進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2307201216235900
論文名稱(中文) 氮化鎵系列摻雜錳之材料特性與元件應用
論文名稱(英文) Characterization of Mn-doped GaN-based material and device application
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 黃鋒文
研究生(英文) Feng-Wen Huang
學號 L78971055
學位類別 博士
語文別 英文
論文頁數 183頁
口試委員 指導教授-許進恭
召集委員-張守進
口試委員-賴韋志
口試委員-張允崇
口試委員-洪瑞華
口試委員-龔志榮
口試委員-黃建璋
口試委員-羅奕凱
中文關鍵字 有機金屬氣相磊晶法  氮化鎵摻雜錳  光子能量向上轉換  中間能帶  太陽能電池  錳殘留效應  氮化銦鎵摻雜錳 
英文關鍵字 Mn-doped GaN  memory effect  up-converter  intermediate band solar cell  spintronics  MOVPE 
學科別分類
中文摘要 本論文以有機金屬氣相磊晶法成長氮化鎵摻雜錳系列材料,並研究其材料特性與元件應用。

材料分析方面,我們研究材料之表面形貌、結晶品質、光學特性、電傳輸特性、磁性、電子束縛能與相對外部量子效率(光響應特性)。元件應用方面,由於氮化鎵摻雜錳之材料具有中間能帶的特性,我們已成功利用此特性而設計出可將光子能量向上轉換的元件系統以及中間能帶型結構之太陽能電池。

材料成長方面,我們發現錳原子具有腔體殘留效應,並且存在表面偏析與再擴散的現象。我們亦發現若先將受到錳污染的腔體曝於大氣環境一段時間後再將腔體進行氫氣氛圍之高溫清潔則可以有效地消除錳殘留效應。此外,我們亦發現若先使用鹽酸將試片表面加以清洗則可以有效地去除部份的錳偏析。除此之外,我們亦發現若將錳摻雜於氮化銦鎵材料中,銦原子與錳原子的併入具有競爭的關係。

元件應用方面,我們成功地利用氮化鎵摻雜錳材料之中間能帶的性質搭配多重量子井的結構而設計出可將光子能量向上轉換的元件系統。其中氮化鎵摻雜錳材料扮演低能量光子的吸收層,而多重量子井結構則扮演高能量光子的發射層。我們藉由變功率的螢光光譜與光電流頻譜推測可能的發光機制,其發光來源可能來自於光激載子的注入。在沒有外加偏壓的條件下,光子向上轉換的能量約為450 meV。

另外一方面,我們亦成功地製作出以氮化鎵摻雜錳材料為吸收層之中間能帶型結構的太陽能電池。我們藉由穿透光譜與相對外部量子效率頻譜的量測證實了中間能帶的吸收特性,此太陽能電池展現出符合預期之高短路電流增幅的元件特性。此外,我們亦利用雙光源激發系統搭配鎖相放大技術證實了此元件的確具有雙光子吸收(中間能帶跳躍機制)的特性。

最後我們初步地成長以氮化銦鎵摻雜錳材料為吸收層之中間能帶型結構的太陽能電池,雖然元件具有中間能帶的吸收特性,然而此元件並未展現出如預期之高短路電流增幅的特性。其光電流下降的主要原因推測為過低的材料品質與過高的串聯電阻效應以及光子選擇性的問題,未來我們可嘗試藉由侷限光子的設計以及高厚度的主動層來克服光子選擇性的問題。
英文摘要 In present dissertation, characterization of Mn-doped GaN-based material and device application grown by metalorganic vapor phase epitaxy (MOVPE) were investigated. The surface morphology, crystallinity, optical, electrical, magnetic properties, electron binding energy and relative external quantum efficiency (photo-response) of Mn-doped GaN-based material and devices were studied.
The memory effect and redistribution of manganese (Mn) into subsequently regrown GaN-based epitaxial layers by metalorganic vapor phase epitaxy were revealed. Low-temperature up-converted photoluminescence (UPL) and the secondary ion mass spectrometry were performed on GaN-based epitaxial samples with and without Mn doping to study the effect of residual Mn on optical property. UPL emission, which originated from residual Mn doping in regrown InGaN quantum wells (QWs) because of the memory effect of the reactor, could be eliminated in an air-exposed and H2-baking manner prior to the regrowth of the QWs. Considerable residual Mn background level and slow decay rate of Mn concentration tail were also observed in the regrown epitaxial layers, which could be attributed to the memory effect or surface segregation and diffusion from the Mn-doped underlying layer during regrowth in the Mn-free reactor. The surface segregation of Mn on the Mn-doped layer could be partially removed by hydrogen chloride-etched treatment. Competition between Mn and In atoms during the growth of InGaN material was also addressed in the current study.
An up-conversion phenomenon was observed due to the Mn doping effect in the GaN-based material. Here, we further investigated the possible mechanism of the up-converted photoluminescence. Up-converted heterostructures with a Mn-doped underlying GaN intermediate band photodetection layer and an InGaN/GaN multiple quantum wells (MQWs) luminescence layer grown by metal-organic vapor-phase epitaxy were demonstrated. The up-converters exhibited a significant up-converted photoluminescence (UPL) signal. Power-dependent UPL and spectral responses indicated that the UPL emission could be due to photo-carrier injection from the Mn-doped GaN layer into InGaN/GaN MQWs. Photons convert from 2.54 to 2.99 eV via a single-photon absorption process to exhibit linear up-conversion photon energy of ~450 meV without applying bias voltage. Therefore, the up-conversion process could be interpreted within the uncomplicated energy-levels model.
Intermediate band (IB) p-i-n solar cells with Mn-doped GaN absorption layer grown by metal-organic vapor-phase epitaxy were presented. The measurements of transmittance spectrum and relative external quantum efficiency (EQE) showed the presence of an IB absorption property. The IB devices showed additional infrared-visible-light region response and could be promising in high-efficiency solar cell applications. A large enhancement in short circuit current-density and a slight decrease in open circuit voltage were observed. The increased photocurrent of the cells without too much voltage reduction was a key point for IB operation. Power-dependent dual-light source excitation and lock-in amplifier techniques were performed to prove that “two-photon absorption process” actually takes place in IB solar cells with Mn-doped GaN absorption layer. Mn-doped InxGa1-xN material showed potential in high-efficiency solar cell applications by its effective usage in IB photovoltaic devices.
Furthermore, the intermediate band solar cells with Mn-doped In0.084Ga0.916N absorption layer were presented initially. The efficiency was decreased due to the decrease of the Voc, Jsc and FF. The decreased efficiency could be attributed to the poor quality of Mn-doped InGaN material and the photon selectivity issue. The decreased Jsc was attributed to the decreased photocurrent due to the large non-radiative recombination associated with the poor quality, the photon selectivity issue and the high series resistance of Mn-doped InGaN even though the devices exhibited the additional absorption of the photons with energy below the VB-CB bandgap. Furthermore, the material quality of InGaN should be improved and the absorption of photon selectivity issue should be considered. The using of light confinement and the large thickness of Mn-doped InGaN would be necessary to efficiently absorb the lower energy photons with the weak absorption coefficient for the realization of IB photovoltaic devices. In addition to the issues of Jsc and Voc, obtaining a high FF for improving cell efficiency was also a key point. Therefore, attention should be focused on the reduction of series resistance to improve conversion efficiency by incorporation IB into the absorption layer of solar cells.
論文目次 Contents


摘要(Abstract in Chinese) I

Abstract II

誌謝(Acknowledgement) IV

Contents V

Figure Captions VII

Chapter 1 Introduction 1
1.1 AlGaInN Material for Photovoltaic Device Absorbing Full Solar Spectra 1
1.2 Intermediate Band Solar Cell 2
1.3 Up/down-converter and Solar Cell 5
1.4 Spintronics 8
References in Chapter 1 11

Chapter 2 Physics 19
2.1 Fundamentals of Solar Cell 19
2.1.1 Physical Basis of Photovoltaics Operation 19
2.1.2 Light Absorption and Generation Rate 20
2.1.3 Recombination and Carrier Transport 26
2.1.4 Solar Cell I-V Characteristics and Parasitic Resistance Effects 32
2.1.5 Spectral Response, Efficiency and Band Gap 37
2.2 Theoretical Conversion Limits of Intermediate Band Solar Cell 39
2.2.1 The Shockley and Queisser (SQ) Limits of a Photovoltaic Converter 39
2.2.2 Intermediate Band Solar Cell 42
2.3 Theoretical Conversion Limits of Up/down-conversion Solar Cell 48
References in Chapter 2 51

Chapter 3 Characterization of Mn-doped GaN-based Material Grown by Metal-Organic Vapor-Phase Epitaxy 53
3.1 Growth and Doping-control Technology 53
3.1.1 Bubbler and Manganese Source 53
3.1.2 Incorporation of Metal-organic Precursor and Molar Flow Rate 55
3.1.3 Effect of Epitaxial Parameters on Incorporation Efficiency of Mn Dopant in GaN 57
3.2 Surface Morphology and Crystallinity 62
3.3 Optoelectronic, Magnetic Property and Effect of Mn-doping, Co-doping with Magnesium and Silicon 67
References in Chapter 3 80

Chapter 4 Long-tail Effect and Optical Properties of Mn in GaN-based Up-converter Grown by Metal-Organic Vapor-Phase Epitaxy 82
4.1 Memory Effect, Redistribution of Mn and Up-converted Photoluminescence 82
4.2 Up-converter with Mn-doped Underlying GaN Intermediate Band Photodetection Layer and InGaN/GaN Multiple Quantum Wells Luminescence Layer 94
References in Chapter 4 107

Chapter 5 Intermediate Band Solar Cells with Mn-doped GaN Absorption Layer 112
5.1 PIN Structure with Mn-doped GaN Active Layer and P-AlGaN Blocking Layer 114
5.2 PIN Structure with Mn-doped GaN Active Layer and P-GaN Blocking Layer 133
5.3 Comparison of Device Characteristics between the PIN with P-AlGaN and P-GaN Blocking Layer 153
References in Chapter 5 157

Chapter 6 Intermediate Band Solar Cells with Mn-doped InxGa1-xN Absorption Layer 160
6.1 PIN Structure with Mn-doped In0.084Ga0.916N Active Layer 160
References in Chapter 6 176

Chapter 7 Conclusions and Future Works 177
7.1 Conclusions 177
7.2 Future Works 179

Publication List 181



Figure Captions


Fig. 1-1. The band diagram and concept of an intermediate band solar cell. 4
Fig. 1-2. Limiting efficiency for the ideal IB solar cell, a two-terminal ideal tandem solar cell and an ideal single band gap solar cell. 4
Fig. 1-3. Upper limit of efficiency for the up-converting system as a function of the band gap. 7
Fig. 1-4. Efficiency of the down-converter system as a function of the band-gap. 7
Fig. 1-5. Technology tree for spin-based devices and their potential applications. 10
Fig. 1-6. Predicted Curie temperature as a function of bandgap and some experimentally reported values in the literature. 10
Fig. 2-1. The schematic of solar cell. 19
Fig. 2-2. The radiation spectrums of the black-body at 5762 K, AM0 and AM1.5 global. 23
Fig. 2-3. The solar spectrums at various air mass conditions. 23
Fig. 2-4. Process of photon absorption in the direct band gap semiconductor for an incident photon with energy hν = E2 - E1>Eg. 24
Fig. 2-5. Process of photon absorption in the indirect band gap semiconductor for an incident photon with energy hν<E2 - E1 and hν>E2 - E1. The energy and momentum in each case are conserved by the absorption and emission of a phonon. 24
Fig. 2-6(a). The absorption coefficient as a function of photon energy for GaAs (direct band gap, 1.4 eV) and Si (indirect band gap, 1.12 eV). 25
Fig. 2-6(b). The absorption coefficient as a function of photon energy for GaN (direct band gap, 3.4 eV) at room temperature (300 K). 25
Fig. 2-7. Various recombination processes in the semiconductor. 31
Fig. 2-8. Surface states at the interface of semiconductors. 31
Fig. 2-9. A solar cell circuit model. The diode 1 represents the recombination current in the quasi-neutral regions and the diode 2 represents the recombination in the depletion region. 35
Fig. 2-10. Typical current-voltage characteristic of a solar cell (Si). 35
Fig. 2-11. Solar cell circuit model characteristics including the parasitic series and shunt resistances. 35
Fig. 2-12. Effect of series resistance on I-V curve of a solar cell as Rsh→∞. 36
Fig. 2-13. Effect of shunt resistance on I-V curve of a solar cell as Rs→0. 36
Fig. 2-14. Maximum theoretical efficiency for a simple model as a function of semiconductor band gap for an AM1.5 global solar spectrum. 38
Fig. 2-15. The band diagram of a semiconductor p-n junction solar cell. 41
Fig. 2-16. The SQ limit of efficiency for a solar cell as a function of band gap energy. Curve (a) unconcentrated 6000 K black body radiation (b) full concentrated 6000 K black body radiation (c) unconcentrated AM1.5-Direct and (d) AM1.5 Global. 41
Fig. 2-17. Band diagram of the intermediate band solar cell. 45
Fig. 2-18(a). The structure of the intermediate band solar cell (b) band diagram in equilibrium (c) band diagram of forward bias conditions. 45
Fig. 2-19. Efficiency limiting for the intermediate band solar cell under maximum concentrated sunlight, single-gap solar cell and a tandem of two cells that series-connected. 46
Fig. 2-20. The location of estimated Mn-level as a function of the In content in InGaN. 46
Fig. 2-21. Efficiency limiting of InGaN: Mn intermediate band solar cell in the calculation of maximum concentration for AM 1.5 Direct spectrums and for the sun assumed as a blackbody at 6000 K. 47
Fig. 2-22. The equivalent circuit of the IB solar cell. 47
Fig. 2-23. The design of structure for the up-convertion system. 49
Fig. 2-24. The diagram of energy levels in the up-convertion system. 49
Fig. 2-25. The equivalent circuit of the up-conversion system. 49
Fig. 2-26. The upper limits for the conversion efficiency of the up-conversion system as a function of the band gap. 49
Fig. 2-27. The design of structure for the down-convertion system. 50
Fig. 2-28. The equivalent circuit of the down-conversion system. 50
Fig. 2-29. The upper limits for the conversion efficiency of the down-conversion system as a function of the band gap. 50
Fig. 3-1. Schematic diagram of a bubbler and the gas flow of the MO source. The MO precursor carried can flow into the run or vent line. In our group, the carrier gas is N2. 54
Fig. 3-2. The detailed value of parameters and the vapor pressure equation (and curve) for the metal-organic precursor of manganese used in our group. 54
Fig. 3-3. The photo of the MOVPE system used in our laboratory. 58
Fig. 3-4. The secondary Mn ion counts as a function of the Mn precursor molar flow rate. 59
Fig. 3-5. The secondary Mn ion counts as a function of the growth temperature. 59
Fig. 3-6. The secondary Mn ion counts as a function of the growth pressure. 60
Fig. 3-7. The secondary Mn ion counts as a function of the H2 ambient flow rate. 60
Fig. 3-8(a). The secondary Mg ion counts as a function of the Mn source flow rate (b) the secondary Si ion counts as a function of the Mn source flow rate. 61
Fig. 3-9. The appearance of the undoped, lightly Mn-doped and heavily Mn-doped GaN samples from left to right, respectively. 63
Fig. 3-10. The surface morphology of Mn-doped GaN observed by the polarizing optical microscopy in different Mn source flow rate (0, 50 and 500 sccm) at 50X and 200X magnification. 64
Fig. 3-11. The atomic force microscopy (AFM) for the undoped (0sccm), lightly Mn-doped (50sccm) and heavily Mn-doped (500sccm) GaN. 64
Fig. 3-12(a). X-ray diffraction (XRD) (002) rocking curve spectra (b) X-ray diffraction (XRD) (102) rocking curve spectra for GaN epitaxial layers with different Mn doping level. 65
Fig. 3-13. The surface morphology of Mn-doped InGaN observed by the polarizing optical microscopy in different Mn source flow rate (0, 100 and 200 sccm) at 50X and 200X magnification. 66
Fig. 3-14. The (004) X-ray diffraction (XRD) ω-2θ spectra for InGaN bulk with different Mn doping level. 66
Fig. 3-15. The bulk Mn-doped GaN 300 K transmission spectra with the different Mn atom incorporation controlled by altering the carrier gas flow rate (sccm). 71
Fig. 3-16(a). The bulk Mn-doped GaN 20 K photoluminescence (PL) spectra with the different Mn atom incorporation controlled by altering the carrier gas flow rate (sccm) (b) y-scale magnification. 72
Fig. 3-17. The unintentional doped and Mn-doped InGaN 300 K transmission spectra. 73
Fig. 3-18(a). The Mn-doped InGaN 300 K photoluminescence (PL) spectra with the different Mn atom incorporation controlled by altering the carrier gas flow rate (sccm) and (b) shows the magnification of y-scale. 74
Fig. 3-19. The effect of Mn doping (controlled by altering the carrier gas flow rate) on the electrical properties of the unintentionally doped GaN (u-GaN), Si-doped GaN (n-GaN) and Mg-doped GaN (p-GaN). 75
Fig. 3-20. The SQUID 300 K magnetic hysteresis loop of the Mn-doped GaN on u-GaN (n~1017cm-3) template with different Mn incorporation level in the horizontal magnetic field. 75
Fig. 3-21. The SQUID 300 K magnetic hysteresis loop of the Mn-doped GaN on p-GaN template with different Mn doping level in the horizontal magnetic field. 76
Fig. 3-22. The SIMS profile for the Mn-doped GaN on p-GaN template. 76
Fig. 3-23. The SQUID 300 K magnetic hysteresis loop of Mn-doped GaN on u-GaN template (n~1017cm-3) with different Mg co-doping levels in the horizontal magnetic field. 77
Fig. 3-24(a). The Ga 3d x-ray photoelectron spectroscopy (XPS) measurements of the GaN and GaN: Mn samples. (b) The N 1s x-ray photoelectron spectroscopy (XPS) measurements of the GaN and GaN: Mn samples. 78
Fig. 3-25. The transmission spectra of the Mn-doped GaN co-doping with the different Mg atom incorporation. 79
Fig. 3-26. The 300 K relative external quantum efficiency (EQE) of the Mn-doped GaN co-doping with the different Mg atom incorporation. 79
Fig. 4-1(a)-(d). Schematic structures in cross-section view for the samples A, B, C and D regrown with varied chamber treatments, respectively. (e)-(f) Schematic structures in cross-section view for the samples E and F grown on Mn-doped GaN templates without and with HCl surface treatments, respectively. 90
Fig. 4-2. Low temperature (12 K) PL spectra of samples A and B excited by (a) 325 nm He-Cd laser and (b) 488 nm Ar laser (c) SIMS profiles of Ga, In, Mn and Si elements taken from the sample B as a function of depth from the surface. 91
Fig. 4-3. Low temperature (12 K) PL spectra of samples A, C and D excited by (a) 325 nm He-Cd laser (b) 488 nm Ar laser. 92
Fig. 4-4. SIMS profiles of Ga, In, Mn and Si elements taken from the (a) sample C and (b) sample D. 92
Fig. 4-5. SIMS profiles of Mn element taken from the samples E and F. 93
Fig. 4-6(a). XRD (004) spectra of the samples C and D for determination of indium composition in QWs (b) XRD (004) spectra for determination of indium composition of the bulk Mn-doped InGaN epitaxial layers grown with different Mn flow rates. 93
Fig. 4-7. Schematic device structure in cross-section view: (a) samples A, (b) samples B, (c) samples C and (d) samples D. 101
Fig. 4-8. Low temperature (12 K) PL spectra of samples A and B for the indicated (a) 325 nm He-Cd laser excitation and (b) 488 nm Ar laser excitation. 102
Fig. 4-9. Low temperature (12 K) PL spectra for the 488 nm (2.54 eV) Ar laser excitation of samples A, B, C and D. 103
Fig. 4-10. Typical room temperature (300 K) spectral responsivity of the PD-I (sample C) and PD-II (sample D) taken at zero bias. 104
Fig. 4-11. 488 nm (Eexc = 2.54 eV) Ar laser incident pump power dependence of the spectrally up-converted PL emission intensity of samples A at low temperature (12 K). The lines show the linear regression in the double-logarithmic plot. The slope of n = 0.9 is also indicated. 105
Fig. 4-12. Schematic band diagram of sample A and the up-converted PL excitation process resulting in emission at 2.99 eV (Eemi = 2.99 eV) and 3.51 eV (Eemi = 3.51 eV). 106
Fig. 5-1. Concept of the intermediate band solar cell operation including an intermediate band with partially filled with electrons within the host semiconductor band gap. 113
Fig. 5-2. Schematic devices structures of the sample A, B, C and D. 121
Fig. 5-3. Schematic dual-light source setup for determining the relative external quantum efficiency of the GaN IB solar cells with Mn-doped absorption layer. 121
Fig. 5-4(a). Typical room temperature current-density-versus-voltage (J-V) characteristics of the solar cells under forward bias in the darkness (b) reverse bias for sample A, B, C and D. 122
Fig. 5-5(a)(b). Typical I-V characteristics of the n- and p-electrode contacts, respectively. The I-V curves were measured from two adjacent contacts (100 μm × 200 μm) with a spacing of 5 μm. (c) Typical value of specific contact resistance and sheet resistance for n- and p-electrode of sample A, B, C and D. 124
Fig. 5-6(a). Typical Hall data for different Mn doping level for GaN: Mn, n-GaN: Mn and p-GaN: Mn. (b) Typical SIMS profile data for sample A, B, C and D. (c) Typical Al element for SIMS profile data of sample A, B, C and D. (d) Typical XRD (002) ω-2θ for sample A, B, C and D. 126
Fig. 5-7. Typical current density-voltage characteristics of sample A, B, C and D under AM1.5G illumination. 127
Fig. 5-8(a). Typical Voc as a function of Mn flow rate. (b) Typical Jsc as a function of Mn flow rate. (c) Typical FF as a function of Mn flow rate. (d) Typical efficiency as a function of Mn flow rate. 129
Fig. 5-9. Typical bulk Mn-doped GaN 20 K photoluminescence (PL) spectra with the different Mn atom incorporation controlled by altering the carrier gas flow rate (sccm). 130
Fig. 5-10. Typical room-temperature transmission spectra measured from the sample A, B, C and D. 130
Fig. 5-11. Typical relative external quantum efficiency taken from sample A, B, C and D with lock-in amplifier techniques at room temperature. 131
Fig. 5-12(a). Typical relative external quantum efficiency taken from sample A and B with power-dependent dual-light source excitation and lock-in amplifier techniques. (b) Relative EQE of sample B as a function of 405 nm laser power corresponding to three locked photon energies. 132
Fig. 5-13. Schematic devices structures of the sample A, B, C, D, E and F. 140
Fig. 5-14(a). Typical room temperature current-density-versus-voltage (J-V) characteristics of the solar cells under forward bias in the darkness. (b) Reverse bias for sample A, B, C, D, E and F. 141
Fig. 5-15(a)(b). Typical I-V characteristics of the n- and p-electrode contacts, respectively. The I-V curves were measured from two adjacent contacts (100 μm × 200 μm) with a spacing of 5 μm. (c) Typical value of specific contact resistance and sheet resistance for n- and p-electrode of sample A, B, C, D, E and F. 143
Fig. 5-16(a)(b). Typical 300 K photoluminescence (PL) spectra of the sample A, B, C, D, E and F. 144
Fig. 5-17. Typical SIMS profile data for sample A, B and E. 145
Fig. 5-18. Typical current density-voltage characteristics of sample A, B, C, D, E and F under AM1.5G illumination. 145
Fig. 5-19(a). Typical Voc as a function of Mn flow rate. (b) Typical Jsc as a function of Mn flow rate. (c) Typical FF as a function of Mn flow rate. (d) Typical efficiency as a function of Mn flow rate. 147
Fig. 5-20. Typical relative external quantum efficiency taken from sample A, B and E with lock-in amplifier techniques at room temperature. 148
Fig. 5-21(a). Typical relative external quantum efficiency taken from sample A and B with power-dependent dual-light source excitation and lock-in amplifier techniques. (b) Relative EQE of sample B as a function of 405 nm laser power corresponding to three locked photon energies. 149
Fig. 5-22(a). Typical relative external quantum efficiency taken from sample A and E with power-dependent dual-light source excitation and lock-in amplifier techniques. (b) Relative EQE of sample E as a function of 405 nm laser power corresponding to three locked photon energies. 150
Fig. 5-23(a). 300 K electroluminescence (EL) emission photos from the sample A, B, C, D, E and F taken at 150 mA current injection. (b) (c) 300 K electroluminescence spectra (EL) from the sample A, B, C, D, E and F taken at 150 mA current injection. 152
Fig. 5-24. The typical (a) Voc (b) Jsc (c) FF (d) efficiency as a function of Mn doping level for PIN structure with p-AlGaN and p-GaN blocking layer. 156
Fig. 6-1. Schematic structures of sample A and B. 167
Fig. 6-2(a). Typical room temperature current-density versus voltage (J-V) characteristics of the sample A and B under forward bias. (b) Reverse bias in the darkness. 168
Fig. 6-3(a)(b). Typical I-V characteristics of the n- and p-electrode contacts onto n- and p-GaN taken from the sample A and B, respectively. The I-V curves were measured from two adjacent contacts (100 μm × 200 μm) with a spacing of 5 μm (c) a list of the typical specific contact resistances and sheet resistances taken from the sample A and B. 170
Fig. 6-4. The typical SIMS depth profile of the sample B. 170
Fig. 6-5(a)(b). Typical (002) and (004) X-ray diffraction (XRD) ω-2θ spectra for sample A and B. 171
Fig. 6-6. Typical 300 K PL spectra taken from sample A and B. 172
Fig. 6-7. Typical current-density versus voltage characteristics of sample A and B under AM1.5G illumination. 172
Fig. 6-8. Typical Voc, Jsc, FF and efficiency of sample A and B. 173
Fig. 6-9. Typical transmission spectra taken from sample A and B at 300 K. 173
Fig. 6-10(a). Typical relative external quantum efficiency (EQE) taken from sample A and B with dual-light-source excitation and lock-in amplifier techniques without 405 nm (3.06 eV) laser illumination at 300 K (b) the dual-light-source excitation taken from the sample B. A power-dependent 405 nm (3.06 eV) laser source (not chopped) was applied to sample B during the measurement of relative external quantum efficiency (EQE). 174
Fig. 6-11(a). 300 K electroluminescence (EL) emission photos from the sample A and B taken at 150 mA current injection (b) 300 K electroluminescence spectra (EL) taken from the sample A and B at 150 mA current injection. 175
參考文獻 References in Chapter 1

[1] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., vol. 80, no. 21, pp. 3967-3969, 2002.
[2] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1-xGaxN alloys,” Appl. Phys. Lett., vol. 80, no. 25, pp. 4741-4743, 2002.
[3] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, no. 3, pp. 1687-1689, 1994.
[4] H. Morkoc and S. N. Mohammad, “High Luminosity Gallium Nitride Blue and Blue-Green Light Emitting Diodes,” Science, vol. 267, no. 5194, pp. 51-55, 1995.
[5] H. Morkoc and S. N. Mohammad, Light Emitting Diodes, in Wiley Encyclopedia of Electrical Engineering and Electronics Engineering, J. Webster, ed., John Wiley and Sons, New York, 1999.
[6] S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science, vol. 281, no. 5379, pp. 956-961, 1998.
[7] M. Razeghi and A. Rogalski, “Semiconductor Ultraviolet Detectors,” J. Appl. Phys., vol. 79, no. 10, pp. 7433-7473, 1996.
[8] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoc, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “Ultraviolet Photodetectors Based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) Structures,” Appl. Phys. Lett., vol. 71, no. 15, pp. 2154-2156, 1997.
[9] M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1-xN heterojunctions,” Appl. Phys. Lett., vol. 60, no. 24, pp. 3027-3029, 1992.
[10] M. A. Khan, J. N. Kuznia, A. R. Bhattarai and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett., vol. 62, no. 15, pp. 1786-1787, 1993.
[11] J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (>80 V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett., vol. 76, no. 17, pp. 2457-2459, 2000.
[12] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 277-279, 1999.
[13] O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Doolittle and S. Kurtz, Characterization and analysis of InGaN photovoltaic devices, Proc. the 31st IEEE PVSC, pp. 37-42, 2005.
[14] R. Dahal, B. Pantha, J. Li, J. Y. Lin and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett., vol. 94, no. 6, pp. 063505, 2009.
[15] R. Dahal, J. Li, J. Y. Lin and H. X. Jiang, “InGaN/GaN multiple quantum well concentrator solar cells,” Appl. Phys. Lett., vol. 97, no. 7, pp. 073115, 2010.
[16] C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, Y. H. Yeh and W. C. Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Opt. Express, vol. 19, no. S4, pp. A695-A700, 2011.
[17] O. Jani, I. Ferguson, C. Honsberg and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., vol. 91, no. 13, 132117, 2007.
[18] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett., vol. 93, no. 14, pp. 143502, 2008.
[19] R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin and Y. C. Lu, “Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 724-726, 2009.
[20] R. H. Horng, M. T. Chu, H. R. Chen, W. Y. Liao, M. H. Wu, K. F. Chen and D. S. Wuu, “Improved conversion efficiency of textured InGaN solar cells with interdigitated imbedded electrodes,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 585-587, 2010.
[21] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai and L. C. Peng, “Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 225-227, 2009.
[22] C. C. Yang, J. K. Sheu, X. W. Liang, M. S. Huang, M. L. Lee, K. H. Chang, S. J. Tu, F. W. Huang, and W. C. Lai, “Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers,” Appl. Phys. Lett., vol. 97, no. 2, pp. 021113, 2010.
[23] C. C. Yang, J. K. Sheu, C. H. Kuo, M. S. Huang, S. J. Tu, F. W. Huang, M. L. Lee, Y. H. Yeh, X. W. Liang, and W. C. Lai, “Improved power conversion efficiency of InGaN photovoltaic devices grown on patterned sapphire substrates,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 536-538, 2011.
[24] C. L. Tsai, G. C. Fan and Y. S. Lee, “Effects of InGaN/GaN superlattice absorption layers on the structural and optical properties of InGaN solar cells,” J. Vac. Sci. Technol. B, vol. 29, no. 2, pp. 021201, 2011.
[25] A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett., vol. 78, no. 26, pp. 5014-5017, 1997.
[26] A. Luque and A. Martí, “A metallic intermediate band high efficiency solar cell,” Prog. Photovolt: Res. Appl., vol. 9, pp. 73-86, 2001.
[27] A. Luque, A. Martí and Lucas Cuadra, “Thermodynamic consistency of sub-bandgap absorbing solar cell proposals,” IEEE Trans. Electron Devices, vol. 48, no. 9, pp. 2118-2124, 2001.
[28] A. Luque, A. Martí, C. Stanley, N. Lo´pez, L. Cuadra, D. Zhou, J. L. Pearson and A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys., vol. 96, no. 1, pp. 903-909, 2004.
[29] L. Cuadra, A. Martí and A. Luque, “Present status of intermediate band solar cell research,” Thin Solid Films, vol. 451-452, pp. 593-599, 2004.
[30] A. Luque, A. Martí, N. Lo´pez, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra and J. L. Balenzategui, “Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells,” Appl. Phys. Lett., vol. 87, pp. 083505, 2005.
[31] M. Ley, J. Boudaden and Z. T. Kuznicki, “Thermodynamic efficiency of an intermediate band photovoltaic cell with low threshold Auger generation,” J. Appl. Phys., vol. 98, pp. 044905, 2005.
[32] A. Luque, A. Martí, Elisa Antolín and Ce´sar Tablero, “Intermediate bands versus levels in non-radiative recombination,” Physica B, vol. 382, pp. 320–327, 2006.
[33] A. Luque, A. Martí, N. Lo´pez, E. Antolín, E. Cánovas, C. Stanley, C. Farmer and P. Díaz, “Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band,” J. Appl. Phys., vol. 99, pp. 094503, 2006.
[34] A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. Lo´pez, P. Díaz, E. Ca´novas, P. G. Linares and A. Luque, “Production of Photocurrent due to Intermediate-to-Conduction-Band Transitions: A Demonstration of a Key Operating Principle of the Intermediate-Band Solar Cell,” Phys. Rev. Lett., vol. 97, pp. 247701, 2006.
[35] A. Luque and A. Martí, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater., vol. 22, pp. 160-174, 2010.
[36] Chien-chung Lin, Wei-Ling Liu and Ching-Yu Shih, “Detailed balance model for intermediate band solar cells with photon conservation,” Opt. Express, vol. 19, no. 18, pp. 16927-16933, 2011.
[37] Tomohiro Nozawa and Yasuhiko Arakawa, “Detailed balance limit of the efficiency of multilevel intermediate band solar cells,” Appl. Phys. Lett., vol. 98, pp. 171108, 2011.
[38] A. Luque and A. Martí, “Towards the intermediate band,” Nat. Photonics, vol. 5, pp. 137-138, 2011.
[39] N. Lo´pez, A. Martí, A. Luque, C. Stanley, C. Farmer and P. Diaz, “Experimental Analysis of the Operation of Quantum Dot Intermediate Band Solar Cells,” J. Sol. Energy Eng., vol. 129, pp. 319-322, 2007.
[40] E. Antolín, A. Martí, C.R. Stanley, C.D. Farmer, E. Cánovas, N. López, P.G. Linares and A. Luque, “Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell,” Thin Solid Films, vol. 516, pp. 6919–6923, 2008.
[41] Nima Es’haghi Gorji, Hossein Movla, Foozieh Sohrabi, Ahmad Hosseinpour, Meisam Rezaei and Hassan Babaei, “The effects of recombination lifetime on efficiency and J-V characteristics of InxGa1-xN/GaN quantum dot intermediate band solar cell,” Physica E, vol. 42, pp. 2353–2357, 2010.
[42] A. Luque, A. Martí, E. Antolín, P. G. Linares, I. Tobías, I. Ramiro and E. Hernandez, “New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells, vol. 95, pp. 2095-2101, 2011.
[43] A. Luque, A. Martí, E. Antolín, P.G. Linares, I. Tobías and I. Ramiro, “Radiative thermal escape in intermediate band solar cells,” AIP Advances, vol. 1, pp. 022125, 2011.
[44] K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J.W. Beeman, M. A. Scarpulla, O. D. Dubon and P. Becla, “Diluted Ⅱ-Ⅵ Oxide Semiconductors with multiple band gaps,” Phys. Rev. Lett., vol. 91, no. 24, pp. 246403, 2003.
[45] K. M. Yu, W. Walukiewicz, J. W. Ager III, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp and E. E. Haller, “Multiband GaNAsP quaternary alloys,” Appl. Phys. Lett., vol. 88, pp. 092110, 2006.
[46] N. Lo´pez, L. A. Reichertz, K. M. Yu, K. Campman and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells,” Phys. Rev. Lett., vol. 106, pp. 028701, 2011.
[47] C. Tablero, “Survey of intermediate band materials based on ZnS and ZnTe semiconductors,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 588-596, 2006.
[48] Weiming Wang, Albert S. Lin and Jamie D. Phillips, “Intermediate-band photovoltaic solar cell based on ZnTe:O,” Appl. Phys. Lett., vol. 95, pp. 011103, 2009.
[49] R. Y. Korotkov, J. M. Gregie and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy,” Physica B, vol. 308–310, pp. 30-33, 2001.
[50] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn,” Appl. Phys. Lett., vol. 80, no. 10, pp. 1731-1733, 2002.
[51] A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. Y. Pashkova, G. T. Thaler, M. E. Overberg, R. Frazier, C. R. Abernathy, S. J. Pearton, Jihyun Kim and F. Ren, “Optical and electrical properties of GaMnN films grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 92, no. 9, pp. 4989-4993, 2002.
[52] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films,” Appl. Phys. Lett., vol. 91, pp. 242502, 2007.
[53] A. Martí, C. Tablero, E.Antolín, A. Luque, R. P. Campion, S. V. Novikov, C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 5, pp. 641-644, 2009.
[54] A. Luque, A. Marti, L. Cuadra, Proc. of the 16th European Photovoltaic Solar Energy Conference, 59-61, James & James Ltd, London, 2000.
[55] M. A. Green, “Multiple Band and Impurity Photovoltaic Solar Cells: General Theory and Comparison to Tandem Cells,” Prog. Photovolt: Res. Appl., vol. 9, pp. 137-144, 2001.
[56] A. Brown, M. Green, “Limiting Efficiency for a Multi-Solar Cell Containing Three and Four Bands” International Workshop on Photovoltaics in nanostructures, Dresden, Germany, Proc. to be published in Physica E (Private Communication), 2001.
[57] G. Beaucarne, A. S. Brown, M. J. Keevers, R. Corkish and M. A. Green, “The Impurity Photovoltaic (IPV) Effect in Wide-Bandgap Semiconductors: an Opportunity for Very-High-Efficiency Solar Cells ?,” Prog. Photovolt: Res. Appl., vol. 10, pp. 345-353, 2002.
[58] T. Trupke, M. A. Green and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys., vol. 92, no. 3, pp. 1668-1674, 2002.
[59] T. Trupke, M. A. Green and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys., vol. 92, no. 7, pp. 4117-4122, 2002.
[60] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510-519, 1961.
[61] Tomohiro Nozawa and Yasuhiko Arakawa, “Detailed balance limit of the efficiency of multilevel intermediate band solar cells,” Appl. Phys. Lett., vol. 98, pp. 171108, 2011.
[62] A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett., vol. 86, no. 1, pp. 013505, 2005.
[63] T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells, vol. 90, no. 18-19, pp. 3327-3338, 2006.
[64] Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), and references therein.
[65] H. M. Cheong, B. Fluegel, M. C. Hanna, and A. Mascarenhas, “Photoluminescence up-conversion in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B, vol. 58, no. 8, pp. R4254-R4257, 1998.
[66] P. P. Paskov, P. O. Holtz, B. Monemar, J. M. Garcia, W. V. Schoenfeld, and P. M. Petroff, “Photoluminescence up-conversion in InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett., vol. 77, no. 6, pp. 812-814, 2000.
[67] A. Shalav, B. S. Richards and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: Up-conversion,” Sol. Energy Mater. Sol. Cells, vol. 91, pp. 829-842, 2007.
[68] K. J. Russell, I. Appelbaum, H. Temkin, C. H. Perry, V. Narayanamurti, M. P. Hanson, and A. C. Gossard, “Room-temperature electro-optic up-conversion via internal photoemission,” Appl. Phys. Lett., vol. 82, no. 18, pp. 2960-2962, 2003.
[69] M. R. Olson, K. J. Russell, V. Narayanamurti, J. M. Olson, and I. Appelbaum, “Linear photon upconversion of 400 meV in an AlGaInP/GaInP quantum well heterostructure to visible light at room temperature,” Appl. Phys. Lett., vol. 88, no. 16, pp. 161108, 2006.
[70] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, “Spintronics: A Spin-Based Electronics Vision for the Future,” Science, vol. 294, pp. 1488-1495, 2001.
[71] D. K. Young, J. A. Gupta, E. J. Halperin, R. Epstein, Y. Kato and D. D. Awschalom, “Optical, electrical and magnetic manipulation of spins in semiconductors,” Semicond. Sci. Technol., vol. 17, pp. 275-284, 2002.
[72] S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner and J. D. Budai, “Advances in wide bandgap materials for semiconductor spintronics,” Materials Science and Engineering R, vol. 40, pp. 137-168, 2003.
[73] Ahmad Bsiesy, “Spin injection into semiconductors: towards a semiconductor-based spintronic device,” C. R. Physique, vol. 6, pp. 1022-1026, 2005.
[74] D. D. Awschalom and M. E. Flatte, “Challenges for semiconductor spintronics,” Nature physics, vol. 3, pp. 153-159, 2007.
[75] S. J. Pearton, D. P. Norton, R. Frazier, S. Y. Han, C. R. Abernathy and J. M. Zavada, “Spintronics device concepts,” IEE Proc.-Circuits Devices Syst., vol. 152, no. 4, pp. 312-322, 2005.
[76] B. T. Jonker, “Progress toward electrical injection of spin-polarized electrons into semiconductor,” Proceedings of the IEEE, vol. 91, no. 5, pp. 727-740, 2003.
[77] X. Chen, S. J. Lee and M. Moskovits, “Modification of the electronic properties of GaN nanowires by Mn doping,” Appl. Phys. Lett., vol. 91, pp. 082109, 2007.
[78] Y. G. Semenov, K. W. Kim and J. M. Zavada, “Spin field effect transistor with a grapheme channel,” Appl. Phys. Lett., vol. 91, pp. 153105, 2007.
[79] F. Y. Lo, A. Melnikov, D. Reuter, Y. Cordier and A. D. Wieck, “Magnetotransport in Gd-implanted wurtzite GaN/AlxGa1-xN high electron mobility transistor structures,” Appl. Phys. Lett., vol. 92, pp. 112111, 2008.
[80] H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han and M. Johnson, “Control of spin precession in a spin-injected field effect transistor,” Science, vol. 325, pp. 1515-1517, 2009.
[81] H. Ohno, “Making nonmagnetic semiconductors ferromagnetic,” Science, vol. 281, pp. 951-955, 1998.
[82] R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag and L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature, vol. 402, pp. 787-790, 1999.
[83] M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D: Appl. Phys., vol.40, pp. R179-R203, 2007.
[84] K. Yoh, H. Ohno, Y. Katano, K. Sueoka, K. Mukasa and M. E. Ramsteiner, “Spin polarization in photo- and electroluminescence of InAs and metal/InAs hybrid structures,” Semicond. Sci. Technol., vol. 19, pp. S386-S389, 2004.
[85] M. H. Ham, S. Yoon, Y. Park, L. Bian, M. Ramsteiner and J. M. Myoung, “Electrical spin injection from room-temperature ferromagnetic (Ga, Mn)N in nitride-based spin-polarized light-emitting diodes,” J. Phys.: Condens. Matter., vol. 18, pp. 7703-7708, 2006.
[86] N. C. Gerhardt, S. Hovel, C. Brenner, M. R. Hofmann, F. Y. Lo, D. Reuter, A. D. Wieck, E. Schuster, W. Keune, S. Halm, G. Bacher and K. Westerholt, “Spin injection light-emitting diode with vertically magnetized ferromagnetic metal contacts,” J. Appl. Phys., vol. 99, pp. 073907, 2006.
[87] S. Hovel, N. C. Gerhardt, M. R. Hofmann, F. Y. Lo, D. Reuter, A. D. Wieck, E. Schuster, H. Wende and W. Keune, “Spin-controlled optoelectronic devices,” Phys. Status Solidi C, vol. 6, no. 2, pp. 436-439, 2009.
[88] A. Sinsarp, T. Manago, F. Takano and H. Ajinaga, “Electrical spin injection from out-of-plane magnetized FePt/MgO tunneling junction into GaAs at room temperature,” Jpn. J. Appl. Phys., vol. 46, no. 1, pp. L4-L6, 2007.
[89] H. Fujino, S. Koh, S. Iba, T. Fujimoto and H. Kawaguchi, “Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection,” Appl. Phys. Lett., vol. 94, pp. 131108, 2009.
[90] M. K. Li, N. M. Kim, S. J. Lee, H. C. Jeon and T. W. Kang, “Characteristics of GaMnN based ferromagnetic resonant tunneling diode without external magnetic field,” Appl. Phys. Lett., vol. 88, pp. 162102, 2006.
[91] C. Ertler and J. Fabian, “Theory of digital magnetoresistance in ferromagnetic resonant-tunneling diodes,” Phys. Rev. B, vol. 75, pp. 195323, 2007.
[92] V. Zayets and K. Ando, “High-speed switching of spin polarization for proposed spin-photon memory,” Appl. Phys. Lett., vol. 94, pp. 121104, 2009.
[93] N. Nepal, M. O. Luen, J. M. Zavada, S. M. Bedair, P. Frajtag and N. A. El-Masry, “Electric field control of room temperature ferromagnetism in III-N dilute magnetic semiconductor films,” Appl. Phys. Lett., vol. 94, pp. 132505, 2009.
[94] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, “Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors,” Science, vol. 287, pp. 1019, 2000.
[95] S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen and A. F. Hebard, “Wide bandgap GaN-based semiconductors for spintronics,” J. Phys.: Condens. Matter., vol. 16, pp. R209-R245, 2004.
[96] M. H. Kane, M. Strassburg, A. Asghar, N. Li, W. Fenwick and I. T. Ferguson, “Review of recent efforts on the growth and characterization of nitride-based diluted magnetic semiconductors,” Proc. of SPIE, vol. 6121, pp. 61210L-1, 2006.
[97] M. H. Kane, M. Strassburg, W. Fenwick, A. Asghar and I. T. Ferguson, “The growth and characterization of room temperature ferromagnetic wideband-gap materials for spintronic applications,” International Journal of high speed electronics and systems, vol. 16, no. 2, pp. 515-543, 2006.
[98] M. Kaminska, A. Twardowski and D. Wasik, “Mn and other magnetic impurities in GaN and other III-V semiconductors – perspective for spintronic applications,” J. Mater Sci: Mater Electron, vol. 19, pp. 828-834, 2008.
[99] R. P. Davies, C. R. Abernathy, S. J. Pearton, D. P. Norton, M. P. Ivill and F. Ren, “Review of recent advances in transition and lanthanide metal-doped GaN and ZnO,” Chem. Eng. Comm., vol. 196, pp. 1030-1053, 2009.
[100] N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, S. N. G. Chu and R. G. Wilson, “Magnetic and structural properties of Mn-implanted GaN,” Appl. Phys. Lett., vol. 78, no. 22, pp. 3475-3477, 2001.
[101] R. Y. Korotkov, J. M. Gregie and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy,” Physica B, vol. 308-310, pp. 30-33, 2001.
[102] R. Y. Korotkov, J. M. Gregie, B. Han and B. W. Wessels, “Optical study of GaN: Mn co-doped with Mg grown by metal organic vapor phase epitaxy,” Physica B, vol. 308-310, pp. 18-21, 2001.
[103] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A. Parker, J. C. Roberts and S. M. Bedair, “Room temperature ferromagnetic properties of (Ga, Mn)N,” Appl. Phys. Lett., vol. 79, no. 21, pp. 3473-3475, 2001.
[104] M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair and N. A. El-Mastry, “Room temperature Magnetic (Ga,Mn)N: a new material for spin electronic devices,” Materials Letters, vol. 51, pp. 500-503, 2001.
[105] S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto and H. Hori, “Molecular beam epitaxy of wurtzite (Ga,Mn)N films on sapphire (0001) showing the ferromagnetic behavior at room temperature,” Journal of Crystal Growth, vol. 237-239, pp. 1358-1362, 2002.
[106] T. Sasaki, S. Sonoda, Y. Yamamoto, K. I. Suga, S. Shimizu, K. Kindo and H. Hori, “Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN,” J. Appl. Phys., vol. 91, no. 10, pp. 7911-7913, 2002.
[107] A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. Y. Pashkova, G. T. Thaler, M. E. Overberg, R. Frazier, C. R. Abernathy, S. J. Pearton, J. Kim and F. Ren, “Optical and electrical properties of GaMnN films grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 92, no. 9, pp. 4989-4993, 2002.
[108] R. Y. Korotkov, J. M. Gregie and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN: Mn,” Appl. Phys. Lett., vol. 80, no. 10, pp. 1731-1733, 2002.
[109] F. E. Arkun, M. J. Reed, E. A. Berkman, N. A. El-Masry, J. M. Zavada, M. L. Reed and S. M. Bedair, “Dependence of ferromagnetic properties on carrier transfer at GaMnN/GaN: Mg interface,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3809-3811, 2004.
[110] M. J. Reed, F. E. Arkun, E. A. Berkman, N. A. Elmasry, J. Zavada, M. O. Luen, M. L. Reed and S. M. Bedair, “Effect of doping on the magnetic properties of GaMnN: Fermi level engineering,” Appl. Phys. Lett., vol. 86, pp. 102504, 2005.
[111] A. M. Mahros, M. O. Luen, A. Emara, S. M. Bedair, E. A. Berkman, N. A. El-Masry and J. M. Zavada, “Magnetic and magnetotransport properties of (AlGaN/GaN):Mg/(GaMnN) heterostructures at room temperature,” Appl. Phys. Lett., vol. 90, pp. 252503, 2007.
[112] N. Nepal, M. O. Luen, J. M. Zavada, S. M. Bedair, P. Frajtag and N. A. El-Masry, “Electric field control of room temperature ferromagnetism in III-N dilute magnetic semiconductor films,” Appl. Phys. Lett., vol. 94, pp. 132505, 2009.



References in Chapter 2

[1] A. Luque and S. Hegedus (Eds), Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Chichester, West Sussex, pp. 3-5, 61-63, 70-74, 2003.
[2] S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices 3rd Edition, John Wiley & Sons, Hoboken, New Jersey, pp. 21, 51-56, 719-726, 2007.
[3] A. Luque and A. Martí, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater., vol. 22, pp. 160-174, 2010.
[4] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett., vol. 71, no. 18, pp. 2572-2574, 1997.
[5] A. Luque and S. Hegedus (Eds), Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Chichester, West Sussex, pp.74-81, 92-96, 99-101, 102-104, 113-114, 120-124, 144-148, 2003.
[6] S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices 3rd Edition, John Wiley & Sons, Hoboken, New Jersey, pp. 21, 40-48, 722-725, 725-730, 2007.
[7] A. Luque, A. Marti, E. Antolin and C. Tablero, “Intermediate bands versus levels in non-radiative recombination,” Physica B, vol. 382, pp. 320-327, 2006.
[8] A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Solar Energy Materials & Solar Cells, vol. 93, pp. 641-644, 2009.
[9] A. B. Cristobal Lopez, A. Marti Vega and A. Luque Lopez (Eds), Next Generation of Photovoltaics: New Concepts, Springer-Verlag, Berlin Heidelberg, pp. 209-221, 2012.
[10] A. Luque, A. Marti, and C. Stanley, “Understanding intermediate-band solar cells,” Nature photonics, vol. 5, pp. 1-7, 2012.
[11] A. Luque and A. Marti, “Towards the intermediate band,” Nature photonics, vol. 5, pp. 137-138, 2011.
[12] N. Lopez L. A. Reichertz, K. M. Yu, K. Campman and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cell,” Phys. Rev. Lett., vol. 106, pp. 028701-1-4, 2011.
[13] A. Marti, E. Antolin, C. R. Stanley, C. D. Farmer, N. Lopez, P. Diaz, E. Canovsa, P. G. Linares and A. Luque, “Production of Photocurrent due to Intermediate-to-Conduction-Band Transitions: A Demonstration of a Key Operating Principle of the Intermediate-Band Solar Cell,” Phys. Rev. Lett., vol. 97, pp. 247701-1-4, 2006.
[14] A. Luque, A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra, J. L Balenzategui, “Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells,” Appl. Phys. Lett., vol. 87, pp. 083505-1-3, 2005.
[15] L. Cuadra, A. Marti and A. Luque, “Present status of intermediate band solar cell research,” Thin Solid Films, vol. 451-452, pp. 593-599, 2004.
[16] L. Cuadra, A. Marti and A. Luque, “Influence of the Overlap Between the Absorption Coefficients on the Efficiency of the Intermediate Band Solar Cell,” IEEE Transactions on Electron Devices, vol. 51, pp.1002-1007, 2004.
[17] A. Luque, A. Marti, C. Stanley, N. Lopez, L. Cuadra, D. Zhou, J. L. Pearson and A. Mckee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys., vol. 96, pp. 903-909, 2004.
[18] A. Luque, A. Marti, “A Metallic Intermediate Band High Efficiency Solar Cell,” Prog. Photovolt: Res. Appl., vol. 9, pp. 73-86, 2001.
[19] A. Luque and A. Marti, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett., vol. 78, pp. 5014-5017, 1997.
[20] T. Trupke, M. A. Green and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys., vol. 92, no. 7, pp. 4117-4122, 2002.
[21] T. Trupke, M. A. Green and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys., vol. 92, no. 3, pp. 1668-1674, 2002.



References in Chapter 3

[1] E. Fred Schubert’s web site.
[2] E. F. Schubert (Author), Doping in III-V Semiconductors, Press Syndicate of the University of Cambridge, New York USA, pp.153-177 / 249-349, 2004.
[3] Epichem Corporation web site.
[4] SAFC Hitech Taiwan Co., Ltd. web site.
[5] VEECO TAIWAN INC.
[6] F. E. Arkun, M. J. Reed, E. A. Berkman, N. A. El-Masry, J. M. Zavada, M. L. Reed and S. M. Bedair, “Dependence of ferromagnetic properties on carrier transfer at GaMnN/GaN:Mg interface,” Appl. Phys. Lett., vol. 85, no.17, pp. 3809-3811, 2004.
[7] P. Bogusławski and J. Bernholc, “Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N,” Phys. Rev. B, vol. 72, pp. 115208-1-5, 2005.
[8] M. J. Reed, F. E. Arkun, E. A. Berkman, N. A. Elmasry, J. Zavada, M. O. Luen, M. L. Reed, and S. M. Bedair, “Effect of doping on the magnetic properties of GaMnN: Fermi level engineering,” Appl. Phys. Lett., vol. 86, pp. 102504-1-3, 2005.
[9] M. Strassburg, M. H. Kane, A. Asghar, Q. Song, Z. J. Zhang, J. Senawiratne, M. Alevli, N. Dietz, C. J. Summers and I. T. Ferguson, “The Fermi level dependence of the optical and magnetic properties of Ga1−xMnxN grown by metal–organic chemical vapour deposition,” J. Phys.: Condens. Matter, vol. 18, pp. 2615–2622, 2006.
[10] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films,” Appl. Phys. Lett., vol. 91, pp. 242502-1-3, 2007.
[11] Amr M. Mahros, M. O. Luen, A. Emara, S. M. Bedair, E. A. Berkman, N. A. El-Masry and J. M. Zavada, “Magnetic and magnetotransport properties of (AlGaN/GaN):Mg/(GaMnN) heterostructures at room temperature,” Appl. Phys. Lett., vol. 90, pp. 252503-1-3, 2007.
[12] Yang X L, Chen Z T, Wang C D, Huang S, Fang H, Zhang G Y, Chen D L and Yan W S, “Effects of nitrogen vacancies induced by Mn doping in (Ga,Mn)N films grown by MOCVD,” J. Phys. D: Appl. Phys., vol. 41, pp. 125002, 2008.
[13] N. Nepal, M. Oliver Luen, J. M. Zavada, S. M. Bedair, P. Frajtag and N. A. El-Masry, “Electric field control of room temperature ferromagnetism in III-N dilute magnetic semiconductor films,” Appl. Phys. Lett., vol. 94, pp. 132505, 2009.
[14] J. I. Hwang, Y. Ishida, M. Kobayashi, H. Hirata, K. Takubo, T. Mizokawa, A. Fujimori, J. Okamoto, K. Mamiya, Y. Saito, Y. Muramatsu, H. Ott, A. Tanaka, T. Kondo and H. Munekata, “High-energy spectroscopic study of the III-V nitride-based diluted magnetic semiconductor Ga1−xMnxN,” Phys. Rev. B, vol. 72, pp. 085216, 2005.
[15] X L Yang, Z T Chen, L B Zhao, W X Zhu, C D Wang, X D Pei and G Y Zhang, “Structural, optical and magnetic properties of Ga1−xMnxN films grown by MOCVD,” J. Phys. D: Appl. Phys., vol. 41, pp. 245004, 2008.
[16] N. Nepal, Amr M. Mahros, and S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films,” Appl. Phys. Lett., vol. 91, pp. 242502, 2007.
[17] R. Y. Korotkov, J. M. Gregie and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy,” Physica B, vol. 308-310, pp. 30-33, 2001.
[18] A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. Y. Pashkova, G. T. Thaler, M. E. Overberg, R. Frazier, C. R. Abernathy, S. J. Pearton, Jihyun Kim and F. Ren, “Optical and electrical properties of GaMnN films grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 92, pp. 4989, 2002.
[19] R. Y. Korotkov, J. M. Gregie and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn,” Appl. Phys. Lett., vol. 80, pp. 1731, 2002.
[20] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann and O. Ambacher, “The Mn3+/2+ acceptor level in group III nitrides,” Appl. Phys. Lett., vol. 81, pp. 5159, 2002.
[21] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, L. Gorgens, J. B. Philipp and O. Ambacher, “Growth and characterization of GaN:Mn epitaxial films,” J. Appl. Phys., vol. 93, pp. 9697, 2003.
[22] O. Gelhausen, E. Malguth, M. R. Phillips, E. M. Goldys, M. Strassburg, A. Hoffmann, T. Graf, M. Gjukic and M. Stutzmann, “Doping-level-dependent optical properties of GaN:Mn,” Appl. Phys. Lett., vol. 84, pp. 4514, 2004.
[23] J. Zenneck, T. Niermann, D. Mai, M. Roever, M. Kocan, J. Malindretos, M. Seibt, A. Rizzi, N. Kaluza and H. Hardtdegen, “Intra-atomic photoluminescence at 1.41 eV of substitutional Mn in GaMnN of high optical quality,” J. Appl. Phys., vol. 101, pp. 063504, 2007.
[24] R. Y. Korotkov, J. M. Gregie, B. Han and B. W. Wessels, “Optical study of GaN:Mn co-doped with Mg grown by metal organic vapor phase epitaxy,” Physica B, vol. 308-310, pp. 18-21, 2001.
[25] B. Han, R. Y. Korotkov, B. W. Wessels and M. P. Ulmer, “Optical properties of Mn4+ ions in GaN:Mn codoped with Mg acceptors,” Appl. Phys. Lett., vol. 84, pp. 5320, 2004.
[26] B. Han, B. W. Wessels and M. P. Ulmer, “Optical investigation of electronic states of Mn4+ ions in p-type GaN,” Appl. Phys. Lett., vol. 86, pp. 042505, 2005.
[27] M. H. Kane, M. Strassburg, A. Asghar, W. E. Fenwick, J. Senawiratne, Q. Song, C. J. Summers, Z. J. Zhang, N. Dietz and I. T. Ferguson, “Alloying, co-doping, and annealing effects on the magnetic and optical properties of MOCVD-grown Ga1-xMnxN,” Materials Science and Engineering B, vol. 126, pp. 230-235, 2006.



References in Chapter 4

[1] S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner and J. D. Budai, “Advances in wide bandgap materials for semiconductor spintronics,” Mater. Sci. Eng. R, vol. 40, pp. 137-168, 2003.
[2] D. D. Awschalomand and M. E. Flatte, “Challenges for semiconductor spintronics,” Nature Phys., vol. 3, pp. 153-159, 2007.
[3] A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett., vol. 78, pp. 5014-5017, 1997.
[4] A. Luque and A. Martí, “A metallic intermediate band high efficiency solar cell,” Prog. Photovolt. Res. Appl., vol. 9, pp. 73-86, 2001.
[5] A. Martí, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells, vol. 93, pp. 641-644, 2009.
[6] A. Luque and A. Martí, “Towards the intermediate band,” Nat. Photonics, vol. 5, pp. 137-138, 2011.
[7] T. Trupke, M. A. Green and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys., vol. 92, pp. 4117-4122, 2002.
[8] A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett., vol. 86, pp. 013505, 2005.
[9] T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3327-3338, 2006.
[10] F. W. Huang, J. K. Sheu, M. L. Lee, S. J. Tu, W. C. Lai, W. C. Tsai and W. H. Chang, “Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection,” Optics Express, vol. 19, pp. A1211-A1218, 2011.
[11] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, “Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors,” Science, vol. 287, pp. 1019-1021, 2000.
[12] A. M. Mahros, M. O. Luen, A. Emara, S. M. Bedair, E. A. Berkman, N. A. El-Masry and J. M. Zavada, “Magnetic and magnetotransport properties of (AlGaN/GaN):Mg/(GaMnN) heterostructures at room temperature,” Appl. Phys. Lett., vol. 90, pp. 252503, 2007.
[13] N. Nepal, M. Oliver Luen, J. M. Zavada, S. M. Bedair, P. Frajtag and N. A. El-Masry, “Electric field control of room temperature ferromagnetism in Ⅲ-N dilute magnetic semiconductor films,” Appl. Phys. Lett., vol. 94, pp. 132505, 2009.
[14] M. H. Kane, M. strassburg, A. Asghar, W. E. Fenwick, J. Senawiratne, Q. Song, C. J. Summers, Z. J. Zhang, N. Dietz and I. T. Ferguson, “Alloying, co-doping, and annealing effects on the magnetic and optical properties of MOCVD-grown Ga1-xMnxN,” Mater. Sci. Eng. B, vol. 126, pp. 230-235, 2006.
[15] M. H. Kane, S. Gupta, W. E. Fenwick, N. Li, E. H. Park, M. Strassburg and I. T. Ferguson, “Comparative study of Mn and Fe incorporation into GaN by metalorganic chemical vapor deposition,” Phys. Stat. Sol. (a), vol. 204, pp. 61-71, 2007.
[16] I.A. Buyanova, M. Izadifard, L. Storasta, W.M. Chen, J. Kim, F. Ren, G. Thaler, C.R. Abernathy, S.J. Pearton, C. C. Pan, G.T. Chen, J. I. Chyi and J.M. Zavada, “Optical and electrical characterization of (Ga,Mn)N/InGaN multiquantum well light-emitting diodes,” J. Electron. Mater., vol. 33, pp. 467-471, 2004.
[17] I. A. Buyanova, M. Izadifard, W. M. Chen, J. Kim, F. Ren, G. Thaler, C. R. Abernathy, S. J. Pearton, C.C. Pan, G.T. Chen, J. I. Chyi and J. M. Zavada, “On the origin of spin loss in GaMnN/InGaN light-emitting diodes,” Appl. Phys. Lett., vol. 84, pp. 2599-2601, 2004.
[18] I. A. Buyanova, J. P. Bergman, W. M. Chen, G. Thaler, R. Frazier, C. R. Abernathy, S. J. Pearton, J. Kim, F. Ren, F. V. Kyrychenko, C. J. Stanton, C.C. Pan, G.T. Chen, J. I. Chyi and J. M. Zavada, “Optical study of spin injection dynamics in InGaN/GaN quantum wells with GaMnN injection layers,” J. Vac. Sci. Technol. B, vol. 22, pp. 2668-2672, 2004.
[19] M. H. Ham, S. Yoon, Y. Park, L. Bian, M. Ramsteiner and J. M. Myoung, “Electrical spin injection from room-temperature ferromagnetic (Ga, Mn)N in nitride-based spin-polarized light-emitting diodes,” J. Phys. Condens. Matter, vol. 18, pp. 7703–7708, 2006.
[20] S. Hövel, N. C. Gerhardt, M. R. Hofmann, F. Y. Lo, D. Reuter, A. D. Wieck, E. Schuster, W. Keune, H. Wende, O. Petracic and K. Westerholt, “Electrical detection of photoinduced spins both at room temperature and in remanence,” Appl. Phys. Lett., vol. 92, pp. 242102, 2008.
[21] R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett., vol. 98, pp. 162508, 2011.
[22] B. T. JONKER, “Progress toward electrical injection of spin-polarized electrons into semiconductors,” Proc. IEEE, vol. 91, pp. 727-740, 2003.
[23] X. Chen, S. J. Lee, and M. Moskovits, “Modification of the electronic properties of GaN nanowires by Mn doping,” Appl. Phys. Lett., vol. 91, pp. 082109, 2007.
[24] H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han and M. Johnson, “Control of Spin Precession in a Spin-Injected Field Effect Transistor,” Science, vol. 325, pp. 1515-1518, 2009.
[25] Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), and references therein.
[26] H. M. Cheong, B. Fluegel, M. C. Hanna, and A. Mascarenhas, “Photoluminescence up-conversion in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B, vol. 58, pp. R4254-R4257, 1998.
[27] P. P. Paskov, P. O. Holtz, B. Monemar, J. M. Garcia, W. V. Schoenfeld, and P. M. Petroff, “Photoluminescence up-conversion in InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett., vol. 77, pp. 812-814, 2000.
[28] K. J. Russell, Ian Appelbaum, H. Temkin, C. H. Perry, V. Narayanamurti, M. P. Hanson and A. C. Gossard, “Room-temperature electro-optic up-conversion via internal photoemission,” Appl. Phys. Lett., vol. 82, pp. 2960-2962, 2003.
[29] M. R. Olson, K. J. Russell, V. Narayanamurti, J. M. Olson and I. Appelbaum, “Linear photon upconversion of 400 meV in an AlGalnP/GaInP quantum well heterostructure to visible light at room temperature,” Appl. Phys. Lett., vol. 88, pp. 161108, 2006.
[30] N. Kuroda, C. Sasaoka, A. Kimura, A. Usui and Y. Mochizuki, “Precise control of pn-junction profiles for GaN-based LD structure using GaN substrates with low dislocation densities,” J. Cryst. Growth, vol. 189/190, pp. 551-555, 1998.
[31] Y. Ohba and A. Hatano, “A study on strong memory effects for Mg doping in GaN metalorganic chemical vapor deposition,” J. Cryst. Growth, vol. 145, pp. 214-218, 1994.
[32] H. Xing, D. S. Green, H. Yu, T. Mates, P. Kozodoy, S. Keller, S. P. Denbaars and U. K. Mishra, “Memory effect and redistribution of Mg into sequentially regrown GaN layer by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 42, pp. 50-53, 2003.
[33] H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Optics Express, vol. 19, pp. A991-A1007, 2011.
[34] J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys., vol. 110, pp. 113110, 2011.
[35] R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett.,vol. 96, pp. 231113, 2010.
[36] R. M. Farrell, D. A. Haeger, P. S. Hsu, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck and S. Nakamura, “Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett., vol. 99, pp. 171115, 2011.
[37] A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett., vol. 78, pp. 5014–5017, 1997.
[38] T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys., vol. 92, pp. 4117–4122, 2002.
[39] L. Cuadra, A. Marti, and A. Luque, “Present status of intermediate band solar cell research,” Thin Solid Films, vol. 451–452, pp. 593–599, 2004.
[40] A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, and H. U. Gudel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett., vol. 86, pp. 013505, 2005.
[41] T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3327–3338, 2006.
[42] A. Martí, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells, vol. 93, pp. 641–644, 2009.
[43] Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), and references therein.
[44] H. M. Cheong, B. Fluegel, M. C. Hanna, and A. Mascarenhas, “Photoluminescence up-conversion in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B, vol. 58, pp. R4254–R4257, 1998.
[45] P. P. Paskov, P. O. Holtz, B. Monemar, J. M. Garcia, W. V. Schoenfeld, and P. M. Petroff, “Photoluminescence up-conversion in InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett., vol. 77, pp. 812–814, 2000.
[46] K. J. Russell, I. Appelbaum, H. Temkin, C. H. Perry, V. Narayanamurti, M. P. Hanson, and A. C. Gossard, “Room-temperature electro-optic up-conversion via internal photoemission,” Appl. Phys. Lett., vol. 82, pp. 2960–2962, 2003.
[47] M. R. Olson, K. J. Russell, V. Narayanamurti, J. M. Olson, and I. Appelbaum, “Linear photon upconversion of 400 meV in an AlGaInP⁄GaInP quantum well heterostructure to visible light at room temperature,” Appl. Phys. Lett., vol. 88, pp. 161108, 2006.
[48] C. Tablero, “Survey of intermediate band material candidates,” Solid State Commun., vol. 133, pp. 97–101, 2005.
[49] C. Tablero, “Electronic and magnetic properties of ZnS doped with Cr,” Phys. Rev. B, vol. 74, pp. 195203, 2006.
[50] C. Tablero, “Survey of intermediate band materials based on ZnS and ZnTe semiconductors,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 588–596, 2006.
[51] L. Kronik, M. Jain, and J. R. Chelikowsky, “Electronic structure and spin polarization of MnxGa1-xN,” Phys. Rev. B, vol. 66, pp. 041203, 2002.
[52] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN: Mn,” Appl. Phys. Lett., vol. 80, pp. 1731–1733, 2002.
[53] A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. Y. Pashkova, G. T. Thaler, M. E. Overberg, R. Frazier, C. R. Abernathy, S. J. Pearton, J. Kim, and F. Ren, “Optical and electrical properties of GaMnN films grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 92, pp. 4989–4993, 2002.
[54] N. Nepal, A. M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films,” Appl. Phys. Lett., vol. 91, pp. 242502, 2007.
[55] A. M. Mahros, M. O. Luen, A. Emara, S. M. Bedair, E. A. Berkman, N. A. El-Masry, and J. M. Zavada, “Magnetic and magnetotransport properties of (AlGaN/GaN):Mg/(GaMnN) heterostructures at room temperature,” Appl. Phys. Lett., vol. 90, pp. 252503, 2007.
[56] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy,” Physica B, vol. 308–310, pp. 30–33, 2001.
[57] P. Bogusławski and J. Bernholc, “Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N,” Phys. Rev. B, vol. 72, pp. 115208, 2005.
[58] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “The Mn3+/2+ acceptor level in group III nitrides,” Appl. Phys. Lett., vol. 81, pp. 5159–5161, 2002.
[59] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science, vol. 294, pp. 1488–1495, 2001.
[60] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science, vol. 287, pp. 1019–1022, 2000.
[61] V. I. Litvinov and V. K. Dugaev, “Ferromagnetism in magnetically doped III-V semiconductors,” Phys. Rev. Lett., vol. 86, pp. 5593–5596, 2001.
[62] N. Nepal, M. O. Luen, J. M. Zavada, S. M. Bedair, P. Frajtag, and N. A. El-Masry, “Electric field control of room temperature ferromagnetism in III-N dilute magnetic semiconductor films,” Appl. Phys. Lett., vol. 94, pp. 132505, 2009.
[63] J. K. Sheu, K. H. Chang, and M. L. Lee, “Ultraviolet band-pass photodetectors formed by Ga-doped ZnO contacts to n-GaN,” Appl. Phys. Lett., vol. 92, pp. 113512, 2008.



References in Chapter 5

[1] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett., vol. 93, pp.143502, 2008.
[2] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai and L. C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Dev. Lett., vol. 30, pp. 225-227, 2009.
[3] X. M. Cai, S. W. Zeng and B. P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett., vol. 95, pp. 173504, 2009.
[4] R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin and Y. C. Lu, “Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Dev. Lett., vol. 30, pp. 724-726, 2009.
[5] S. W. Zeng, B. P. Zhang, J. W. Sun, J. F. Cai, C. Chen and J. Z. Yu, “Substantial photo-response of InGaN p–i–n homojunction solar cells,” Semicond. Sci. Technol., vol. 24, pp. 055009, 2009.
[6] K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett., vol. 96, pp. 081103, 2010.
[7] R. H. Horng, M. T. Chu, H. R. Chen, W. Y. Liao, M. H. Wu, K. F. Chen and D. S. Wuu, “Improved conversion efficiency of textured InGaN solar cells with interdigitated embedded electrodes,” IEEE Electron Dev. Lett., vol. 31, pp. 585-587, 2010.
[8] F. W. Huang, J. K. Sheu, M. L. Lee, S. J. Tu, W. C. Lai, W. C. Tsai and W. H. Chang, “Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection,” Opt. Express, vol. 19, pp. A1211-A1218, 2011.
[9] L. Kronik, M. Jain, and J. R. Chelikowsky, “Electronic structure and spin polarization of MnxGa1-xN,” Phys. Rev. B, vol. 66, pp. 041203, 2002.
[10] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN: Mn,” Appl. Phys. Lett., vol. 80, pp. 1731-1733, 2002.
[11] A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. Y. Pashkova, G. T. Thaler, M. E. Overberg, R. Frazier, C. R. Abernathy, S. J. Pearton, J. Kim, and F. Ren, “Optical and electrical properties of GaMnN films grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 92, pp. 4989-4993, 2002.
[12] N. Nepal, A. M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films,” Appl. Phys. Lett., vol. 91, pp. 242502, 2007.
[13] A. M. Mahros, M. O. Luen, A. Emara, S. M. Bedair, E. A. Berkman, N. A. El-Masry, and J. M. Zavada, “Magnetic and magnetotransport properties of (AlGaN/GaN):Mg/(GaMnN) heterostructures at room temperature,” Appl. Phys. Lett., vol. 90, pp. 252503, 2007.
[14] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy,” Physica B, vol. 308-310, pp. 30-33, 2001.
[15] P. Bogusławski and J. Bernholc, “Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N,” Phys. Rev. B, vol. 72, pp. 115208, 2005.
[16] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “The Mn3+/2+ acceptor level in group III nitrides,” Appl. Phys. Lett., vol. 81, pp. 5159-5161, 2002.
[17] A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett., vol. 78, pp. 5014-5017, 1997.
[18] A. Luque and A. Marti, “A metallic intermediate band high efficiency solar cell,” Prog. Photovolt: Res. Appl., vol. 9, pp. 73-86, 2001.
[19] A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol Cells, vol. 93, pp. 641-644, 2009.
[20] A. Luque, A. Martí, and C. Lucas, “Thermodynamic consistency of sub-bandgap absorbing solar cell proposals,” IEEE transactions on electron devices, vol. 48, pp. 2118-2124, 2001.
[21] A. Luque, A. Martí, C. Stanley, N. Lopez, L. Cuadra, D. Zhou, J. L. Pearson, and A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys., vol. 96, pp. 903-909, 2004.
[22] L. Cuadra, A. Martí and A. Luque, “Present status of intermediate band solar cell research,” Thin Solid Films, vol. 451, pp. 593-599, 2004.
[23] A. Luque, A. Martí, N. Lopez, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra, and J. L. Balenzategui, “Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells,” Appl. Phys. Lett., vol. 87, pp. 083505, 2005.
[24] M. Ley, J. Boudaden, and Z. T. Kuznicki, “Thermodynamic efficiency of an intermediate band photovoltaic cell with low threshold Auger generation,” J. Appl. Phys., vol. 98, pp. 044905, 2005.
[25] A. Luque, A. Martí, E. Antolín, and C. Tablero, “Intermediate bands versus levels in non-radiative recombination,” Physica B, vol. 382, pp. 320-327, 2006.
[26] A. Luque, A. Martí, N. Lopez, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, and P. Díaz, “Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band,” J. Appl. Phys., vol. 99, pp. 094503, 2006.
[27] A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. Lopez, P. Díaz, E. Canovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett., vol. 97, pp. 247701, 2006.
[28] A. Luque and A. Martí, “The intermediate band solar cell: Progress toward the realization of an attractive concept,” Adv. Mater., vol. 22, pp. 160-174, 2010.
[29] C. C. Lin, W. L. Liu, and C. Y. Shih, “Detailed balance model for intermediate band solar cells with photon conservation,” Opt. Express, vol. 19, pp. 16927-16933, 2011.
[30] T. Nozawa and Y. Arakawa, “Detailed balance limit of the efficiency of multilevel intermediate band solar cells,” Appl. Phys. Lett., vol. 98, pp. 171108, 2011.
[31] A. Luque and A. Martí, “Photovoltaics: Towards the intermediate band,” Nature Photon., vol. 5, pp. 137-138, 2011.
[32] N. Lopez, A. Martí, A. Luque, C. Stanley, C. Farmer, and P. Diaz, “Experimental analysis of the operation of quantum dot intermediate band solar cells,” J. Sol. Energy Eng., vol. 129, pp. 319-322, 2007.
[33] E. Antolín, A. Martí, C. R. Stanley, C. D. Farmer, E. Cánovas, N. López, P. G. Linares, and A. Luque, “Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell,” Thin Solid Films, vol. 516, pp. 6919-6923, 2008.
[34] N. E. Gorji, H. Movla, F. Sohrabi, A. Hosseinpour, M. Rezaei, and H. Babaei, “The effects of recombination lifetime on efficiency and J-V characteristics of InxGa1-xN/GaN quantum dot intermediate band solar cell,” Physica E, vol. 42, pp. 2353-2357, 2010.
[35] A. Luque, A. Martí, E. Antolín, P. G. Linares, I. Tobías, I. Ramiro, and E. Hernandez, “New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells,” Sol. Energ. Mater. Sol. C., vol. 95, pp. 2095-2101, 2011.
[36] A. Luque, A. Martí, E. Antolín, P. G. Linares, I. Tobías, and I. Ramiro, “Radiative thermal escape in intermediate band solar cells,” AIP Advances, vol. 1, pp. 022125, 2011.
[37] K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, “Diluted Ⅱ-Ⅵ oxide semiconductors with multiple band gaps,” Phys. Rev. Lett., vol. 91, pp. 246403-246404, 2003.
[38] K. M. Yu, W. Walukiewicz, J. W. Ager III, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, “Multiband GaNAsP quaternary alloys,” Appl. Phys. Lett., vol. 88, pp. 092110-092113, 2006.
[39] N. Lopez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett., vol. 106, pp. 028701, 2011.
[40] C. Tablero, “Survey of intermediate band materials based on ZnS and ZnTe semiconductors,” Sol. Energ. Mater. Sol. C., vol. 90, pp. 588-596, 2006.
[41] W. Wang, A. S. Lin, and J. D. Phillips, “Intermediate-band photovoltaic solar cell based on ZnTe:O,” Appl. Phys. Lett., vol. 95, pp. 011103, 2009.



References in Chapter 6

[1] A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett., vol. 78, pp. 5014-5017, 1997.
[2] A. Luque and A. Marti, “A metallic intermediate band high efficiency solar cell,” Prog. Photovolt: Res. Appl., vol. 9, pp. 73-86, 2001.
[3] A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol Cells, vol. 93, pp. 641-644, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw