進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2307201209322900
論文名稱(中文) 離子佈植技術應用於氮化鎵系列發光二極體
論文名稱(英文) Ion Implantation Technology Applied to GaN-based Light Emitting Diodes
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 杜尚儒
研究生(英文) Shang-Ju Tu
學號 l78971097
學位類別 博士
語文別 英文
論文頁數 143頁
口試委員 指導教授-許進恭
共同指導教授-李明倫
召集委員-張守進
口試委員-賴韋志
口試委員-許世昌
口試委員-許晉瑋
口試委員-張允崇
中文關鍵字 離子佈植  氮化鎵  發光二極體 
英文關鍵字 ion implantion  GaN  LED 
學科別分類
中文摘要 本研究主要藉由離子佈植方式,改變佈植區材料表面晶格常數,並搭配後續氮化鎵選擇性成長來提升發光二極體光取出效率。研究前半段討論選擇性佈植於氮化鎵基板(template),經由離子轟擊表面使其晶格散亂,使後續高溫氮化鎵優先再成長於非佈植區,可形成一選擇性成長現象;並針對不同磊晶條件技術,分別埋入具有倒置六方錐形氮化鋁鎵層或空氣孔隙於氮化鎵磊晶層內部,藉由折射率差異使光子在底部氮化鎵行進時,在此散射中心的介面改變行徑路徑,進而有效改善全反射角的限制。相對於傳統發光二極體結構而言,在20毫安培電流輸入條件下,底部具有六方錐形氮化鋁鎵層可增加出光效率約10%;若是底部具有空氣孔隙則可增加約36%之多,並搭配模擬軟體來證實可由散射中心結構設計來提升出光效率。

研究後半段討論選擇性佈植於藍寶石基板搭配後續氮化鎵成長,首先探討使用低溫氮化鎵(LT-GaN)來當作成核層,因其非晶特性,可成長於有/無佈植區,接著升溫再結晶階段也因佈植區與非佈植區皆存在成核點,提供後續高溫氮化鎵成長於此兩區機會,使氮化鎵側向成長過程不易形成週期性空氣孔隙。若以高溫氮化鋁(HT-AlN)當成核層,因其晶體具有結晶性,則優先成長於藍寶石基板非佈植區,搭配後續側向成長即可在佈植區上方形成空氣孔隙。相對於傳統無空氣孔隙發光二極體而言,此空氣孔隙具有提升15%的出光效率。然而,使用高溫氮化鋁成核層後續成長氮化鎵薄膜,因其磊晶條件參數控制極窄,導致較大的漏電與不穩定的材料品質。最後,將使用選擇性佈植技術應用於在具有濺鍍氮化鋁(sputtered-AlN)之藍寶石基板,使後續高溫氮化鎵優先成長於非佈植區,搭配後續側向成長,可形成空氣孔隙於佈植區為氮化鋁上方。在20毫安培電流輸入條件下,具有空氣孔隙結構可提升26%的出光效率。

除此之外,利用選擇性成長形成出具有平台六方錐形氮化鎵幾何外觀,並將多重量子井成長於此以形成多重波段之發光二極體。此發光二極體包含紅、綠、藍等波段,並證實紅光波段來自於氮化銦鎵量子點發光所致。
英文摘要 In this dissertation, we have demonstrated that ion implantation technologies can be applied to the GaN-based LEDs. The aim of this study is to increase LED light extraction efficiency by selectively implanted substrate. Ion implantation cause lattice disorder, thus, GaN has different growth rate at two different regions. Finally, a selective area growth (SAG) phenomenon can be created.
In the first phase of this dissertation, ions were implanted on a selective area of a GaN template. When GaN is regrown, they initially form a V-shape, and inverted Al0.27Ga0.83N pyramidal shells were embedded to create index steps within a GaN layer. An increased angular randomization of photons is emitted from the active layer of the LED. Under a 20 mA current injection, the output power was enhanced by 10% then conventional LED was formed. In addition, this dissertation modified GaN growth conditions to form air gaps above the implanted regions, which can achieve the scattering of photons around the embedded GaN/air interfaces. With a 20 mA current injection, the output power was enhanced by 36%, and then conventional LED was formed. The increased photons escape probability was evidenced by the Tracepro simulation program.
Implantation techniques applied to sapphire substrate is the secondary focus of this dissertation. No matter whether implanted or not, a low temperature GaN (LT-GaN) nucleation layer can be deposited, and random nucleation existed during the recrystallization step. The nuclei provided a chance to follow GaN molecule adhesive; therefore, periodic air gaps were not formed using LT-GaN as the nucleation layer. In view of this, a high temperature AlN (HT-AlN) nucleation layer with crystallization is suitable for selectively implanted sapphire. After GaN growth, periodic air gaps were formed on the implanted sapphire under 15%output power enhancement, as compared with the conventional LED. However, high quality AlN is very difficult to grow due to a narrow growth window. The greater leakage current and broad FWHM of XRD revealed poor GaN quality influenced by a non-optimal HT-AlN nucleation layer. Finally, selective implantation was applied on a sputtered AlN nucleation layer, which successfully formed air gaps above the implanted regions. With a 20 mA current injection, the output power was enhanced by 26% more than conventional LED.
Moreover, selective area growth was carried out on the three dimensional GaN shapes. InGaN multi quantum well (MQW), grown on a truncated pyramid microstructure, can achieve multiple wavelength LEDs. The LED colors include green, blue, and red corresponding emissions from the mesa/valley plan, inclined plane, and mesa edge regions, respectively. Furthermore, this dissertation clarifies that the red emission was from InGaN quantum dots.
論文目次 摘要.......I
Abstract.......III
致謝.......V
Contents.......VI
Figure captions.......VIII
CHAPTER 1 Introduction.......1
1-1 Background of III-nitride semiconductors.......1
1.2 Improvement of light extraction efficiency of GaN-based LEDs.......5
Reference in Chapter 1.......7
Chapter 2 Metal Organic Vapor Phase Epitaxy system.......14
2.1 Introduction.......14
2.2 MOVPE System.......16
2.3 In-situ Monitoring of Growth Technology.......18
References in Chapter 2.......21
Chapter 3 Properties of Ion-implanted on GaN template.......22
3-1 Introduction of Ion implantation.......22
Reference in Chapter 3.......37
Chapter 4 Application of GaN-based LEDs grow on selectively implanted GaN template.......40
4.1 Enhancement of LED output power with embedded AlGaN pyramid shells.......40
4.2 Enhancement of LED output power with embedded air gaps.......53
4.3 Multiple wavelength LEDs achieved by MQW growth on truncated hexagonal pyramid GaN template.......65
Reference in Chapter 4.......77
Chapter 5 Application of GaN-based LEDs grow on implanted sapphire.......84
5.1 Study of selectively implanted sapphire surface.......84
5.2 Characterization of GaN-based LED on selectively implanted sapphire substrate using low temperature GaN nucleation layer.......90
5.3 Characterization of GaN-based LED on selectively implanted sapphire substrate using high temperature AlN nucleation layer.......103
5.4 Characterization of GaN-based LED on selectively implanted sapphire substrate using Sputtered AlN nucleation layer.......117
5.5 Characterization of GaN-based LED on implanted sapphire substrate using low temperature GaN nucleation layer.....126
References in Chapter 5.......133
Chapter 6 Conclusions.......137
Chapter 7 Future works.......139
Publication List.......140

參考文獻 Chapter 1
1. S. Guha, J. M. Depuydt, M.A. Haase, J. Qiu, and H. Cheng, "Degradation of II‐VI based blue‐green light emitters", Appl. Phys. Lett., vol. 63, pp. 3107, 1993.
2. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, "Unusual properties of the fundamental band gap of InN", Appl. Phys. Lett., vol. 80, no. 21, pp. 3967, 2002.
3. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, Hai Lu, and William J. Schaff, "Small band gap bowing in In1-xGaxN alloys", Appl. Phys. Lett., vol. 80, pp. 4741, 2002.
4. W. C Johnson, J. B. Parsons, and M. C. Crew, "Nitrogen Compounds of Gallium. III", J. Phys. Chem., vol. 234, pp. 2651, 1932.
5. R. Juza and H. Hahn, "Über die Kristallstrukturen von Cu3N, GaN und InN Metallamide und Metallnitride", Zeitschr. Anorgan. Allgem. Chem., vol. 234, pp. 282, 1938.
6. H. Grimmeiss and H. Koelmans, Z. Naturfg. 14a, pp. 264, 1959.
7. H. P. Maruska and J. J. Tietjen, "The Preparation and properties of vapor-deposited single crystal line GaN", Appl. Phys. Lett., vol. 15, pp. 327, 1969.
8. J. I. Pankove, S. Bloom, and G. Harbeke, "Optical properties of GaN", RCA Rev., vol. 36, pp. 163, 1975.
9. W. Seifert, R. Franzheld, E. Butter, H. Sobotta, and V. Riede, "On the origin of free carriers in high-conducting n-GaN", Crystal Res. Technol., vol. 18, pp. 383, 1983.
10. H. Manasevi, F. M. Erdmann, and W. I. Simpson, "The Use of Metalorganics in the Preparation of Semiconductor Materials", J. Electrochem. Soc., vol. 118, pp. 1864, 1971.
11. J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, "GaN blue light-emitting diodes", J. Luminescence, vol. 5, pp. 84, 1972.
12. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer", Appl. Phys. Lett., vol. 48, pp. 353, 1986.
13. S. Nakamura, "GaN Growth Using GaN Buffer Layer", Jpn. J. Appl. Phys., vol. 30, pp. L1705, 1991.
14. D. Wickenden, T. Kistenmacher, W. Bryden, J. Morgan, and A. Estes Wickenden, "Heteroepitaxy of Dissimilar Materials Symposium", pp.167, 1991.
15. H. Amano, I. Akasaki, T. Kozowa, K. Hiramatsu, N. Sawak, K. Ikeda, and Y. Ishii, "Electron beam effects on blue luminescence of zinc-doped GaN", J. Luminescence, vol. 40, pp. 121, 1988.
16. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation", Jpn. J. Appl. Phys., vol. 28, pp. L2112, 1989.
17. I. Akasaki, H. Amano, M. Kito, K. Hiramatsu, "Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED", J. Luminescence, vol. 48, pp. 666, 1990.
18. S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, "Hole Compensation Mechanism of P-Type GaN Films", Jpn. J. Appl. Phys., vol. 31, pp. 1258, 1992.
19. S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes", Appl. Phys. Lett., vol. 64, pp. 1687, 1994.
20. P. Kung, A. Saxler, X. Zhang, D. Walker, T. C. Wang, I. Ferguson, and M. Razeghi, "High quality AIN and GaN epilayers grown on (00.1) sapphire, (100) and (111) silicon substrates", Appl. Phys. Lett., vol. 66, pp. 2958, 1995.
21. E. S. Hellman, Z. L. Weber, and D. Buchanan, "Epitaxial growth and orientation of GaN on (100) gamma-LiAlO2", MRS Internet J. Nitride Semicond. Res., vol. 2, pp. 30, 1997.
22. X. Ke, X. Jun, D. Peizhen, Z. Yongzong, Z. Guoqing, Q. Rongsheng, and F. Zujie, "LiAlO2 single crystal: a novel substrate for GaN epitaxy", J. Cryst. Growth, vol.193, pp. 127, 1998.
23. P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, and M. Razaghi, "Metalorganic chemical vapor deposition of monocrystalline GaN thin films on β-LiGaO2 substrates", Appl. Phys. Lett., vol. 69, pp. 6116, 1996.
24. F. Hamdani, A. Botchkarev, W. Kim, H. Morkoc, M. Yeadon, J. M. Gibson, S.-C. Y. Tsen, David J. Smith, D. C. Reynolds, D. C. Look, K. Evans, C. W. Litton, W. C. Mitchel, and P. Hemenger, "Optical properties of GaN grown on ZnO by reactive molecular beam epitaxy", Appl. Phys. Lett., vol. 70, pp. 467, 1997.
25. X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc﹐B. Nemeth, J. Nause, "GaN epitaxy on thermally treated c-plane bulk ZnO substrates with O and Zn faces", Appl. Phys. Lett., vol. 84, pp. 2268, 2004.
26. B. Gil, "Group III nitride Semiconductor Compounds", Clarendon Press, Oxford, pp. 33, 1998.
27. T. Wang, D. Nakagawa, M. Lachab, T. Sugahara, and S. Sakai, "Optical investigation of InGaN/GaN multiple quantum wells", Appl. Phys. Lett., vol. 74, pp. 3128, 1999.
28. Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yanga, C. C. Chou, C. M. Lee, and J. I. Chyi, "Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells", Appl. Phys. Lett., vol. 77, pp. 2988, 2000.
29. P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allegre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean and J. Massies, "High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy", Appl. Phys. Lett., vol. 78, pp. 1252, 2001.
30. J. C. Harris, H. Brisset, Takao Someya, and Yasuhiko Arakawa, "Growth Condition Dependence of the Photoluminescence Properties of InxGa1-xN/InyGa1-yN Multiple Quantum Wells Grown by MOCVD", Jpn. J. Appl. Phys., vol. 38, pp. 2613, 1999.
31. S. Keller, B. P. Keller, D. Kapolnek, U. K. Mishra, S. P. DenBaars, I. K. Shmagin, R. M. Kolbas, and S. Krishnankutty, "Growth of bulk InGaN films and quantum wells by atmospheric pressure metalorganic chemical vapour deposition", J. Crystal Growth, vol. 170, pp. 349, 1997.
32. E. L. Piner, M. K. Behbehani, N. A. Ei-Masry, F. G. McIntosh, J. C. Roberts, K. S.Boutros, and S. M. Bedair, "Effect of hydrogen on the indium incorporation in InGaN epitaxial films", Appl. Phys. Lett., vol. 70, pp. 461, 1997.
33. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal Annealing Effects on P-Type Mg-Doped GaN Films", Jpn. J. Appl. Phys., vol. 31, pp. L139, 1991.
34. T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, "p-type conduction in Mg-doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy", Appl. Phys. Lett., vol. 65, pp. 593, 1994.
35. W. Gotz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, "Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition", Appl. Phys. Lett., vol. 68, pp. 667, 1996.
36. L. C. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, "Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films", J. Appl. Phys., vol. 86, pp. 4491, 1999.
37. J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, "High-transparency Ni/Au ohmic contact to p-type GaN", Appl. Phys. Lett., vol. 74, pp. 2340, 1999.
38. J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, "Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy", Appl. Phys. Lett., vol. 74, pp. 2289, 2001.
39. J. S. Jang, S. J. Park, and T. Y. Seong, "Formation of low resistance Pt ohmic contacts to p-type GaN using two-step surface treatment", J. Vac. Sci. Technol. B, vol. 17, pp. 2667, 1999.
40. J. O. Song, J. S. Kwak, and Y. Park, "Ohmic and degradation mechanisms of Ag contacts on p-type GaN", Appl. Phys. Lett., vol. 86, pp. 062104, 2005.
41. J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, "Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment", Appl. Phys. Lett., vol. 73, pp. 2953, 1998.
42. D. J. King, L. Zhang, J. C. Ramer, S. D. Hersee, and L. F. Lester, "Temperature Behavior of Pt/Au Ohmic Contacts to p-GaN", Mater. Res. Soc. Symp. Proc., vol. 468, pp. 421, 1997.
43. H. W. Jang and J. L. Lee, "Mechanism for ohmic contact formation of Ni-Ag contacts on p-type GaN", Appl. Phys. Lett., vol. 85, pp. 5920, 2004.
44. M. Suzuki, T. Kawakami, T. Arai, S. Kobayashi, Y. Koide, T. Uemura, N. Shibata, and M. Murakami, "Low-resistance Ta/Ti Ohmic contacts for p-type GaN", Appl. Phys. Lett., vol. 74, pp. 275, 1999.
45. J. S. Jang, I. S. Chang, H. K Kim, T. Y. Seong, S. Lee, and S. J. Park, "Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN", Appl. Phys. Lett., vol. 74, pp. 70, 1999.
46. L. Zhou, W. Lanford, A. T. Ping, I. Adesida, J. W. Yang and A. Khan, "Low resistance Ti/Pt/Au ohmic contacts to p-type GaN", Appl. Phys. Lett., vol. 76, pp. 3451, 2000.
47. V. Adivarahan, A. Lunev, M. A. Khan, J. Yang, G. Simin, M. S. Shur and R. Gaska, "Very-low-specific-resistance Pd/Ag/Au/Ti/Au alloyed ohmic contact to p-GaN for high-current devices", Appl. Phys. Lett., vol. 78, pp. 2781, 2001.
48. S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and, J. T. Hsu, "Characteristics of p-type Contact on GaN-Based Light Emitting Devices" IEEE Photonics Techno. Lett., vol. 15, pp. 646, 2003.
49. D. S. Leem, T. Lee, and T. Y. Seong, "Enhancement of the light output of GaN-based light-emitting diodes with surface-patterned ITO electrodes by maskless wet-etching", Solid-State Electron. vol. 51, pp. 793, 2007.
50. S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei and J. K. Sheu, "Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography", Appl. Phys. Lett., vol. 91, pp. 013504, 2007.
51. J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei and W. C. Lai, "InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface", Appl. Phys. Lett., vol. 88, pp.113505, 2006.
52. C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo and Y. K. Su, "High Efficiency and Improved ESD Characteristics of GaN-based LEDs with Naturally Textured Surface Grown by MOCVD", IEEE Photonics Technol. Lett., vol. 18, pp. 1213, 2006.
53. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, T. Taguchi, "High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy", Phys. Status. Solidi. (a), vol. 188, pp. 121, 2001.
54. D. S. Wuu, W. K. Wang , W. C. Shih, R. H. Horng, C.E. Lee, W. Y. Lin, J. S. Fang, "Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates", IEEE Photonics Technol. Lett., vol. 17, pp.288, 2005
55. Lee, Y. J. Hwang, J. M. Hsu, T. C. Hsieh, M. H. Jou, M. J. Lee, B. J. Lu, T. C. Kuo, H. C. Wang, S.C. ",Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates", IEEE Photonics Technol. Lett., vol. 18, pp.1152, 2006.


Chapter 2
1. I. Akasaki, H. Amano, K. Iitoh, H. Sakai, T. Tanaka, and K. Manaba, Inst. Phys. Conf. Ser., vol. 129, pp. 851, 1992
2. S. Nakamura, T. Mukai, and M. Senoh, "Candelaclass highbrightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes", Appl. Phys. Lett., vol. 64, pp. 1687, 1994.
3. S. P. DenBaar, B. Y. Maa, P. D. Dapkus, and H. C. Lee, "Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD", J. Cryst. Growth, vol. 77, pp. 188, 1986.
4. G. B. Stringfellow, "Organometallic Vapor-Phase Epitaxy: Theory, and Practice", Academic Press, Inc., San Diego, 1989.
5. S. Nakamura, Y. Harada, and M. Seno, "Novel metalorganic chemical vapor deposition system for GaN growth", Appl. Phys. Lett., vol, 58, pp. 2021, 1991.
6. S. Nakamura, "Analysis of Real-Time Monitoring Using Interference Effects", Jpn. J. Appl. Phys., vol. 30, pp. 1348, 1991.
7. H. Amano, I. Akasak, K. Hiramatsu, and N. Koide, "Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate", Thin Solid Film, vol. 163, pp. 415, 1988.


Chapter 3
1. S. M. Sze, "Semiconductor Devices Physics and Technology", Ch. 10, Fig 19.
2. http://www.srim.org/SRIM/SRIMINTRO.htm
3. J. I. Pankove and J. A. Hutchby, "Photoluminescence of ionimplanted GaN" J. Appl. Phys., vol. 47, pp. 5387, 1976.
4. S.J. Pearton, C. R. Abernathy, C. B. Vartuli, J. C. Zolper, C. Yuan and R. A. Stall, "Ion implantation doping and isolation of GaN", Appl. Phys. Lett., vol.67, pp.1435, 1995.
5. S.J. Pearton, C.R. Abernathy, P.W. Wisk, W.S. Hobson and F. Ren, "Reversible changes in doping of InGaAlN alloys induced by ion implantation or hydrogenation", Appl. Phys. Lett., vol. 63, pp. 1143, 1993.
6. C.B. Vartuli, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie and J. C. Zolper, "Implant isolation of InxAl1-xN and InxGa1-xN", J. Vac. Sci. Tech. B, vol. 13, pp. 2293, 1995.
7. J. C. Zolper, M. H. Crawford, A. J. Howard, J. Ramer, and S. D. Hersee", Morphology and photoluminescence improvements from high temperature rapid thermal annealing of GaN", Appl. Phys. Lett., vol. 68, pp. 200, 1996.
8. J. C. Zolper, R. J. Shul, A. G. Baca, R. G. Wilson, S. J. Pearton et al., "Ion implanted GaN junction field effect transistor", Appl. Phys. Lett., vol. 68, pp. 2273, 1996.
9. H. Yu, L. McCarthy, S. Rajan, S. Keller, S. Denbaars, J. Speck, and U. Mishra, "Ion Implanted AlGaN–GaN HEMTs With Nonalloyed Ohmic Contacts", IEEE Electron Dev. Lett., vol. 26, pp. 283, 2005.
10. M. C. Chen, J. K. Sheu, M. L. Lee, C. J. Tun, and G. C. Chi, "Improved performance of planar GaN-based p-i-n photodetectors with Mg implanted isolation ring", Appl. Phys. Lett., vol. 89, pp.183509, 2006.
11. D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, "Anisotropic epitaxial lateral growth in GaN selective area epitaxy", Appl. Phys. Lett. vol. 71, pp. 1204, 1997.
12. O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, "Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy", Appl. Phys. Lett. vol. 71, pp. 2638, 1997.
13. H. Marchand, X. H. Wu, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, "Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition", Appl. Phys. Lett. vol. 73, pp.747, 1998.
14. A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, "Thick GaN epitaxial growth with low dislocation density by Hydride Vapor Phace Epitaxy", Jpn. J. Appl. Phys., vol.36, pp. L899, 1997.
15. A. Sakai, H. Sunakawa, and A. Usui, "Defect structure in selectively grown GaN films with low threading dislocation density", Appl. Phys. Lett., vol. 71, pp. 2259, 1997.
16. S. Nakamura et al.",High-power, long-Life time InGaN/GaN/AlGaN-based laser diode grown on pure GaN substrates", Jpn. J. Appl. Phys., vol.37, pp. L309, 1998.
17. Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, "Selective growth of wurtzite GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy", J. Cryst. Growth, vol. 144, pp. 133, 1994.
18. S. Tomiya, K. Funato, T. Asatsuma, T. Hino, S. Kijima, T. Asano, and M. Ikeda, "Dependence of crystallographic tilt and defect distribution on mask material in epitaxial lateral overgrown GaN layers", Appl. Phys. Lett. vol. 77, pp. 636, 2000.
19. C. Liu, B. Mensching, K. Volz, and B. Rauschenbach, "Lattice expansion of Ca and Ar ion implanted GaN", Appl. Phys. Lett. vol. 71, pp. 2313, 1997.
20. J. K. Sheu, M. L. Lee , C. J. Tun, C. J. Kao, L. S. Yeh, C. C. Lee, S. J. Chang and G. C. Chi ",Characterization of Si implants in p-type GaN", IEEE J. Sel. top. Quant. vol.8, pp. 767, 2002.
21. Y. Gao, J. Xue, D. Zhang, Z. Wang, C. Lan, S. Yan, Y. Wang, F. X. B. Shen, and Y. Zhang, "Damage evolution in GaN under MeV heavy ion implantation", J. Vac. Sci. Technol. B, vol. 27, pp. 2342, 2009.
22. Akira Sakai, Haruo Sunakawa, and Akira Usui, "Transmission electron microscopy of defects in GaN films formed by epitaxial lateral overgrowth", Appl. Phys. Lett. vol. 73, pp. 481, 1998.
23. V. Potin, P. Ruterana, and G. Nouet, "HREM study of stacking faults in GaN layers grown over sapphire substrate", J. Phys. Condens. Matter., vol. 12, pp. 10301, 2000.
H. K. Cho, J. Y. Lee, K. S. Kim, G. M. Yang, J. H. Song, "Effect of buffer layers and stacking faults on the reduction of threading dislocation density in GaN overlayers grown by metalorganic chemical vapor deposition", J. Appl. Phys., vol. 89, pp.2617, 2001.


Chapter 4
1. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006), pp. 150.
2. R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, F. Ren, J. C. Zolper, and L. F. Lester, "High density plasma-induced etch damage in GaN", Mater. Res. Soc. Symp. Proc. vol. 573, pp. 271, 1999.
3. X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shul, L. Zhang, R. Hickman, and J. M. Van Hove, "Electrical effects of plasma damage in p-GaN", Appl. Phys. Lett. vol. 75, pp.2569, 1999.
4. C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo, and Y. K. Su, "High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD", IEEE Photon. Technol. Lett. vol. 18, pp.1213, 2006.
5. J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, "InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface", Appl. Phys. Lett. vol. 88, pp.113505, 2006.
6. D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, "Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates", IEEE Photon. Technol. Lett. vol. 17, pp. 288, 2005.
7. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, "Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes", J. Electrochem. Soc. vol. 153, pp. G765, 2006.
8. H. C. Lin, R. S. Lin, J.-I. Chyi, and C. M. Lee, "Light output enhancement of InGaN light- emitting diodes grown on masklessly etched sapphire substrates", IEEE Photon. Technol. Lett., vol. 20, pp.1621, 2008.
9. J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, "Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer", IEEE Electron Device Lett., vol. 22, pp.460, 2001.
10. C. M. Tsai, J. K. Sheu, W. C. Lai, M. L. Lee, S. J. Chang, C. S. Chang, T. K. Ko, and C. F. Shen, "GaN-based LEDs output power improved by textured GaN/sapphire interface using in situ SiH4 treatment process during epitaxial growth", IEEE J. Sel. Top. Quantum Electron. vol. 15, pp.1275, 2009.
11. C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, and E. R. Weber, " Strain-related phenomena in GaN thin films", Phys. Rev. B, vol.54, pp.17745, 1996.
12. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E.Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, " Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures", Appl. Phys. Lett., vol. 73, pp. 2006, 1998.
13. P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi", Determination of photoluminescence mechanism in InGaN quantum wells", Appl. Phys. Lett., vol. 75, pp. 2241, 1999.
14. E. Berkowicz, D. Gershoni, G. Bahir, E. Lakin, D. Shilo, E. Zolotoyabko,A. C. Abare, S. P. Denbaars, and L. A. Coldren, " Measured and calculated radiative lifetime and optical absorption of InxGa1-xN/GaN quantum structures", Phys. Rev. B, vol. 61, pp.10994, 2000.
15. S. Nakamura",The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes", Science, vol.281, pp.956, 1998.
16. J. Xu, M. F. Schubert, D. Zhu, J. Cho, E. F. Schubert, H. Shim, and C. Sone, , "Effects of polarization-field tuning in GaInN light-emitting diodes", Appl. Phys. Lett., vol. 99, pp. 041105, 2011.
17. P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J. P. Ibbetson, S. P. DenBaars, U. K.Mishra, and J. S. Speck, "High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers", Appl. Phys. Lett. vol.75, pp. 1706, 1999.
18. I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, "Air-bridged lateral epitaxial overgrowth of GaN thin films", Appl. Phys. Lett. vol 76, pp. 3768, 1999.
19. K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, "Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides: Effects of Reactor Pressure in MOVPE Growth", phys. stat. sol., vol. 176, pp.535 ,1999.
20. F. Bertram, T. Riemann, J. Christen, A. Kaschner, A. Hoffmann, C. Thomsen, K. Hiramatsu, T. Shibata and N. Sawaki, "Strain relaxation and strong impurity incorporation in epitaxial laterally overgrown GaN: Direct imaging of different growth domains by cathodoluminescence microscopy and micro-Raman spectroscopy", Appl. Phys. Lett., vol. 74, pp. 359, 1999.
21. K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika and T. Maeda, "Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth", J. Cryst. Growth., vol. 221, pp. 316, 2000.
22. J. K. Sheu, M. L. Lee, and W. C. Lai ", Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes", Appl. Phys. Lett., vol. 86, pp. 052103, 2005
23. S. Nakamura, "The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes", Science, vol. 281, pp. 956, 1998.
24. S. F. Chichibu et al."Origin of defect-insensitive emission probability in In-containing AlInGaN alloy semiconductors", Nature Materials, vol. 5, pp. 810, 2006.
25. C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo and Y. K. Su, "High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD", IEEE. Photon. Technol. Lett., vol. 18, pp. 1213, 2006
26. C. H. Jang, J. K. Sheu, C. M. Tsai, S. C. Shei, W. C. Lai and S. J. Chang, "Effect of Thickness of the p-AlGaN Electron Blocking Layer on the Improvement of ESD Characteristics in GaN-Based LEDs", IEEE Photon. Technol. Lett., vol. 20, pp. 1142, 2008.
27. S. Porowski, " Bulk and homoepitaxial GaN-growth and characterisation ", J. Cryst. Growth, vol.189-190, pp.153, 1998.
28. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, .M. Reiche, and K. H. Ploog", Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes" Nature, vol. 406, pp. 865, 2000.
29. T. Takeuchi, H. Amano, and I. Akasaki, "Theoretical Study of Orientation Dependence of Piezoelectric Effects in Wurtzite Strained GaInN/GaN Heterostructures and Quantum Wells", Jpn. J. Appl. Phys., vol. 39, pp. 413, 2000.
30. Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, " Selective growth of wurtzite GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy", J. Cryst. Growth, vol. 144, pp.133, 1994.
31. H. Fang, Z. J. Yang, Y. Wang, T. Dai, L. W. Sang, L. B. Zhao, T. J. Yu, and G. Y. Zhang, " Analysis of mass transport mechanism in InGaN epitaxy on ridge shaped selective area growth GaN by metal organic chemical vapor deposition", J. Appl. Phys. vol. 103, pp. 014908, 2008.
32. D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood, P. Kozodoy, S. P. DenBaars, and U. K. Mishra" Anisotropic epitaxial lateral growth in GaN selective area epitaxy ", Appl. Phys. Lett., vol. 71, pp. 1204, 1997.
33. J. Park, P. A. Grudowski, C. J. Eiting, and R. D. Dupuis, Appl. Phys. Lett., "Selective-area and lateral epitaxial overgrowth of III–N materials by metal organic chemical vapor deposition" vol. 73, pp. 333, 1998.
34. M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, Appl. Phys. Lett., "Threading dislocation reduction via laterally overgrown nonpolar (11-20) a-plane GaN ", vol.81, pp.1201, 2002.
35. J. E. Greenspan, C. Blaauw, B. Emmerstorfer, R. W. Glew, and I. Shih", Analysis of a time-dependent supply mechanism in selective area growth by MOCVD ", J. Cryst. Growth, vol. 248, pp.405, 2003.
36. Y. Tomita, T. Shioda, M. Sugiyama, Y. Shimogaki, and Y. Nakano, " Selective area metal-organic vapor-phase epitaxy of InN, GaN and InGaN covering whole composition range ", J. Cryst. Growth, vol. 311, pp.2813, 2009.
37. D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood, P. Kozodoy, S. P. DenBaars, and U. K. Mishra", Anisotropic epitaxial lateral growth in GaN selective area epitaxy " Appl. Phys. Lett., vol. 71, pp. 1204, 1997.
38. W. H. Goh, G. Patriarche, P. L. Bonanno, S. Gautier, T. Moudakir, M. Abid, G. Orsal, A. A. Sirenko, Z. H. Cai, A. Martinez, A. Ramdane, L. L. Gratiet, D. Troadec, A. Soltani, and A. Ougazzaden, "Structural and optical properties of nanodots, nanowires, and multi-quantum wells of III-nitride grown by MOVPE nano-selective area growth "J. Cryst. Growth, vol. 315, pp. 160, 2011.
39. C. Liu, A. Satka, L. K. Jagadamma, P. R. Edwards, D. Allsopp, R. W. Martin, P. Shields, J. Kovac, F. Uherek, and W. Wang", Light Emission from InGaN Quantum Wells Grown on the Facets of Closely Spaced GaN Nano-Pyramids Formed by Nano-Imprinting ", Appl. Phys. Express, vol. 2, pp. 121002, 2009.
40. T. Kim, J. Kim, M. S. Yang, S. Lee, Y. Park, U. I. Chung, and Y. Cho, "Highly efficient yellow photoluminescence from {11–22} InGaN multiquantum-well grown on nanoscale pyramid structure", Appl. Phys. Lett., vol. 97, pp. 241111, 2010.
41. M. Funato, T.Kondou, K. Hayashi, S. Nishiura, M. Ueda,Y.Kawakami,Y. Narukawa, and T. Mukai, "Monolithic Polychromatic Light-Emitting Diodes Based on InGaN Microfacet Quantum Wells toward Tailor-Made Solid-State Lighting", Appl. Phys. Express, vol. 1, pp.011106, 2008.
42. C. Y. Cho, I. K. Park,M. K. Kwon, J. Y. Kim, S. J. Park, D. R. Jung, and K.W. Kwon, "InGaN/GaN multiple quantum wells grown on microfacets for white-light generation", Appl. Phys. Lett., vol. 93, pp. 241109, 2008.
43. A. Hoffmann, H. Siegle, A. Kaschner, L. Eckey, C. Thomsen, J. Christen, F. Bertram, M. Schmidt, K. Hiramatsu, S. Kitamura, and N. Sawaki, J. Cryst. Growth, "Local strain distribution of hexagonal GaN pyramids", vol. 189/190, pp. 630, 1998.
44. Q. K. K. Liu, A. Hoffmann, H. Siegle, A. Kaschner, C. Thomsen, J. Christen, and F. Bertram, "Stress analysis of selective epitaxial growth of GaN", Appl. Phys. Lett., vol. 74,pp. 3122 (1999).
45. I. K. Park and S. J. Park, "Green Gap Spectral Range Light-Emitting Diodes with Self-Assembled InGaN Quantum Dots Formed by Enhanced Phase Separation", Appl. Phys. Express, vol. 4, pp. 042102, 2011.
46. X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, "Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells", Appl. Phys. Lett. vol.72, pp. 692, 1998.
47. B. Yang, F. Liu, and M.G. Lagally, "Local Strain-Mediated Chemical Potential Control of Quantum Dot Self-Organization in Heteroepitaxy", Phys. Rev. Lett., vol. 92, pp.025502, 2004.
48. B. Beaumont, M. Vaille, G. Nataf, A. Bouillé, J.-C. Guillaume, P. Vénnègues, S. Haffouz and Pierre Gibart, "Mg-enhanced lateral overgrowth of GaN on patterned GaN/sapphire substrate by selective Metal Organic Vapor Phase Epitaxy", MRS Internet J. Nitride Semicond. Res., vol. 3, pp. 20, 1998.
49. B. Beaumont, S. Haffouz, and P. Gibart, "Magnesium induced changes in the selective growth of GaN by metalorganic vapor phase epitaxy", Appl. Phys. Lett., vol. 72, pp. 921, 1998.


Chapter 5
1. P. J. BURNETT, and T. F. PAGE, "An investigation of ion implantation-induced near-surface stresses and their effects in sapphire and glass", J. Mater. Sci., vol. 20, pp.4624, 1985.
2. T. HIOKI, A. ITOH, M. OHKUBO, S. NODA, H. DOI, J. KAWAMOTO, and O. KAMIGAITO, "Mechanical property changes in sapphire by nickel ion implantation and their dependence on implantation temperature", J. Mater. Sci., vol. 21, pp.1321, 1986.
3. D. Takeuchi , K. Fukushima, J. Matsuo, and I. Yamada, " Study of Ar cluster ion bombardment of a sapphire surface", Nucl. Instrum. Meth. Phys. Res., B vol. 121, pp. 493, 1997.
4. M.A. van Huis, A. van Veen, F. Labohm, A.V. Fedorov, H. Schut, B.J. Kooi, and J. Th. M. De Hosson, "Formation, growth and dissociation of He bubbles in Al2O3", Nucl. Instrum. Meth. B vol. 216, pp.149, 2004.
5. N. Sasajima, T. Matsui, and S. Furuno et al., "Damage accumulation in Al2O3 during H2+ or He+ ion irradiation" Nucl. Instrum. Meth. B, vol. 148, pp. 745, 1999.
6. C. J. McHargue, G. C. Farlow, M. B. Lewis, and J. M. Williams, "Implantion of gases into sapphire", Nucl. Instrum. Meth. B, vol.19/20, pp. 809, 1987.
7. E. A. Eklund, R. Bruinsma, and J. Rudnick, "Submicron-Scale Surface Roughening Induced by Ion Bombardment", Phys. Rev. Lett., vol.67, pp.1759, 1991.
8. P. SIGMUND, "A mechanism of surface micro-roughening by ion bombardment", J. Mater. Sci., vol. 8, pp. 1545, 1973.
9. S. Nakamura, "GaN Growth Using GaN Buffer Layer", Jpn. J. Appl. Phys. vol. 30, pp. L1705, 1991.
10. I. N. Stranski and L. Krastanow, Sitzungsberichte d. Akad. d. Wissenschaften in Wien, Abt. Iib, Band 146, pp. 797, 1937.
11. F. Degave, P. Ruterana, G. Nouet, J. H. Je, and C. C. Kim, "Analysis of the nucleation of GaN layers on (0001) sapphire", Mater. Sci. Eng., B, vol. 93, pp.177, 2002.
12. J.C. Ramer, K. Zheng, C.F. Kranenberg, M. Banas, and S. D. Hersee, "A Study of the Effect of Growth Rate and Annealing on GaN Buffer Layers on Sapphire", Mater. Res. Soc., vol. 395, pp. 225, 1996.
13. M. A. Khan, M. Shatalov, H. P. Matuska, H. M. Wang, and E. Kuokstis, "III–Nitride UV Devices", Jpn. J. Appl. Phys. vol. 44, pp. 7191, 2005.
14. R. McClintock, A. Yasan, K. Mayers, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, "High quantum efficiency AlGaN solar-blind p-i-n photodiodes", Appl. Phys. Lett. vol. 84, pp.1248, 2004.
15. H. Amano, N. Sawakl, I. Akasakland, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer", Appl Phys Lett , vol. 48, pp. 353, 1986.
16. T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, " Thermal stress in GaN epitaxial layers grown on sapphire substrates", J. Appl. Phys. vol. 77, pp. 4389, 1995.
17. T. Böttcher, S. Einfeldt, S. Figge, R. Chierchia, and H. Heinke et al. "The role of high-temperature island coalescence in the development of stresses in GaN films", Appl. Phys. Lett., vol. 78, pp. 1976, 2001.
18. K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, " Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides: Effects of Reactor Pressure in MOVPE Growth", phys. stat. sol(a)., vol. 176, pp.535, 1999.
19. Y. Lu, X. Liu, X. Wang, D. C. Lu, D. Li, X. Han, G. Cong, and Z. Wang, "Influence of the growth temperature of the high-temperature AlN buffer on the properties of GaN grown on Si(1 1 1) substrate", J. Cryst. Growth, vol. 263, pp.4, 2004.
20. E. G. Brazel, M. A. Chin, and V. Narayanamurti, "Direct observation of localized high current densities in GaN films", Appl. Phys. Lett., vol. 74, pp. 2367, 1999.
21. T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, "Characterization of threading dislocations in GaN epitaxial layers", Appl. Phys. Lett., vol. 76, pp. 3421, 2000.
22. B. Heying, X. H. Wu, S. Keller, Y. Li, and D. Kapolnek, "Role of threading dislocation structure on the X-ray diffraction peak widths in epitaxial GaN films", Appl. Phys. Lett., vol. 68, pp. 643, 1996.
23. Y. Ohba, H. Yoshida, and R. Sato, "Growth of High-Quality AlN, GaN and AlGaN with Atomically Smooth Surfaces on Sapphire Substrates", Jpn. J. Appl. Phys. vol. 36, pp. L1565, 1997.
24. Y. Ohba and R. Sato, "Growth of AlN on sapphire substrates by using a thin AlN buffer layer grown two-dimensionally at a very low V/III ratio", J. Cryst. Growth vol. 221, pp. 258, 2000.
25. N. Okada, N. Kato, S. Sato, T. Sumii, T. Nagai, N. Fujimoto, M. Imura, K. Balakrishnam, M. Iwaya, S. Kamiyama, H. Amono, I. Akasaki, H. Maruyama, T. Takagi, T. Noro, and A. Bandoh, "Growth of high-quality and crack free AlN layers on sapphire substrate by multi-growth mode modification" J. Cryst. Growth vol. 298, pp. 349, 2007.
26. M. Takeuchi, S. Ooishi, T. Ohtsuka, T. Maegawa, T. Koyama, S. F. Chichibu, and Y. Aoyagi, "Improvement of Al-Polar AlN Layer Quality by Three-Stage Flow-Modulation Metalorganic Chemical Vapor Deposition", Appl. Phys. Express vol. 1, pp. 021102, 2008.
27. L. W. Sang, Z. X. Qin, H. Fang, T. Dai, Z. J. Yang, B. Shen, G. Y. Zhang, X. P. Zhang, J. Xu, and D. P. Yu, "Reduction in threading dislocation densities in AlN epilayer by introducing a pulsed atomic-layer epitaxial buffer layer", Appl. Phys. Lett. vol. 93, pp. 122104, 2008.
28. Y. Kumagai, K. Akiyama, R. Togashi, H. Murakami, M. Takeuchi, T. Kinoshita, K. Takada, Y. Aoyagi, and A. Koukitu, "Polarity dependence of AlN {0 0 0 1} decomposition in flowing H2", J. Cryst. Growth, vol. 305, pp. 366, 2007.
29. Y. A. Xi, K. X. Chen, F. Mont, J. K. Kim, C. Wetzel, E. F. Schubert, W. Liu, X. Li, and J. A. Smart, " Very high quality AlN grown on (0001) sapphire by metal-organic vapor phase epitaxy", Appl. Phys. Lett. vol. 89, pp. 103106, 2006.
30. C. H. Yen, W. C. Lai, Y. Y. Yang, C. K. Wang, T. K. Ko, S. J. Hon, and S. J. Chang, "GaN-Based Light-Emitting Diode With Sputtered AlN Nucleation Layer", IEEE Photonics Technol. Lett., vol. 24, pp.294, 2012.
31. Y. S. Cho, E. K. Koh, Y. J. Park, D. w. Koh, E. K. Kim, Y.Moon, S. J. Leem, G. Kim, and D. Byun, "Effects of N+-implanted sapphire (0 0 0 1) substrate on GaN epilayer", J. Cryst. Growth, vol. 236, pp.538, 2002.
32. M. Jamil, J. R. Grandusky, V. Jindal, F. Shahedipour-Sandvik, and S. Guha et al., "Development of strain reduced GaN on Si (111) by substrate engineering", Appl. Phys. Lett., vol. 87, pp.082103, 2005.
33. E. K. Koh, Y. J. Park, E. K. Kim, C. S. Park, S. H. Lee, J. H. Lee, and S. H. Choh, " The effect of N+-implanted Si(1 1 1) substrate and buffer layer on GaN films", J. Cryst. Growth, vol. 218, pp. 214, 2000.
X. J. Ning, F. R. Chien, and P. Pirouz, "Growth defects in GaN films on sapphire: The probable origin of threading dislocations", J. Mater. Res., vol.11, pp.580, 1996.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw