進階搜尋


 
系統識別號 U0026-2307201217024100
論文名稱(中文) 台灣緩起伏地形與地形均衡狀態之相關性研究
論文名稱(英文) Relationship between gentle rolling surface and topography steady state in Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 陳其昌
研究生(英文) Chi-Chang Chen
學號 l46971053
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-饒瑞鈞
共同指導教授-謝孟龍
口試委員-景國恩
口試委員-李元希
中文關鍵字 緩起伏地形  地形平衡狀態  侵蝕  山脈抬升 
英文關鍵字 gently rolling surface  topographic steady state  erosion  mountain uplift 
學科別分類
中文摘要 台灣為一進行中的造山帶,起伏大、抬升快、侵蝕也快,目前之研究認為台灣已達地形平衡狀態:即山脈的上升正好被侵蝕抵銷,高度不再變化。本研究卻有不同的看法。首先,本研究確認了富田芳郎所描述台灣緩起伏地形的存在,這些緩起伏地形廣泛出現於中央山脈北段、埔里盆地群西半部與恆春半島等低海拔山區,其中常見窪地或湖泊,河流多平緩,邊坡上常覆蓋紅土。在高海拔地區,類似的緩起伏地形常被山崩、土石流盛行的陡坡圍繞,孤立在山脈主脊或主要分水嶺上,流經其中的河流與下游河段間存在顯著的遷急點。高山緩起伏地形都曾遭冰河洗禮,致使土壤發育不良,但仍可發現殘存紅土與再積紅土,數個緩起伏地形上的碳十四定年更說明這些緩起伏地形幾千年來幾乎未受侵蝕。緩起伏地形的存在不支持台灣高山已達成平衡一說,若這平衡已達成,山脈主脊應被陡坡所佔據。其次,透過文獻整理與野外實查,發現幾十年來台灣的山崩、土石流都發生在緩起伏地形外的區域,且多源於半山腰,少延伸至稜線;位於支流口的沖積扇階地所記錄之兩萬年來山崩、土石流事件也有著相同的分佈。以上資料顯示:長期以來這些緩起伏地形是相對侵蝕緩慢的區域。最後,檢視2000至2008年內政部精密水準資料,山脈之抬升速率大致隨所在之海拔增加而增加。綜合以上結果,相信台灣山脈曾經歷相對緩慢的隆升,漫長的風化與侵蝕造就了緩起伏地形,爾後山脈主體隆升加速,逐漸將這緩起伏地形抬升至高海拔地區,這平緩地勢有利冰雪堆積,冰期時遂促成冰河發育。加速的隆升也導致主河道加速下切,山崩、土石流加劇,但這加速的侵蝕尚無法完全移除早先形成的緩起伏地形。整體而言隆升仍大於侵蝕,尚未達到平衡。
英文摘要 The arc-continent collision in Taiwan has resulted in high rate of surface uplift, high relief and high rate of erosion. It is generally believed that mountain belt in Taiwan has reached the topographic steady state. But whether Taiwan has unquestionably achieved the topographic steady state? First, we confirm the existence of gently rolling surface in Taiwan. They are widely distributed in the northern section of Central Range, western part of Puli basin, and Hengchun Peninsula. There are lots of lakes, laterite, and the gentle-slope river on the gently rolling surface. At high altitude, gently rolling surface often exist in the mountain ridge, and surrounded with steep slope which is cause by landslides and debris flows. There is a significant knickpoint of the river between gently rolling surface and steep slope. Although gently rolling surface at high altitude is influenced by glaciations, but laterite still exists. Several C-14 dating data on gently rolling surface indicate that it is almost no erosion on the gently rolling surface. Based on the evidence, high mountains in Taiwan have not reached the topography steady state, because mountain should be occupied by steep slope if it reaches the topography steady state. Second, landslides and debris flows had occurred outside of the gently rolling surface region over the past few decades. Long term landslides and debris flows which indicated by distribution of alluvial fan show the same pattern. The above data show that gently rolling surface is situated in a low erosion area for a long time. Third, examining the uplift rate calculated by the leveling measurement from 2000 to 2008, we can find that mountains uplift rate is broadly in line with the increases of the altitude. Finally, we can conclude that Taiwan's mountains have experienced a long period with slower uplift rate, forming the gently rolling surface. Later, the gently rolling surface is uplifted to the high altitude area because of uplift acceleration. It also results in the acceleration of the river incision, so that the landslides and debris flows exacerbate throughout the time. However, gently rolling surface has not been completely removed by the accelerated erosion yet. That is, mountains in Taiwan have not achieved the topography steady state yet.
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VI
圖目錄 VII
第 1 章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 地形平衡狀態(topography steady state) 2
1.2.2 台灣山脈的地形平衡 5
1.2.3 數值高程模型(digital elevation model; DEM) 7
第 2 章 研究資料與方法 9
2.1 資料收集 9
2.2 DEM資料處理 10
2.3 緩起伏地形圈選與分析 13
第 3 章 結果 18
3.1 緩起伏地形 18
3.2 地表剝蝕與抬升 34
3.3 DEM資料分析 41
第 4 章 討論 46
第 5 章 結論 51
參考文獻 52
附錄A. 各流域坡度統計圖 54
附錄B. 各流域緩起伏比例隨高度變化圖 63
參考文獻 林朝棨,1957,台灣地形,台灣省通志槁卷一,土地志地理篇,台北,台灣省文獻委員會,共424頁。
Ahnert, F. (1970), Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins, American journal of Science, 268(3), 243-263, doi:10.2475/ajs.268.3.243.
Brandon, M. T., M. K. Roden-Tice, and J. I. Garver (1998), Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State, Bulletin of the Geological Society of America, 110(8), 985-1009.
Burbank, D. W., J. Leland, E. Fielding, R. S. Anderson, N. Brozovic, M. R. Reid, and C. Duncan (1996), Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas, Nature, 379(6565), 505-510.
Ching, K. E., M. L. Hsieh, K. M. Johnson, K. H. Chen, R. J. Rau, and M. Yang (2011), Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008, Journal of Geophysical Research, 116, B08406, doi:10.1029/2011JB008242.
Collins, S. H. (1973), Terrain parameters directly from a digital terrain model, Canadian Surveyor, 29(5), 403-418.
Davis, D., J. Suppe, and F. Dahlen (1983), Mechanics of fold-and-thrust belts and accretionary wedges, Journal of Geophysical Research, 88(B2), 1153-1172.
England, P., and P. Molnar (1990), Surface uplift, uplift of rocks, and exhumation of rocks, Geology, 18(12), 1173-1177.
Evans, I. S. (1979), An integrated system of terrain analysis and slope mapping, Department of Geography, University of Durham.
Fleming, M. D., and R. M. Hoffer (1979), Machine processing of Landsat MSS data and DMA topographic data for forest cover type mapping, LARS Technical Reports 062879, 377-390.
Horn, B. K. P. (1981), Hill shading and the reflectance map, Proceedings of the IEEE, 69(1), 14-47, doi:10.1109/PROC.1981.11918.
Hovius, N., C. P. Stark, and P. A. Allen (1997), Sediment flux from a mountain belt derived by landslide mapping, Geology, 25(3), 231-234.
Hovius, N., C. P. Stark, C. Hao Tsu, and L. Jiun Chuan (2000), Supply and removal of sediment in a landslide dominated mountain belt: Central Range, Taiwan, The Journal of Geology, 108(1), 73-89.
Jenson, S., and J. Domingue (1988), Extracting topographic structure from digital elevation data for geographic information system analysis, Photogrammetric Engineering and remote sensing, 54(11), 1593-1600.
Jones, K. H. (1998), A comparison of algorithms used to compute hill slope as a property of the DEM, Computers & Geosciences, 24(4), 315-323, doi:10.1016/S0098-3004(98)00032-6.
Kooi, H., and C. Beaumont (1996), Large-scale geomorphology: classical concepts reconciled and integrated with contemporary ideas via a surface processes model, Journal of Geophysical Research, 101(B2), 3361-3386, doi:10.1029/95JB01861.
Montgomery, D. R., and M. T. Brandon (2002), Topographic controls on erosion rates in tectonically active mountain ranges, Earth and Planetary Science Letters, 201(3-4), 481-489, doi:10.1016/S0012-821X(02)00725-2.
Sharpnack, D. A., and G. Akin (1969), An algorithm for computing slope and aspect from elevations, Photogrammetric Engineering, 35(3), 247-248.
Stolar, D. B., S. D. Willett, and D. R. Montgomery (2007), Characterization of topographic steady state in Taiwan, Earth and Planetary Science Letters, 261(3-4), 421-431, doi:10.1016/j.epsl.2007.07.045.
Suppe, J. (1981), Mechanics of mountain building and metamorphism in Taiwan, Memoir of the Geological Society of China, 4, 67-89.
Travis, M. R., G. H. Elsner, W. D. Iverson, and C. G. Johnson (1975), VIEWIT: computation of seen areas, slope, and aspect for land-use planning, Pacific Southwest Forest and Range Experiment Station, Forest Service, US Department of Agriculture.
Unwin, D. J. (1981), Introductory spatial analysis, Methuen London.
Whipple, K. X. (2001), Fluvial landscape response time: How plausible is steady-state denudation? American journal of Science, 301(4-5), 313-325, doi:10.2475/ajs.301.4-5.313.
Willett, S. D., and M. T. Brandon (2002), On steady states in mountain belts, Geology, 30(2), 175-178.
Willett, S. D., R. Slingerland, and N. Hovius (2001), Uplift, shortening, and steady state topography in active mountain belts, American journal of Science, 301(4-5), 455-485, doi:10.2475/ajs.301.4-5.455.
Zhou, Q. (2004), Analysis of errors of derived slope and aspect related to DEM data properties, Computers & Geosciences, 30(4), 369-378, doi:10.1016/j.cageo.2003.07.005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw