進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2307201221275000
論文名稱(中文) 植入具方向性之心肌補片對於大鼠梗塞心肌電傳導與機械整合的影響
論文名稱(英文) The Effect of Anisotropic Cardiac Patch in Electromechanical Integration after Implantation in Rat Infarcted Myocardium
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 柯名津
研究生(英文) Ming-Chin Ko
學號 p86991151
學位類別 碩士
語文別 英文
論文頁數 52頁
口試委員 指導教授-謝清河
共同指導教授-葉明龍
口試委員-蘇芳慶
口試委員-吳文騰
口試委員-林睿哲
中文關鍵字 心肌梗塞  電紡織法  生醫材料  心肌補片 
英文關鍵字 Myocardial infarction  electrospinning  biomaterial  cardiac patch 
學科別分類
中文摘要 過去研究指出心肌細胞自我再生能力的比例低,因此心臟組織工程修復,細胞療法成為一個有願景的治療。心臟是一個極為複雜的器官且心肌細胞具有方向性,收縮性,和電傳導性。然而複雜的心臟結構在植入後的心肌細胞與宿主組織的限制不只在功能的連結上還包含了長久的治療功效。因此我們利用具生物相容,非降解之具方向性電紡絲補片植入於心臟受損表面,可提供力學支持預防梗塞後心臟病惡化。此外,我們建議將心肌細胞與內皮細胞共同培養能有效提升收縮的一致性和長期的心臟功能表現。總結以上研究,我們提供一個新穎的技術在心臟修復,更重要的是在心肌細胞植入時需考慮心臟具方向性的特性。
英文摘要 Because of the limited regeneration potential of cardiomyocytes, cell-based therapy has emerged as a promising treatment for cardiac repair. Heart is an extremely sophisticated organ with anisotropic structure, contractility and electro-conductivity. Here, we utilized a biocompatible, non-degradable and well-aligned electrospun patch that implantation infarcted myocardium and retard aggravation of post-infarction cardiomyopathy via mechanical supporting. Furthermore, we demonstrated that the aligned patch co-seeded with endothelial cells and neonatal cardiomyocytes significantly improved synchronized contractility and thus long-term cardiac performance. Surprisingly, we found the cardiac function would be even worse after mending of random-aligned patch co-seeded with cells. In summary, the present study provides a novel approach for cardiac repair; importantly, it also raises a valuable awareness that the anisotropic characteristic of the heart should be considered when applying cell transplantation for cardiac repair.
論文目次 TABLE OF CONTENTS
Abstract I
摘要 II
誌謝 III
TABLE OF CONTENTS V
Index of figures VII
Index of tables VIII
Chapter 1. Introduction 1
1.1 Myocardial infarction 1
1.2 Current therapeutic strategies for MI 1
1.3 Biomaterials for tissue engineering 2
1.4 Cell therapy to regenerate heart function. 3
1.5 Challenge of cardiac patch engineering 4
1.6 Electrospinning apply to tissue engineering 5
Chapter 2. Materials and methods 6
2.1 PAN electrospun patch fabrication 6
2.2 Fiber and cell orientation analyses 6
2.3 Hydrophilic and hydrophobic testing of EP 7
2.4 Cell isolation 7
2.5 Cell culture 8
2.6 Cell viability assay 8
2.7 Cell adhesion assay 9
2.8 Immunocytochemical staining 9
2.9 In vitro atomic force microscopy imaging 10
2.10 In vitro Ca2+ imaging 10
2.11 Rat myocardial infarction model and EP patch implantation 11
2.12 Echocardiography 11
2.13 Hemodynamics 12
2.14 Tissue processing and immunohistochemical staining 12
2.15 Mechanical testing of myocardium 13
2.16 Fluorescent immunohistochemistry 13
2.17 Ex vivo optical mapping 14
2.18 Statistical analysis 14
Chapter3. Results 15
3.1 Cell morphology is regulated by biocompatible anisotropic EP in vitro 15
3.2 Anisotropic feature and EC co-cultivation optimize electro-mechanical function of cardiac construct in vitro 22
3.3 Implantation of EP alone retards pathological remodeling at 2 months after MI 27
3.4 Cell transplantation with aligned EP improves cell engraftment and cardiac function 31
3.5 Cell transplantation with unaligned EP deteriorates cardiac function and induces arrhythmia 36
Chapter 4. Discussion 42
Chapter 5. Conclusion 45
References 46
Index of figures
Figure 1. Schematic diagram of the electrospinning. 5
Figure 2. Cellular morphology is regulated by biocompatible anisotropic electrospun patch in vitro. 21
Figure 3. Electro-mechanical functions of cardiomyocytes were optimized on aEP patch with EC co-cultivation in vitro. 26
Figure 4. Cell transplantation with aligned electrospun patch improves cardiac functions after infarction. 30
Figure 5. Implantation of electrospun patch retards pathological remodeling after infarction via mechanical supporting. 35
Figure 6. Cell transplantation with aEP promotes mechano-electrical integration between graft and host myocardium after infarction. 39
Index of tables
Table 1. Characteristics of biomaterials. 2
Table 2. Hemodynamic parameters at two month after MI. 40
Table 3. Quantification of arrhythmic events. 41

參考文獻 1.Hsieh, P.C.H., et al., Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 2007. 13(8): p. 970-974.
2.Jessup, M. and S. Brozena, Heart failure. New England Journal of Medicine, 2003. 348(20): p. 2007-2018.
3.Laflamme, M.A. and C.E. Murry, Regenerating the heart. Nature Biotechnology, 2005. 23(7): p. 845-856.
4.Roger, V.L., et al., Heart disease and stroke statistics—2011 update: a report from the American heart association. Circulation, 2011. 123(4): p. e18-e209.
5.Babick, A.P. and N.S. Dhalla, Role of subcellular remodeling in cardiac dysfunction due to congestive heart failure. Medical Principles and Practice, 2007. 16(2): p. 81-89.
6.Cohn, J.N., et al., Cardiac remodeling-concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Journal of the American College of Cardiology, 2000. 35(3): p. 569-582.
7.Mann and Bristow, Mechanisms and models in heart failure: The biomechanical model and beyond (vol 111,pg 2837, 2005). Circulation, 2005. 112(4): p. E75-E75.
8.Sarig, U. and M. Machluf, Engineering cell platforms for myocardial regeneration. Expert Opin Biol Ther, 2011. 11(8): p. 1055-77.
9.Langer, R. and J.P. Vacanti, TISSUE ENGINEERING. Science, 1993. 260(5110): p. 920-926.
10.Pok, S. and J.G. Jacot, Biomaterials advances in patches for congenital heart defect repair. J Cardiovasc Transl Res, 2011. 4(5): p. 646-54.
11.Segers, V.F. and R.T. Lee, Stem-cell therapy for cardiac disease. Nature, 2008. 451(7181): p. 937-42.
12.Vunjak-Novakovic, G., et al., Bioengineering heart muscle: a paradigm for regenerative medicine. Annual Review of Biomedical Engineering, 2011. 13(1): p. 245-67.
13.Takahashi, K. and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006. 126(4): p. 663-676.
14.Yu, J., et al., Human induced pluripotent stem cells free of vector and transgene sequences. Science, 2009. 324(5928): p. 797-801.
15.Nelson, T.J., et al., Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 2009. 120(5): p. 408-416.
16.Sengupta, P.P., et al., Left ventricular structure and function: basic science for cardiac imaging. Journal of the American College of Cardiology, 2006. 48(10): p. 1988-2001.
17.Chien, K.R., I.J. Domian, and K.K. Parker, Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science, 2008. 322(5907): p. 1494-1497.
18.Ott, H.C., et al., Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Medicine, 2008. 14(2): p. 213-221.
19.Chen, H.S.V., C. Kim, and M. Mercola, Electrophysiological challenges of cell-based myocardial repair. Circulation, 2009. 120(24): p. 2496-2508.
20.Shimizu, T., et al., Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 2003. 24(13): p. 2309-2316.
21.Wei, H.-J., et al., Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials, 2008. 29(26): p. 3547-3556.
22.Zakharova, L., et al., Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovascular Research, 2010: p. -.
23.Sekine, H., et al., Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation, 2008. 118: p. S145-152.
24.Feinberg, A.W., et al., Muscular thin films for building actuators and powering devices. Science, 2007. 317(5843): p. 1366-1370.
25.Engelmayr, G.C., et al., Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 2008. 7(12): p. 1003-1010.
26.Kim, D.H., et al., Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proceedings of the National Academy of Sciences, 2010. 107(2): p. 565-570.
27.Rane, A.A. and K.L. Christman, Biomaterials for the treatment of myocardial infarction: a 5-year update. Journal of the American College of Cardiology, 2011. 58(25): p. 2615-2629.
28.GananCalvo, A.M., Cone-jet analytical extension of Taylor's electrostatic solution and the asymptotic universal scaling laws in electrospraying. Physical Review Letters, 1997. 79(2): p. 217-220.
29.Li, W.J., et al., Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research, 2002. 60(4): p. 613-621.
30.Murugan, R. and S. Ramakrishna, Nano-featured scaffolds for tissue engineering: A review of spinning methodologies. Tissue Engineering, 2006. 12(3): p. 435-447.
31.Kim, K., et al., Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications. Biomaterials, 2003. 24(27): p. 4977-4985.
32.Xu, C.Y., et al., Aligned biodegradable nanotibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 2004. 25(5): p. 877-886.
33.Sill, T.J. and H.A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008. 29(13): p. 1989-2006.
34.Khil, M.S., et al., Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2003. 67B(2): p. 675-679.
35.Jia, H.F., et al., Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnology Progress, 2002. 18(5): p. 1027-1032.
36.Li, S.F. and W.T. Wu, Lipase-immobilized electrospun PAN nanofibrous membranes for soybean oil hydrolysis. Biochemical Engineering Journal, 2009. 45(1): p. 48-53.
37.Li, S.F., et al., Immobilization of Pseudomonas cepacia lipase onto the electrospun PAN nanofibrous membranes for transesterification reaction. Journal of Molecular Catalysis B: Enzymatic, 2011. 73(1–4): p. 98-103.
38.Narmoneva, D.A., et al., Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation, 2004. 110(8): p. 962-968.
39.Hsieh, P.C.H., et al., Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. The Journal of Clinical Investigation, 2006. 116(1): p. 237-248.
40.Huang, T.Y., et al., Heterogeneity of [Ca2+]i signaling in intact rat aortic endothelium. FASEB Journal, 2000. 14(5): p. 797-804.
41.Lin, Y.D., et al., Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs. Circulation, 2010. 122(11_suppl_1): p. S132-S141.
42.Hsieh, P.C.H., et al., Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation, 2006. 114(7): p. 637-644.
43.Lai, Y.J., et al., Slow conduction and gap junction remodeling in murine ventricle after chronic alcohol ingestion. Journal of Biomedical Science, 2011. 18(1): p. 72.
44.Hsieh, P.C.H., et al., Endothelial-cardiomyocyte interactions in cardiac development and repair. Annual Review of Physiology, 2006. 68(1): p. 51-66.
45.Jugdutt, B.I., Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation, 2003. 108(11): p. 1395-1403.
46.Wall, S.T., et al., Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation, 2006. 114(24): p. 2627-2635.
47.Pertsov, A., et al., Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circulation Research, 1993. 72(3): p. 631-650.
48.Roell, W., et al., Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 2007. 450(7171): p. 819-824.
49.Petersen, T.H., et al., Tissue-engineered lungs for in vivo implantation. Science, 2010. 329(5991): p. 538-541.
50.Uygun, B.E., et al., Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine, 2010. 16(7): p. 814-820.
51.Badylak, S.F., D.A. Taylor, and K. Uygun, Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annual Review of Biomedical Engineering, 2011. 13(1): p. 27-53.
52.Godier-Furnémont, A.F.G., et al., Composite scaffold provides a cell delivery platform for cardiovascular repair. Proceedings of the National Academy of Sciences, 2011. 108(19): p. 7974-7979.
53.Fukushima, S., et al., Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation, 2007. 115(17): p. 2254-2261.
54.Vunjak-Novakovic, G., et al., Challenges in cardiac tissue engineering. Tissue Engineering Part B: Reviews, 2010. 16(2): p. 169-87.
55.Iyer, R.K., et al., Engineered cardiac tissues. Current Opinion in Biotechnology, 2011. 22(5): p. 706-714.
56.Radisic, M., et al., Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences, 2004. 101(52): p. 18129-18134.
57.Sy, J.C., et al., Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nature Materials, 2008. 7(11): p. 863-868.
58.You, J.O., et al., Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Letters, 2011. 11(9): p. 3643-3648.
59.Dvir, T., et al., Nanowired three-dimensional cardiac patches. Nature Nanotechnology, 2011. 6(11): p. 720-725.
60.Nel, A., et al., Toxic potential of materials at the nanolevel. Science, 2006. 311(5761): p. 622-627.
61.Aillon, K.L., et al., Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews, 2009. 61(6): p. 457-466.
62.Sekine, H., et al., Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation, 2008. 118: p. S145-S152.
63.Yoshida, Y. and S. Yamanaka, Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation, 2010. 122(1): p. 80-87.
64.Bolli, R., et al., Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. The Lancet, 2011. 378(9806): p. 1847-1857.
65.Makkar, R.R., et al., Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. The Lancet, 2012. 379(9819): p. 895-904.
66.Williams, C., et al., Stacking of aligned cell sheets for layer-by-layer control of complex tissue structure. Biomaterials, 2011. 32(24): p. 5625-5632.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw