during El Niño and La Niña, Geophys. Res. Lett. 39, L03106, doi:10.1029/2011GL04983
Yang J., Qie X., Zhang G., Zhao Y., and Zhang T. (2008), Red sprites over thunderstorms in the coast of Shandong Province, China, Chin. Sci. Bull., 53 (7), 079-1086, doi: 10.1007/s11434-008-0141-8.
Yano, H., S. Abe, and Y. Takahashi (2001), High-Definition TV Imagery of Elves and Sprites over the Mediterranean Sea during the 1999 Leonid Meteor Shower Peak , 2001 Asia-Pacific Radio Science Conference (AP-RASC '01), Tokyo, August 1-4, p.133.
Yukhimuk, V., R. Roussel‐Dupré, and E. Symbalisty (1998), Optical characteristics of blue jets produced by runaway air breakdown, simulation results, Geophys. Res. Lett., 25, 3289–3292.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw