進階搜尋


下載電子全文  
系統識別號 U0026-2307201209531000
論文名稱(中文) 雞、鴨蛋白介電層於有機場效電晶體及金屬奈米粒子於增益蛋白螢光之研究
論文名稱(英文) Chicken, Duck Albumen Dielectrics in Organic Field-Effect Transistors and Enhancement Photoluminescence of Albumen by Metal Nanoparticles
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 陳奕璁
研究生(英文) I-Tsung Chen
學號 l76994023
學位類別 碩士
語文別 中文
論文頁數 132頁
口試委員 指導教授-郭宗枋
口試委員-藍永強
口試委員-張允崇
口試委員-陳昭宇
中文關鍵字 熱處理  變性  蛋白螢光  侷域性表面電漿共振 
英文關鍵字 Thermal treatment  Denaturation  Albumen fluorescence  Localized surface plasmon resonance 
學科別分類
中文摘要 本論文致力於探討熱處理對蛋白介電層之影響,及利用摻混金奈米粒子調變蛋白螢光之研究。蛋白場效電晶體方面,本研究探討熱處理對於電性之貢獻機制;結果發現,變性後其電性發生衰減,與未變性之元件特性衰退逾30%,此因熱處理會改變蛋白介電層之表面能,進而影響五環素之結晶所造成;另外,本論文亦探討雞、鴨蛋白介電層之電性差異,發現鴨蛋白元件之電性表現遠優於雞蛋白元件,不僅電流有近兩倍的表現,載子遷移率也提升至0.15 cm^2/Vs。蛋白螢光方面,本研究利用蛋白作為摻混金奈米粒子之介質,大幅改善金奈米粒子容易聚集之缺點,並探討金奈米粒子與蛋白之交互作用關係;另外,分佈均勻之金奈米粒子受光激發後產生侷域性表面電漿共振,並增益蛋白之螢光特性,且調幅達到八倍。
英文摘要 This thesis aims to investigate the thermal treatment on the albumen dielectrics, and use of blending gold nanoparticles modulation of albumen fluorescence. On albumen field-effect transistors, the study of thermal treatment for the contribution of the electrical mechanism; The results showed that the denaturation of its attenuation electrical performance, a recession of more 30% than nature device characteristics due to thermal treatment will change the albumen dielectrics surface energy, thereby affecting the crystallization of pentacene; the papers also explore the chicken. duck albumen dielectrics differences, duck albumen devices of the electrical performance is far better than the chicken, not only the current nearly twice, but the carrier mobility increased to 0.15 cm^2/Vs. Aspects of albumen fluorescence, the use of albumen as a blending medium of gold nanoparticles significantly improve the aggregation of gold nanoparticles, and to explore the interactions between gold nanoparticles and albumen; In addition, the distribution uniformity of nanoparticles excited by photoluminescence to induce localized surface plasmon resonance, its gain the albumen fluorescence characteristics, and amplitude modulation to achieve an eight-fold.
論文目次 第一章、序論.....................................1
1-1 生物材料於電子元件之應用範疇...................1
1-2 生物介電層材料於有機場效電晶體之研究與發展.......6
1-3 研究動機與目的...............................9
1-3-1 研究動機..................................9
1-3-2 研究大綱.................................11
第二章、有機場效電晶體之特性與操作機制.............12
2-1 有機場效電晶體材料之探討.....................12
2-2 有機半導體之傳導機制........................18
2-2-1 半導體之能帶分析..........................18
2-2-2 半導體之導電機制..........................22
2-2-3 半導體之導電方式..........................24
2-3 有機場效電晶體之原理............................28
2-3-1 有機場效電晶體之元件結構與工作原理..........28
2-3-2 有機場效電晶體之元件特性...................33
2-4 有機場效電晶體之注入特性.........................36
2-5 結論..........................................39
第三章、雞、鴨蛋白之化學結構及生化特性探討.....................40
3-1 蛋白質之分子構型及氨基酸之探討...................40
3-2 蛋白凝集、凝聚與成膠之定義.......................44
3-3 蛋白質加熱變性之機制............................46
3-4 蛋白螢光之成因與機制............................48
3-5 結論..........................................50
第四章、蛋白場效電晶體之實驗設計與製程步驟.....................51
4-1 蛋白有機場效電晶體之結構.........................51
4-2 蛋白有機場效電晶體之製備流程.....................53
4-2-1 ITO玻璃基板之閘極製備方法.................53
4-2-2 蛋白介電層之製備方法......................57
4-2-3 有機半導體主動層之製備方法.................58
4-2-4 源極與汲極之電極製備方法...................60
4-2-5 電晶體之量測設備與方法....................62
4-3 結論..........................................69
第五章、熱處理對蛋白介電層影響之研究..........................70
5-1 蛋白有機場效電晶體之電性表現.....................70
5-1-2 熱處理對元件電性之影響....................72
5-2 熱處理對介電層表面能及表面形貌之影響..............76
5-3 熱處理與蛋白化學鍵結之關聯.......................79
5-4 介電層表面能對主動層之結晶及載子傳輸之影響.........81
5-4-1 主動層表面形貌之分析......................81
5-4-2 主動層之結晶對載子傳輸之影響與機制探討......83
5-5 雞、鴨蛋白元件之特性探討................................85
5-5-1 雞、鴨蛋白元件之電性比較...................85
5-5-2 雞、鴨蛋白分子振動之差異與探討.............88
5-6 貯存時間對元件特性之影響.........................90
5-7 結論..........................................93
第六章、Bioconjugated金奈米粒子之實驗設計與製程步驟...........95
6-1 Bioconjugated金奈米粒子薄膜之結構...............95
6-2 Bioconjugated金奈米粒子薄膜之製備流程............96
6-2-1 不同濃度金奈米粒子之製備方法...............96
6-2-2薄膜之製備方法............................97
6-2-3 薄膜之量測設備與方法.....................100
6-3 結論.........................................101
第七章、金奈米粒子於增益蛋白螢光之探討.......................102
7-1 前言.........................................102
7-2 探討金奈米粒子與蛋白之交互作用關係...............103
7-2-1 UV-Vis absorption之量測與分析...........103
7-2-2 金奈米粒子摻混於不同介質之分佈差異.........106
7-3 摻混金奈米粒子調變蛋白螢光之研究.................110
7-4 表面電漿共振影響蛋白螢光之機制探討...............112
7-5 雞、鴨蛋白摻混金奈米粒子之螢光特性差異...........116
7-5-1 光激發光之量測與分析.....................116
7-5-2 金奈米粒子之分佈差異.....................118
7-6 結論.........................................120
第八章、結論與未來展望.....................................121
8-1 實驗結論......................................121
8-2 未來展望......................................123
參考文獻 126
自 述 132
參考文獻 1.M. Irimia-Vladu, N. S. Sariciftci, and S. Bauer, “Exotic materials for bio-organic electronics,” J. Mater. Chem. 21, 1350-1361 (2011)
2.M. Irimia-Vladu, P. A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwoediauer, A. Mumyatov, M. Bodea, J. W. Fergus, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci, “Environmentally sustainable organic field effect transistors,” Organic Electronics 11, 1974-1990 (2010)
3.M. E. Roberts, M. C. LeMieux, A. N. Sokolov, and Z. Bao, “Self-Sorted Nanotube Networks on Polymer Dielectrics for Low-Voltage Thin-Film Transistors,” Nano Lett. 9, 7 (2009)
4.D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, and Z. Bao, “Stretchable Organic Solar Cells,” Adv. Mater. 23, 1771-1775 (2011)
5.D. J. Lipomi, M. Vosgueritchian, B. C.-K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox1, and Z. Bao, “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nature Nanotech. 6, 788–792 (2011)
6.B. Singh, N. S. Sariciftci, J. G. Grotea, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514 (2006)
7.C.-H. Wang, C.-Y. Hsieh, and J.-C. Hwang, “Flexible Organic Thin-Film Transistors with Silk Fibroin as the Gate Dielectric,” Adv. Mater. 23, 1630-1634 (2011)
8.J.-W. Chang, C.-G. Wang, C.-Y. Huang, T.-D. Tsai, T.-F. Guo, and T.-C. Wen, “Chicken Albumen Dielectrics in Organic Field-Effect Transistors,” Adv. Mater. 23, 4077-4081 (2011)
9.P. T. Herwig, and K. A. Mllen, “Soluble Pentacene Precursor: Synthesis, Solid-State Conversion into Pentacene and Application in a Field-Effect Transistor,” Adv. Mater. 11(6), 480-483 (1999)
10.J. Zaumseil, and H. Sirringhaus, “Electron and Ambipolar Transport in Organic Field-Effect Transistors,” Chem. Rev. 107(4), 1296-1323 (2007)
11.Tsumura, H. Koezuka, and T. Ando, “Macromolecular Electronic Device: Field-Effect Transistor with a Polythiophene Thin Film,” Appl. Phys. Lett. 49, 1210-1212 (1986)
12.H. Wang, J. Wang, X. Yan, J. Shi, H. Tian, Y. Geng, and D. Yan, “Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport,” Appl. Phys. Lett. 88, 133508 (2006)
13.G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of Semiconductor/Insulator Interface in the Characteristics of p-Conjugated-Oligomer-Based Thin-Film Transistors,” Synth. Met. 51, 419 (1992)
14.J. H. Schön, C. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field- effect transistors,” Organic Electronics 1, 57 (2000)
15.F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Serret, S. Ries, and P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers,” J. Am. Chem. Soc. 115, 8716 (1993)
16.H. E. Katz, and Z. Bao, “The Physical Chemistry of Organic Field-Effect Transistors,” J. Phys. Chem. B. 104, 671-678 (2000)
17.H. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siogrist, W. Li, Y.-Y. Lin, and A. Dodabalapur, “A soluble and air-stable organic semiconductor with high electron mobility,” Nature 404, 478 (2000)
18.R. Murphy, and J. M. Fréchet, “Organic semiconducting oli-gomers for use in thin film transistor,” J. Chem. Rev. 107, 1066-1096 (2007)
19.R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, and K. R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors,” Chem. Mater. 16, 4436-4451 (2004)
20.W. Brutting, “Physics of Organic Semiconductors,” Wiley-VCH: Weinheim (2005)
21.C. R. Kagan, and P. Andry, “Thin-Film Transistor,” 1st ed. New York: Marcel Dekker (2003)
22.H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices based on Conjugated Polymers,” Science 280, 1741-1744 (1998)
23.R. D. McCullough, “The Chemistry of Conducting Polythiophenes,” Adv. Mater. 10(2), 93-116 (1998)
24.R. Tecklenburg, G. Paasch, and S. Scheinert, “Theory of Organic Field Effect Transistors,” Adv. Mater. Opt. Electron. 8, 285-294 (1998)
25.Y. Sun, Y. Liu, and D. Zhu, “Advances in organic field-effect transistors ,” J. Mater. Chem. 15, 53 (2005)
26.G. Horowitz, “Organic Field-Effect Transistors,” Adv. Mater. 10(5), 365-377 (1998)
27.S. M. Sze, “Semiconductor Devices: Physics and Technology,” 2nd ed. Singapore: Wiley (1981)
28.M. Pope, and C. E. Sewnberg, “Electronic Processes in Organic Crystals and polymers,” 2nd ed. Oxford: Oxford University Press (1999)
29.Y. Wu, Y. Li, S. Gardner, and B. S. Ong, “Indolo[3,2-b]carbazole-Based Thin-Film Transistors with High Mobility and Stability,” J. Am. Chem. Soc. 127, 614-618 (2005)
30.A. Kraft, “Organic Field-Effect Transistors–The Breakthrough at Last,” Chem. Phys. Chem. 2, 163-165 (2001)
31.D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Adv. Mater. 14(2), 99-117 (2002)
32.J. Veres, S. Ogier, G. Lloyd, and D. de Leeuw, “Gate Insulators in Organic Field-Effect Transistors,” Chem. Mater. 16, 4543-4555 (2004)
33.Z. Bao, and J. L. Bredas, “Organic Field-Effect Transistors,” 1st ed. Boca Raton, FL: CRC (2007)
34.H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, and M. P. Scott, “Molecular cell biology,” 5th ed. W. H. Freeman and Company (2004)
35.T. E. Creighton, “Protein: Structures and molecular proteins,” 2nd ed. W. H. Freeman and Company (2003)
36.C. Branden, and J. Tooze, “Introduction to Protein Structure,” 2nd ed. Graland (1999)
37.G. Georgiou, and E. D. Bernardez-Clerk, “Protein Refolding,” Am. Chem. Soc 6, 1-49 (1991)
38.R. Hardison, “Hemoglobine from bacteria to man: Evolution of different patterns of gene expression,” J. Exp. Biol. 201, 1099 (1998)
39.A. H. Clark, “Structural and mechanical properties of biopolymer gels. In Food Polymers, Gels, and Colloids,” The Royal Society of Chemistry, 323-328 (1991)
40.Y. Hsieh, and J. M. Regenstein, “ Texture changes on heating spray-dried egg white,” J. Food Sci. 54, 1206-1208 (1989)
41.Y. Mine, T. Noutomi, and N. Haga, “ Thermally induced changes in egg white proteins,” J. Agric. Food Chem. 38, 2122-2125 (1990)
42.M. Hermansson, “Aggergation and denaturation involved in gel formation. In Functionality and Protein Structure,” Am. Chem. Soc. 92, 81 (1979)
43.H. Hatta, N. Kitabatake, and E. Doi, “Turbidity and hardness of a heat-induced gel of hen egg ovalbumin,” Agric. Biol. Chem. 50, 2083-2087 (1986)
44.N. Kitabatake, A. Shimizu, and E. Doi, “Comparison of transparent gels with turbid gels prepared from egg white:creep analysis of gels,” J. Food Sci. 54, 1209-1212 (1989)
45.J. C. Cheftel, J. L. Cuq, and D. Lorient, “Amino acids, peptides and proteins in Food Chemistry.,” Mol. Biol. 1, 290-294 (1985)
46.M. Hermansson, “Physico-chemical aspects of soy proteins structure formation,” J. Texture Stud. 9, 33-58 (1987)
47.Y. Mine, “Egg Bioscience and Biotechnology,” 1st ed. New Jersey: Wiley-interscience (2008)
48.K. K. Turoverov, S. Yu, and G. P. Pinaev, “In Methods Of Biochemical Analysis,” Febs Lett. 62, 4-7 (1976)
49.G. Hild, M. Nyitrai, R. Gharavi, B. Somogyi, and J. Belagyi, “Fluorescence quenching of the tryptophan emission from the F- and G- forms of actin,” Journal of Photochemistry and Photobiology B: Biology 35,175-179 (1996)
50.M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors,” Appl. Phys. Lett. 81(2), 268-270 (2002)
51.L. Wang, W.-J. Zhao, and W.-H. Tan, “Bioconjugated Silica Nanoparticles: Development and Applications,” Nano Res 1, 99-115 (2008)
52.J.-W. Liaw, J.-H. Chen, and C.-S. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quantitative Spectroscopy & Radiative Transfer 111, 454-465 (2010)
53.陳奕璁, “影像式橢圓偏光術在表面電漿共振生物感測器之研究,” 國立聯合大學光電工程學系專題報告書 (2010)
54.M. Irimia-Vladu, E. D. Głowacki, P. A. Troshin, G. Schwabegger, L. Leonat, D. K. Susarova, O. Krystal, M. Ullah, Y. Kanbur, M. A. Bodea, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci, “Indigo - A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits,” Adv. Mater. 24, 375–380 (2012)
55.Y.-C. Hung, W.-T. Hsu, T.-Y. Lin, and L. Fruk, “Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite,” Appl. Phys. Lett. 99, 253301 (2011)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw