進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2306202015005300
論文名稱(中文) 以失誤樹分析法探討平交道公路駕駛人之違規行為—主客觀調查資料之研究
論文名稱(英文) Explore Road Users' Violation Behaviors at Railway Level Crossings Using Fault Tree Analysis- A Subjective and Objective Observance Study
校院名稱 成功大學
系所名稱(中) 交通管理科學系
系所名稱(英) Department of Transportation & Communication Management Science
學年度 108
學期 2
出版年 109
研究生(中文) 葛宇婷
研究生(英文) Yu-Ting Ko
學號 R56071119
學位類別 碩士
語文別 中文
論文頁數 194頁
口試委員 指導教授-沈宗緯
共同指導教授-胡守任
口試委員-王中允
口試委員-褚志鵬
口試委員-魏健宏
中文關鍵字 平交道事故  違規行為  理性行為理論  失誤樹分析法  結構方程模式 
英文關鍵字 Railway level crossing accident  Violation behaviors  Theory of Reasoned Action (TRA)  Fault Tree Analysis (FTA)  Structure Equation Modeling (SEM) 
學科別分類
中文摘要 平交道為鐵、公路運輸之交會範圍,同時也是最容易發生意外事故的地點之一。根據臺鐵局資料顯示,儘管我國平交道的數量不多,但每年仍發生約20起平交道事故,造成不同程度的人員死傷與財產損失。本研究透過三項資料的蒐集與兩項分析方法的應用,分別為錄影資料、違規者深度訪談問卷,以及一般用路人問卷,分析方法為失誤樹分析與結構方程模型。本研究主要利用主觀資料與客觀資料,透過不同觀點的資料探討平交道事故的主要成因與可能的後果。首先,在客觀面向方面,主要是指透過平交道事故錄影資料的檢視,觀察違規駕駛人通過平交道的行為,再透過主觀面向之違規者深度訪談,了解違規者通過平交道的整體經過、反應與行為,研析兩項資料內容並綜整公路駕駛人行為模式之後,構建完整的平交道交通事故失誤樹模型,據以觀察其共同的趨勢與關聯性,以推斷造成公路駕駛人通過平交道時違規行為的原因與結果。最後,在主觀面向方面,本研究針對一般用路人進行通過平交道的問卷調查,透過結構方程模型的應用,探討不同主客觀因素構面是否影響用路人違規通過平交道之行為意圖。根據失誤樹分析成果發現,主要的違規行為係滯留於危險區的,主要的原因為「缺乏平交道法規認知」、「平交道上下游車流量大」、「公路號誌不連鎖」,以及「道路幾何條件妨礙而無法辨識警告設施」。為了改善前述問題,本研究分別從公路交通量、平交道設施、平交道認知、道路設計,以及駕駛人違規意圖等因素,檢討平交道法規與平交道設施之裝置,並建議加強平交道之執法與平交道法規之教育及宣導等相關改善對策,以提供平交道主管機關未來擬定相關改善策略與行動方案之參考。
英文摘要 Railway level crossing (RLX) is an area where railway and roadway traffic intersect and is also the accident-prone location. According to the data from Taiwan Railways Administration (TRA), there are nearly 20 RLX accidents happened every year, causing serious injury, fatality, and property damage, although the number of RLXs are gradually decreasing in Taiwan. This study collected three different datasets, the objective data refer to video recording data. In addition, the subjective data refer to in-depth interviews with violators. After integrating the two datasets, we build the fault tree model of RLX accidents using Fault Tree Analysis (FTA) to investigate the connection between two different datasets in order to explore the causes and effects of road users’ violation behaviors at RLXs. Finally, the subjective data refer to the questionnaire survey of general road users. This study used Theory of Reasoned Action (TRA) model and Structure Equation Modeling (SEM) analysis to find out the causal relationships between a set of factors and traffic violation intention of road users. According to the results of the FTA, this study found that the main violation is staying at the RLX danger zone and the reasons are lack of regulation knowledge of RLX, heavy traffic flow upstream or downstream of RLX, incoordination signal control in the roadway network, and the roadway conditions hamper the RLX warning system. In order to improve the problems and provide the reference for the RLX administrative agency government office, this study reviewed the regulation of RLX and the principle of RLX facilities, strategies to strengthen the law enforcement of RLX and improve education of RLX for preparing effective countermeasures and action plans to reduce RLX accidents.
論文目次 第一章 緒論 1
1.1背景與動機 1
1.2研究目的 4
1.3研究範疇 4
1.4研究方法 5
1.5研究流程 5
第二章 文獻回顧 8
2.1臺灣平交道現況 8
2.2各國平交道安全改善與管理 16
2.2.1日本 16
2.2.2英國 17
2.2.3澳洲 19
2.2.4德國 20
2.2.5加拿大 21
2.2.6美國 22
2.3一般用路人於平交道之駕駛行為 24
2.4影響一般用路人行為意圖之潛在因素 27
2.4.1態度 28
2.4.2主觀規範 28
2.4.3風險感知 29
2.4.4平交道認知 29
2.5導致危險狀況發生之潛在因素 30
2.6主觀與客觀 31
2.7影帶檢視分析 32
2.8失誤樹應用 33
2.9結構方程模型應用 35
2.10小結 36
第三章 研究方法 38
3.1失誤樹 39
3.2結構方程模式 43
3.3模型構建 48
3.3.1失誤樹分析範圍界定 48
3.3.2影帶檢視紀錄 51
3.3.3一般用路人調查 54
3.3.4違規者訪談 62
第四章 實證分析 64
4.1影帶檢視紀錄分析 64
4.1.1敘述性統計 65
4.1.2失誤樹構建結果 73
4.2一般用路人調查 86
4.2.1基本社會經濟資料 87
4.2.2敘述性統計 90
4.2.3結構方程模式分析 95
4.3違規者訪談 108
4.3.1基本社會經濟資料 109
4.3.2敘述性統計 111
4.3.3失誤樹構建結果 129
4.4主客觀失誤樹構建 136
4.5指標性平交道事故 141
4.5.1平交道防護設備異常探討 141
4.5.2大型車輛之平交道事故 145
第五章 平交道改善措施 151
5.1失誤樹與結構方程模型之主客觀分析 151
5.2平交道改善措施 153
5.2.1法令修訂(交通部) 154
5.2.2平交道設施(臺鐵局) 157
5.2.3加強執法(鐵路警察局) 162
5.2.4教育宣導(交通部) 163
第六章 結論與建議 164
6.1結論 164
6.2貢獻與限制 165
6.3建議 167
參考文獻 168
附錄一 平交道影片檢視紀錄表 177
附錄二 一般用路人問卷之完整版 178
附錄三 一般用路人問卷之SEM構面與問項 183
附錄四 違規者問卷之完整版 185
參考文獻 中文文獻:
1.交通部臺灣鐵路管理局. (2014年). 102年度鐵路智慧平交道安全控制系統與偵測器研發(期末報告).
2.吳慧貞. (2013). 利用主觀與客觀方法評估電腦化放攝影影像版對影像品質的改變. (碩士論文). 中臺科技大學醫學影像暨放射科學系,
3.康焜泰. (2014). 以主觀及客觀臨床評估偵測兒童阻塞性睡眠呼吸中止. (流行病學與預防醫學研究所預防醫學組 碩士論文). 國立台灣大學公共衛生學院,
4.交通部運輸研究所. (2011). 風險管理應用於鐵路運輸安全之初探-以臺鐵風險辨識為例.
5.交通部運輸研究所. (2012). 風險管理應用於鐵路運輸安全之初探-以臺鐵風險分析與評量為例.
6.交通部運輸研究所. (2013). 風險管理應用於鐵路運輸安全之初探:以臺鐵風險處理、管理監督、管理改善為例.
7.交通部運輸研究所. (2014). 先進偵測系統對鐵路平交道安全之影響研究.
8.余忠訓. (2014). 機車駕駛人交通法規態度對違規行為影響之研究. (碩士論文). 交通大學, 輸與物流管理學系.
9.吳繼虹, & 苗書翰. (2010). 臺北地區機車騎士駕駛知識、安全態度及駕駛行為之研究. 中華民國運輸學會99年學術論文國際研討會.
10.李偉豪. (2013). 交岔路口左轉車輛讓對向直行車輛先行意向之研究. (碩士論文). 交通大學, 運輸科技與管理學系.
11.周文生, 莊弼昌, 喻世祥, & 廖珮翎. (2012). 駕駛人風險感知與交通安全之關聯性研究. 安全與執法研討會.
12.国土交通省鉄道局. (2017). 鉄軌道輸送の安全に関わる情報(平成28年度).
13.施伯杰. (2007). 以故障樹與事件樹分析法探討平交道事故風險. (碩士論文). 國立成功大學, 交通科學管理學系.
14.胡守任, & 李治綱. (2009). 鐵路平交道公路駕駛行為分析與安全改善對策.
15.胡守任, 李治綱, & 鄭珮琪. (2009). 鐵路平交道前之公路駕駛人行為分析. 中華民國運輸學會98年年會.
16.唐鵬州. (2005). 平交道模擬模式構建與肇事風險分析. (碩士論文). 國立成功大學, 交通管理學系.
17.孫千山, 徐任宏, 胡守任, 林杜寰, 蔡佩珊, 葛宇婷, . . . 喻世祥. (2019). 公路駕駛人通過平交道行為模式研究. 交通部運輸研究所 財團法人中興顧問社 合作辦理.
18.張新立. (1988). 重型車輛安全分析與營運大貨車肇事預防措施之研究. 交通部運輸研究所報告.
19.陳正紋. (2009). 結合流暢體驗, 人格特質與計畫行為理論探討大型重型機車騎士之超速行為.
20.陳建元, 任維廉, & 胡凱傑. (2006). 等候經驗與服務保證對鐵路旅客再購意願之影響-以臺鐵為例.
21.黃于嘉. (2009). 機車駕駛者違規行為之影響分析-以台北市為例. (碩士論文). 淡江大學, 運輸管理學系.
22.黃芳銘. (2004). 結構方程模式理論與應用. 五南圖書出版股份有限公司: 楊榮川.
23.黃品芸. (2016). 鐵路路線入侵事故分析-以臺鐵為例. (碩士論文). 國立成功大學, 交通科學管理學系.
24.黃維崧. (2005). 影響臺鐵平交道事故因素之研究. (碩士論文). 國立交通大學, 運輸科技與管理學系.
25.蕭文龍. (2018). 統計分析入門與應用:SPSS中文版+SmartPLS 3 (PLS-SEM) (第二版).
26.戴政安. (2017). 探討結構方程模式於科技計畫評估之應用.
英文文獻:
1.Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
2.Alexander, G. J., & Lunenfeld, H. (1975). Positive guidance in traffic control.
3.An, S. (2007). Attitude toward direct-to-consumer advertising and drug inquiry intention: the moderating role of perceived knowledge. J Health Commun, 12(6), 567-580. doi:10.1080/10810730701508633
4.Armstrong, G., Adam, S., Denize, S., & Kotler, P. (2014). Principles of marketing: Pearson Australia.
5.Arnett, J. J., Offer, D., & Fine, M. A. (1997). Reckless driving in adolescence:‘State’and ‘trait’factors. Accident Analysis & Prevention, 29(1), 57-63.
6.Australian Rail Track Corporation. (2012). Level Crossing Design ESD-03-01.
7.Baric, D., Pilko, H., & Starcevic, M. (2018). Introducing experiment in pedestrian behaviour and risk perception study at urban level crossing. Int J Inj Contr Saf Promot, 25(1), 102-112. doi:10.1080/17457300.2017.1341934
8.Bauer, R. A. (1960). Consumer behavior as risk taking. Chicago, IL, 384-398.
9.Beanland, V., Lenne, M. G., Salmon, P. M., & Stanton, N. A. (2016). Variability in decision-making and critical cue use by different road users at rail level crossings. Ergonomics, 59(6), 754-766. doi:10.1080/00140139.2015.1095356
10.Beanland, V., Salmon, P. M., Filtness, A. J., Lenne, M. G., & Stanton, N. A. (2017). To stop or not to stop: Contrasting compliant and non-compliant driver behaviour at rural rail level crossings. Accid Anal Prev, 108, 209-219.doi:10.1016/j.aap.2017.09.004
11.Bäckman, J. (2002). Railway safety-risks and economics. Infrastruktur,
12.Chen, Y. Q., Li, S. G., & He, X. (2011). Fault Tree Analysis of “Mistakes, Forgetfulness, and Negligence” Accidents in ATC. Applied Mechanics and Materials, 63-64, 924-929. doi:10.4028/www.scientific.net/AMM.63-64.924
13.Chiou, J.-S., Cheng, H.-I., & Huang, C.-Y. (2011). The Effects of Artist Adoration and Perceived Risk of Getting Caught on Attitude and Intention to Pirate Music in the United States and Taiwan. Ethics & Behavior, 21(3), 182-196. doi:10.1080/10508422.2011.570163
14.Clifton A. Ericson II. (1999). Fault Tree Analysis A- History. Proceedings of the 17th International System Safety Conference.
15.Courage, K., & Krikpatrick, B. (2003). Video Based Studies of Highway-Railroad Grade Crossings in the South Florida Railroad Corridor. The University of Florida Transportation Research, 4, 891-893.
16.Eboli, L., Mazzulla, G., & Pungillo, G. (2017). How to define the accident risk level of car drivers by combining objective and subjective measures of driving style. Transportation Research Part F: Traffic Psychology and Behaviour, 49, 29-38. doi:10.1016/j.trf.2017.06.004
17.European Union. (2018). Railway safety and interoperability in the EU. doi:10.2821/49834
18.10.2821/205360
19.Federal Railroad Administration. (2007). Railroad-Highway Grade Crossing Handbook.
20.Federal Railroad Administration. (2019). Office of Safety Analysis.
21.Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.
22.Fishbein, M., & Ajzen, I. (1980). Understanding attitudes and predicting social behavior.
23.Fowler, C., Tong, S., Fernandez-Medina, K., Thompson, K., Scoons, J., & Lawton, B. (2013). Prospective study into harmonised train accident precursors analysis and management (1908855460). Retrieved from
24.Fung, I. W., Lo, T. Y., & Tung, K. C. (2012). Towards a better reliability of risk assessment: Development of a qualitative & quantitative risk evaluation model (Q2REM) for different trades of construction works in Hong Kong. Accident Analysis & Prevention, 48, 167-184.
25.Ghomi, H., Bagheri, M., Fu, L., & Miranda-Moreno, L. F. (2016). Analyzing injury severity factors at highway railway grade crossing accidents involving vulnerable road users: A comparative study. Traffic Inj Prev, 17(8), 833-841. doi:10.1080/15389588.2016.1151011
26.Grippenkoven, J., & Dietsch, S. (2015). Gaze direction and driving behavior of drivers at level crossings. Journal of Transportation Safety & Security, 8(sup1), 4-18. doi:10.1080/19439962.2015.1046620
27.Hair Jr, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. vectors, 7th Editio. In: Pearson Prentice Hall.
28.Huy Tuu, H., Ottar Olsen, S., & Thi Thuy Linh, P. (2011). The moderator effects of perceived risk, objective knowledge and certainty in the satisfaction‐loyalty relationship. Journal of Consumer Marketing, 28(5), 363-375. doi:10.1108/07363761111150017
29.Inoue, T., KUSUKAMI, K., & Kon-No, S. (1996). Car driver behavior in railway crossing accident. Railway Technical Research Institute, Quarterly Reports, 37(1).
30.Khattak, A., & Luo, Z. (2011). Pedestrian and Bicyclist Violations at Highway–Rail Grade Crossings. Transportation Research Record: Journal of the Transportation Research Board, 2250(1), 76-82. doi:10.3141/2250-10
31.Ku, B.-H., & Cha, J.-M. (2014). Reliability Assessment of Electric Railway Substation by using Minimal Cut Sets Algorithm. Journal of International Council on Electrical Engineering, 1(2), 135-139. doi:10.5370/jicee.2011.1.2.135
32.Larue, G. S., & Naweed, A. (2018). Key considerations for automated enforcement of non-compliance with road rules at railway level crossings: The Laverton case in Victoria, Australia. Case Studies on Transport Policy, 6(4), 774-784. doi:10.1016/j.cstp.2018.09.012
33.Larue, G. S., Naweed, A., & Rodwell, D. (2018). The road user, the pedestrian, and me: Investigating the interactions, errors and escalating risks of users of fully protected level crossings. Safety Science, 110, 80-88. doi:10.1016/j.ssci.2018.02.007
34.Larue, G. S., Watling, C. N., Black, A. A., & Wood, J. M. (2019). Getting the Attention of Drivers Back on Passive Railway Level Crossings: Evaluation of Advanced Flashing Lights. Transportation Research Record: Journal of the Transportation Research Board, 2673(2), 789-798. doi:10.1177/0361198119828679
35.Lee, J. H., Jin, B. S., & Ji, Y. (2009). Development of a Structural Equation Model for ride comfort of the Korean high-speed railway. International Journal of Industrial Ergonomics, 39(1), 7-14. doi:10.1016/j.ergon.2008.09.003
36.Liu, P., Yang, L., Gao, Z., Li, S., & Gao, Y. (2015). Fault tree analysis combined with quantitative analysis for high-speed railway accidents. Safety Science, 79, 344-357. doi:10.1016/j.ssci.2015.06.017
37.Matthews, M. L., & Moran, A. R. (1986). Age differences in male drivers' perception of accident risk: The role of perceived driving ability. Accident Analysis & Prevention, 18(4), 299-313.
38.Level crossings: A guild for manager, designers and operators., (2011).
39.Office of the National Rail Safety Regulator. (2017). ttps://www.onrsr.com.au/.
40.Parker, D., Lajunen, T., & Stradling, S. (1998). Attitudinal predictors of interpersonally aggressive violations on the road. Transportation Research Part F: Traffic Psychology and Behaviour, 1(1), 11-24.
41.Pickett, M., & Grayson, G. (1996). Vehicle driver behaviour at level crossings.
42.Polders, E., & Brijs, T. (2018). How to analyse accident causation? A handbook with focus on vulnarable road users. In: Hasselt University.
43.Rahimi, M., & Meshkati, N. (2001). Human factors in highway-rail crossing accidents: the influence of driver decision style.
44.Railway Level Crossing Safety Bulletin. (2008). Railway Level Crossing Safety Bulletin,. ATSB RAIL SAFETY BULLETIN.
45.RAM Commander User’s Guide. (2010). Fault Tree Analysis. 487-513.
46.Read, G. J., Salmon, P. M., & Lenne, M. G. (2013). Sounding the warning bells: the need for a systems approach to understanding behaviour at rail level crossings. Appl Ergon, 44(5), 764-774. doi:10.1016/j.apergo.2013.01.007
47.Reason, J., Manstead, A., Stradling, S., Baxter, J., & Campbell, K. (1990). Errors and violations on the roads: a real distinction? Ergonomics, 33(10-11), 1315-1332.
48.Richards, S. H., & Heathington, K. W. (1988). Motorist understanding of railroad-highway grade crossing traffic control devices and associated traffic laws. Transportation Research Record, 1160, 52-59.
49.Rimmö, P.-A., & Åberg, L. (1999). On the distinction between violations and errors: sensation seeking associations. Transportation Research Part F: Traffic Psychology and Behaviour, 2(3), 151-166.
50.Sümer, N. (2003). Personality and behavioral predictors of traffic accidents: testing a contextual mediated model. Accident Analysis & Prevention, 35(6), 949-964. doi:10.1016/s0001-4575(02)00103-3
51.Salmane, H., Khoudour, L., & Ruichek, Y. (2015). A Video-Analysis-Based Railway–Road Safety System for Detecting Hazard Situations at Level Crossings. IEEE Transactions on Intelligent Transportation Systems, 1-14. doi:10.1109/tits.2014.2331347
52.Satiennam, W., Satiennam, T., Triyabutra, T., & Rujopakarn, W. (2018). Red light running by young motorcyclists: Factors and beliefs influencing intentions and behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 55, 234-245. doi:10.1016/j.trf.2018.03.007
53.Shinar, D. (1998). Aggressive driving: the contribution of the drivers and the situation. Transportation Research Part F: Traffic Psychology and Behaviour, 1(2), 137-160.
54.Stutts, J., Feaganes, J., Rodgman, E., Hamlett, C., Meadows, T., Reinfurt, D., . . . Staplin, L. (2003). Distractions in everyday driving. Retrieved from
55.Sucha, M., Dostal, D., & Risser, R. (2017). Pedestrian-driver communication and decision strategies at marked crossings. Accid Anal Prev, 102, 41-50. doi:10.1016/j.aap.2017.02.018
56.Sullman, M. J., Meadows, M. L., & Pajo, K. B. (2002). Aberrant driving behaviours amongst New Zealand truck drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 5(3), 217-232.
57.Transport Canada, G. C. I., . (2018). https://open.canada.ca/data/en/dataset/d0f54727-6c0b-4e5a-aa04-ea1463cf9f4c.
58.Tsao, L., Chang, J., & Ma, L. (2017). Fatigue of Chinese railway employees and its influential factors: Structural equation modelling. Appl Ergon, 62, 131-141. doi:10.1016/j.apergo.2017.02.021
59.Tung, L.-W., & Khattak, A. (2015). Distracted Motor Vehicle Driving at Highway–Rail Grade Crossings. Transportation Research Record: Journal of the Transportation Research Board, 2476(1), 77-84. doi:10.3141/2476-11
60.Tyler, T. R. (2006). Why people obey the law: Princeton University Press.
61.United Nations. (2000). Evaluation of Cost-Effective Systems For Railway Level-Crossing Protection, Economic. Economic And Social Commission For Asia And The Pacific.
62.Wang, J., Zou, P. X., & Li, P. P. (2016). Critical factors and paths influencing construction workers’ safety risk tolerances. Accident Analysis & Prevention, 93, 267-279.
63.Website of Deutsche Bahn. (2017). https://www.deutschebahn.com/.
64.Westerman, S., & Haigney, D. (2000). Individual differences in driver stress, error and violation. Personality and individual differences, 29(5), 981-998.
65.Wilson, J. R. (2007). People and rail systems: human factors at the heart of the railway: Ashgate Publishing, Ltd.
66.World Health Organization. (2011). Mobile Phone Use: A Growing Problem of Driver Distraction. WHO Library Cataloguing-in-Publication Data.
67.Xu, C., Wang, C., Ding, Y., & Wang, W. (2018). Investigation of extremely severe traffic crashes using fault tree analysis. Transportation Letters, 1-8. doi:10.1080/19427867.2018.1540146
68.Zhao, S., & Khattak, A. J. (2017). Factors associated with self-reported inattentive driving at highway-rail grade crossings. Accid Anal Prev, 109, 113-122. doi:10.1016/j.aap.2017.10.013
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw