進階搜尋


下載電子全文  
系統識別號 U0026-2307201301425000
論文名稱(中文) 利用特徵系統實現演算法識別多關節錘吊式系統五種指標之比較
論文名稱(英文) Comparison of Five ERA Indicators for Identification of a Coupled Pendulum System
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 101
學期 2
出版年 102
研究生(中文) 林明昜
研究生(英文) Ming-Yang Lin
學號 N96994401
學位類別 碩士
語文別 英文
論文頁數 59頁
口試委員 指導教授-莊哲男
口試委員-莊智清
口試委員-劉俊宏
口試委員-劉建勳
中文關鍵字 系統識別  模態指標  錘吊式系統  螺旋槳式太陽風帆 
英文關鍵字 system identification  mode accuracy indicator  pendulum system  heliogyro solar sail 
學科別分類
中文摘要 在本論文中,我們實作了一個多關節錘吊式系統,記錄下3個自由度的質點的水平位移,並利用系統識別的原理,以簡單線性的數學模型來表示整個系統。我們使用的系統識別方法為特徵系統實現演算法 (ERA),此演算法是由Jer-Nan Juang 與Pappa, R. S.在1985所提出的,ERA發展於NASA Langley研究中心,並大量的應用控制的設計、模擬、以及識別。此外,我們有對多關節錘吊式系統做理論分析,透過理論值,我們可以推得系統的理論特徵值、初始值、以及虛擬的阻尼,並由特徵值我們可以得出理論的自然頻率及模態形狀。
由於實驗過程中會有雜訊或是計算上的誤差,透過ERA所識別出來的結果其維度會比理論上大得多。因此,我們需要想辦法將雜訊從我們識別的結果刪除。而我們使用五種指標:TMAC, MPC,MPC2,奇異值指標,以及特徵值指標,我們會在文章裡一一詳細介紹,並將其結果做出討論與分析。最後得出奇異值指標是最佳的方法,利用奇異值指標所識別的結果其自然頻率及模態形狀與理論相比是幾乎相同的,此外奇異值指標的計算量也是所有方法裡最低的。因此,我們可以使用特徵系統實現演算法 (ERA) ,再使用奇異值指標來識別出多關節錘吊式系統。
英文摘要 This thesis discusses the application of the Eigensystem Realization Algorithm (ERA) for modeling of a coupled pendulum system, which is designed for the study of the heliogyro solar sail blade. Eigensystem Realization Algorithm (ERA) was developed by Dr. Jer-Nan Juang for the modal parameter identification and model reduction of NASA large space structures. This thesis also presents a study of using five indicators, Total Modal Amplitude Coherence (TMAC), Modal Phase Collinearity (MPC), MPC2, singular value indicator, and eigenvalue indicator, to generate the reduced-order ERA models. The study is based on the comparison of the reduced-order models with the experimental data and the theoretical model. In this thesis, a technique is applied to generate a theoretical model with the added damping, which can be obtained from the identified model. The identified natural frequencies and mode shapes of the reduced-order ERA model based on various indicators are compared with those of the theoretical model. The investigation demonstrates that the reduced-model based on the singular value indicator gives the best results with the least computational effort.
論文目次 摘 要 I
ABSTRACT II
致 謝 III
Table of Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Objective and Approach 2
1.3 Thesis Organization 2
Chapter 2 ERA for System Identification 4
2.1 Mathematical Models for Linear Systems 4
2.2 ERA Design 6
2.3 Transformation into Modal Coordinate 12
Chapter 3 Experimental Model 15
3.1 Experimental Design 15
3.2 Theoretical Model 18
3.3 Deriving Initial Condition from Measured Free Response 22
3.4 Adding Damping to the Theoretical Model 23
Chapter 4 Indicators of ERA 29
4.1 Total Modal Amplitude Coherence Indicator 29
4.2 Total Modal Amplitude Coherence Indicator 32
4.3 Modal Phase Collinearity Indicator 36
4.4 Second Modal Phase Collinearity Indicator 39
4.5 Singular Value Indicator 42
4.6 Eigenvalue Indicator 44
Chapter 5 Analysis on Performance of Five Indicators 48
5.1 Error of the Reconstructed Data and the Experimental Data 48
5.2 Frequencies of System Eigenvalues 49
5.3 Mode Shape Analysis 53
5.4 Summary 57
Chapter 6 Conclusion and Future work 58
6.1 Conclusion 58
6.2 Future work 58
References 59
參考文獻 [1] J.-N. Juang, Pappa, R. S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction”. Journal of Guidance, Control, and Dynamics, Vol. 8, Sept.-Oct. 1985, pp. 620-627.
[2] J.-N. Juang, Pappa, R. S., “Effects of Noise on Modal Parameters Identified by the Eigensystem Realization Algorithm”. Journal of Guidance, Control, and Dynamics, Vol. 9, NO. 3, May.-June. 1986, pp. 620-627.
[3] J.-N. Juang, C.-H Hung, and W. K. Wilkie, “Dynamics of a slender spinning membrane,” in Jer-Nan Juang’s Astrodynamics Symposium, June 2012.
[4] R. H. MacNeal, “The Heliogyro: An Interplanetary flying machine,” tech.rep., Astro Reaearch Corporation, March 1967.
[5] John R. Taylor, Classical Mechanics, University Science Books 2005,
[6] J.-N. Juang, Applied System Identification, Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632, 1994, ISBN 0-13-079211-X.
[7] J.-N. Juang, Phan, M. Q., Identification and Control of Mechanical System, Cambridge University Press, New York, NY 10011-4211, 2001, ISBN 0-521-78355-0.
[8] Pappa, R. S., Elliott, K. B., and Axel Schenk “A Consistent-Mode Indicator for the Eigensystem Realization Algorithm.” Journal of Guidance Control and Dynamics, Vol. 16, No. 5,1993 ,pp. 852-858.
[9] Y. Huang, J.-N. Juang, C.-H Hung, and W. K. Wilkie, “Dynamics of a Coupled Pendulum Model of a Heliogyro Membrane Blade”, 3rd International Symposium on Solar sailing, June 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw