進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2306201917550800
論文名稱(中文) 以環境效率觀點評估集水區公共設施作為多目標滯洪空間選址之初探
論文名稱(英文) A Preliminary Site Selection Study on Watershed Public Facilities as Multi-use Detention Basin: An Environmental Efficiency Perspective
校院名稱 成功大學
系所名稱(中) 都市計劃學系
系所名稱(英) Department of Urban Planning
學年度 107
學期 2
出版年 108
研究生(中文) 萬俊然
研究生(英文) Chun-Yin Man
電子信箱 cycourban@gmail.com
學號 P26065021
學位類別 碩士
語文別 中文
論文頁數 96頁
口試委員 指導教授-張學聖
口試委員-鄒克萬
口試委員-洪鴻智
口試委員-黃泰霖
中文關鍵字 環境效率  公共設施  多目標滯洪池  生態系統服務  資料包絡分析 
英文關鍵字 Eco-efficiency  Public Facilities  Multi-use Detention Basins  Ecosystem Services  Data Envelopment Analysis 
學科別分類
中文摘要 城市洪水災害發生頻率以及災害影響範圍程度已較過去為嚴重。在治水策略層面,近年治水思維已從過去強調以點與線排水工程系統減災規劃,逐漸擴展至運用非工程減災策略結合流域範圍內土地單元,分擔超過目前防洪工程設計標準之暴雨逕流量。然而以土地規劃作為逕流分擔治水策略,當中針對高度都市化區域目前往往因為涉及私有土地需要經過長時間都市計畫變更程序,以及巨額土地徵收費用支出。因此近年研究主要從土地取得可行性程度考慮,優先運用都市內公共設施作為滯洪空間以降低承受極端氣候事件之災害風險。
以公共設施兼作滯洪空間使用,除以往優先考量其減低極端降雨事件造成災害風險功能,也應該從社會福祉之特性探討公共設施提供都市之外部效益。近年研究亦逐漸納入滯洪池在非災時功能,探討多目標滯洪池(Multi-use Detention Basin,MDB)提供都市社會、經濟、文化與生態等外部效益。然而研究卻較少從效率觀點評估滯洪空間結合外部效益考量的規劃選址問題。以流域內不同公共設施區位作為多目標滯洪池使用,其所需成本與效益取決區位的環境特性而異。因此如何從具有長期淹水潛勢的都市集水區範圍內,建立多目標滯洪池選址最佳替代方案是為本研究所關注之處。
本研究基於環境效率之觀點建立都市排水集水區範圍內運用公共設施作為多目標滯洪池之選址評估框架,並藉由資料包絡分析法與交叉效率分析建立選址最佳替代方案。其後進一步與傳統設置滯洪池以單一減災效率為優先選址考量比較。本研究發現,兩種決策觀點所呈現之優選方案存在一定權衡關係,減災效率最佳方案並非具備提升較高綜合生態系統服務的環境特徵。接續以差額變數分析基於評估效率結果進一步探討造成效率差異的區位環境因素,給予不同選址區位在未來空間規劃的參考。本研究提出的框架能夠提供作為未來治水策略在規劃多目標滯洪池時於選址決策,以及營造與水共生環境的參考指南。
英文摘要 The frequency of urban flooding and loss have been severely raised over the past decade. The recent flood mitigation measurements have gradually resorted to using urban land as the runoffs allocation unit. However, to wholly practice the strategy in the highly developed urban areas, it is required to overcome a long-term rezoning procedures with enormous land expropriation fees. Thus, using existing public facilities as detention basins has been widely considered as a effecient measure to reduce the risk by the extremely and uncertainly rainfall events.
In terms of the functions of detention basins, recent researches pays an increasing attention to its synthesis physiological and psychological well-being as well as the ecosystem services. This form of detention basin namely Multi-use Detention Basin(MDB). Although the benefits of MDB have been widely discussed, there is a limited literature research on the site selection problem on MDB in the decision making context.
This study established a two-stages screening and evaluation MDB site selection framework based on the environmental efficiency perspective. Data envelopment analysis(DEA) and cross-efficiency evaluation is applied to build the best alternative site ranking, and then compared with the traditional single flood mitigation efficiency perspective on detention basin site ranking. The result indicated that the two decision perspectives showed a certain trade-off relation on the MDB site ranking by the reason of geographical and hydrological heterogeneity. Slack variable analysis was further applied to identify the efficiency difference between the condidate sites. This study proposed a new MDB site selection framework, in terms of the urban well-being and environmental efficiency perspective.
論文目次 第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究範疇 3
第三節 研究流程 4
第二章 文獻回顧 6
第一節 公共設施作為滯洪空間之脈絡 6
第二節 公共設施作為多目標滯洪空間之性質 9
第三節 多目標滯洪空間規劃選址與評估 14
第四節 多目標滯洪空間效率評估 24
第三章 研究設計與方法 37
第一節 研究架構 37
第二節 評估工具與模型設定 39
第三節 多目標滯洪空間篩選與配置準則 43
第四節 多目標滯洪空間指標評估架構 44
第五節 效率評估模式 55
第四章 實證分析 58
第一節 實證地區概述 58
第二節 多目標滯洪空間方案評估 62
第三節 多目標滯洪空間環境效率分析 78
第五章 結論與建議 83
第一節 結論 83
第二節 建議 84
參考文獻 86
附錄 94
參考文獻 1. Ahmadisharaf, E., Kalyanapu, A. J., & Chung, E. S. (2015). Evaluating the effects of inundation duration and velocity on selection of flood management alternatives using multi-criteria decision making. Water Resources Management, 29(8), 2543-2561.
2. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
3. Barnes, A. P. (2006). Does multi-functionality affect technical efficiency? A non-parametric analysis of the Scottish dairy industry. Journal of environmental management, 80(4), 287-294.
4. Birkland, T. A., Burby, R. J., Conrad, D., Cortner, H., & Michener, W. K. (2003). River ecology and flood hazard mitigation. Natural Hazards Review, 4(1), 46-54.
5. Boithias, L., Terrado, M., Corominas, L., Ziv, G., Kumar, V., Marqués, M., ... & Acuña, V. (2016). Analysis of the uncertainty in the monetary valuation of ecosystem services—A case study at the river basin scale. Science of the Total Environment, 543, 683-690.
6. Braden, J. B., & Johnston, D. M. (2004). Downstream economic benefits from storm-water management. Journal of Water Resources Planning and Management, 130(6), 498-505.
7. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
8. Choi, H., Lee, E. H., Joo, J. G., & Kim, J. H. (2017). Determining optimal locations for rainwater storage sites with the goal of reducing urban inundation damage costs. KSCE Journal of Civil Engineering, 21(6), 2488-2500.
9. Chang, N. B., Parvathinathan, G., & Breeden, J. B. (2008). Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of environmental management, 87(1), 139-153.
10. Cicea, C., Marinescu, C., Popa, I., & Dobrin, C. (2014). Environmental efficiency of investments in renewable energy: Comparative analysis at macroeconomic level. Renewable and Sustainable Energy Reviews, 30, 555-564.
11. Clark, K. H., & Nicholas, K. A. (2013). Introducing urban food forestry: a multifunctional approach to increase food security and provide ecosystem services. Landscape Ecology, 28(9), 1649-1669.
12. Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., ... & Raskin, R. G. (1997). The value of the world's ecosystem services and natural capital. nature, 387(6630), 253.
13. Coutts, C., & Hahn, M. (2015). Green infrastructure, ecosystem services, and human health. International journal of environmental research and public health, 12(8), 9768-9798.
14. Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., ... & Efstratiadis, A. (2016). Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. Journal of Hydrology, 534, 478-492.
15. Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. Journal of the operational research society, 45(5), 567-578.
16. Dunne, T., & Leopold, L. B. (1978). Water in environmental planning. Macmillan.
17. EPA(1999)Urban Storm Water BMP Preliminary Data Summary - 1999 – EPA
18. Etuonovbe AK (2011) The devastating effect of flooding in Nigeria, FIG Working Week2011.http://www.fig.net/pub/fig2011/papers/ts06j/ts06j_etuonovbe_5002.pdf
19. Faisal, I. M., Kabir, M. R., & Nishat, A. (1999). Non-structural flood mitigation measures for Dhaka City. Urban Water, 1(2), 145-153.
20. Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281.
21. Finlayson, M., Cruz, R. D., Davidson, N., Alder, J., Cork, S., Groot, . . . Peterson, G. (2005). Millennium Ecosystem Assessment: Ecosystems and human well-being: wetlands and water synthesis. Data Fusion Concepts & Ideas, 656(1), 87-98.
22. Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., ... & Mikkelsen, P. S. (2015). SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525-542.
23. Ghimire, S. R., Johnston, J. M., Ingwersen, W. W., & Sojka, S. (2017). Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system. Journal of cleaner production, 151, 74-86.
24. Haines-Young, R., & Potschin, M. (2010). The links between biodiversity, ecosystem services and human well-being. Ecosystem Ecology: a new synthesis, 1, 110-139.
25. Haltas, I., Tayfur, G., & Elci, S. (2016). Two-dimensional numerical modeling of flood wave propagation in an urban area due to Ürkmez dam-break, İzmir, Turkey. Natural Hazards, 81(3), 2103-2119.
26. Huppes, G., & Ishikawa, M. (2005). Eco‐efficiency and Its xsTerminology. Journal of Industrial ecology, 9(4), 43-46.
27. Jia, H., Yao, H., Tang, Y., Shaw, L. Y., Zhen, J. X., & Lu, Y. (2013). Development of a multi-criteria index ranking system for urban runoff best management practices (BMPs) selection. Environmental monitoring and assessment, 185(9), 7915-7933.
28. Jose, R., Wade, R., & Jefferies, C. (2015). Smart SUDS: Recognising the multiple-benefit potential of sustainable surface water management systems. Water science and technology, 71(2), 245-251.
29. Karamouz, M., & Nazif, S. (2013). Reliability-based flood management in urban watersheds considering climate change impacts. Journal of Water Resources Planning and Management, 139(5), 520-533.
30. Kast, F. E., & Rosenzweig, J. E. (1985). Organization and Management. A Systems and Contingency Analysis.
31. Kent, J., Thompson, S., & Jalaludin, B. (2011). Healthy Built Environments: A review of the literature. Healthy Built Evironments Program, City Futures Research Centre, The University of New South Wales.
32. Khadivi, M. R., & Ghomi, S. F. (2012). Solid waste facilities location using of analytical network process and data envelopment analysis approaches. Waste management, 32(6), 1258-1265.
33. Kirshen, P., Caputo, L., Vogel, R. M., Mathisen, P., Rosner, A., & Renaud, T. (2014). Adapting urban infrastructure to climate change: A drainage case study. Journal of Water Resources Planning and Management, 141(4), 04014064.
34. Knight, R. L., Walton, W. E., O’Meara, G., Reisen, W. K., & Wass, R. (2000, November). Design strategies for effective mosquito control in constructed treatment wetlands. In Proceedings of the 7th IWA International Conference on Wetland Systems for Water Pollution Control (Vol. 1, pp. 425-440).
35. Kuosmanen, T., & Kortelainen, M. (2007). Valuing environmental factors in cost–benefit analysis using data envelopment analysis. Ecological economics, 62(1), 56-65.
36. Kumar, P. (2012). The economics of ecosystems and biodiversity: ecological and economic foundations. Routledge.
37. Kwak JW, Kim JG, Kim HS, Yoo BK. 2010. Effectiveness analysis of constructed washland: (1) flood control and ecological effect. Journal of Korean Society of Civil Engineers 30(1): 13–21.
38. Kwon, T. J. (2013). Urban infrastructure suitable for flood hazard mitigation,‖ in. In Proc. IAIA13 Conference Proceedings' Impact Assessment the Next Generation 33rd Annual Meeting of the International Association for Impact Assessment (pp. 1-4).
39. Lagendijk, A. (2001). Regional learning between variation and convergence: The concept of'Mixed Land-Use'in regional spatial planning in the Netherlands.
40. Lawson, E., Thorne, C., Ahilan, S., Allen, D., Arthur, S., Everett, G., ... & Kilsby, C. (2014). Delivering and evaluating the multiple flood risk benefits in blue-green cities: An interdisciplinary approach. Flood recovery, innovation and response IV, 184, 113-124.
41. Lee, J. S., & Li, M. H. (2009). The impact of detention basin design on residential property value: Case studies using GIS in the hedonic price modeling. Landscape and Urban Planning, 89(1-2), 7-16.
42. Li, H.C., Chen, Y.Z.,Deng, C.Z., Chen, S.Y., Li, X.J.(2016). The Study of Disaster Loss Evaluation and Application.National Science and Technology Center for Disaster Reduction.
43. Lundy, L., & Wade, R. (2011). Integrating sciences to sustain urban ecosystem services. Progress in Physical Geography, 35(5), 653-669.
44. Mileti, D. (1999). Disasters by design: A reassessment of natural hazards in the United States. Joseph Henry Press.
45. Mohajeri, N., & Amin, G. R. (2010). Railway station site selection using analytical hierarchy process and data envelopment analysis. Computers & Industrial Engineering, 59(1), 107-114.
46. Naeem, S., Ingram, J. C., Varga, A., Agardy, T., Barten, P., Bennett, G., ... & Ching, C. (2015). Get the science right when paying for nature's services. Science, 347(6227), 1206-1207.
47. Nemec, K. T., & Raudsepp-Hearne, C. (2013). The use of geographic information systems to map and assess ecosystem services. Biodiversity and conservation, 22(1), 1-15.
48. Oraei Zare, S., Saghafian, B., & Shamsai, A. (2012). Multi-objective optimization for combined quality–quantity urban runoff control. Hydrology and Earth System Sciences, 16(12), 4531-4542.
49. Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., ... & Dubash, N. K. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). IPCC.
50. Park, D., Jang, S., & Roesner, L. A. (2014). Evaluation of multi‐use stormwater detention basins for improved urban watershed management. Hydrological Processes, 28(3), 1104-1113.
51. Rundle, A., Quinn, J., Lovasi, G., Bader, M. D., Yousefzadeh, P., Weiss, C., & Neckerman, K. (2013). Associations between body mass index and park proximity, size, cleanliness, and recreational facilities. American Journal of Health Promotion, 27(4), 262-269.
52. Song, M., An, Q., Zhang, W., Wang, Z., & Wu, J. (2012). Environmental efficiency evaluation based on data envelopment analysis: a review. Renewable and Sustainable Energy Reviews, 16(7), 4465-4469.
53. Syrbe, R. U., & Walz, U. (2012). Spatial indicators for the assessment of ecosystem services: providing, benefiting and connecting areas and landscape metrics. Ecological indicators, 21, 80-88.
54. Tallis, H. (2011). Natural capital: theory and practice of mapping ecosystem services. Oxford University Press.
55. Thanassoulis, E. (1993). A comparison of regression analysis and data envelopment analysis as alternative methods for performance assessments. Journal of the operational research society, 44(11), 1129-1144.
56. Thore, S., Phillips, F., Ruefli, T. W., & Yue, P. (1996). DEA and the management of the product cycle: The US computer industry. Computers & Operations Research, 23(4), 341-356.
57. UKNEA. 2011. The UK National Ecosystem Assessment: Technical Report. UNEP-WCMC. Cambridge.
58. Vojinovic, Z., Keerakamolchai, W., Weesakul, S., Pudar, R., Medina, N., & Alves, A. (2017). Combining ecosystem services with cost-benefit analysis for selection of green and grey infrastructure for flood protection in a cultural setting. Environments, 4(1), 3.
59. Walton, W. E., Workman, P. D., Randall, L. A., Jiannino, J. A., & Offill, Y. A. (1998). Effectiveness of control measures against mosquitoes at a constructed wetland in southern California. Journal of vector ecology, 23, 149-160.
60. Wise, S., Braden, J., Ghalayini, D., Grant, J., Kloss, C., MacMullan, E., ... & Peck, S. (2010). Integrating valuation methods to recognize green infrastructure’s multiple benefits. Low impact development, 2010, 1123-1143.
61. Zhou, Q. (2014). A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water, 6(4), 976-992.
62. Zhou, Q., Panduro, T. E., Thorsen, B. J., & Arnbjerg-Nielsen, K. (2013). Adaption to extreme rainfall with open urban drainage system: An integrated hydrological cost-benefit analysis. Environmental management, 51(3), 586-601.
63. 內政部建築研究所(2014)。都市計畫通盤檢討有關減洪規劃作業手冊之研議. 新北市:內政部建築研究所。
64. 內政部營建署(2014)。都市總合治水綱要計畫。
65. 台中市政府水利局(2018)。「流域綜合治理計畫」 逕流分擔與出流管制試辦操作 —以大里溪流域為例委託專業服務,台中市政府2018。
66. 台中市政府主計處(2014)。100年臺中市工商及服務業普查。
67. 行政院公共工程委員會(2017)。政府公共工程計畫與經費審議作業要點,行政院公共工程委員會,2017年12月。
68. 行政院公共工程委員會(2018)。「環境保護費及工地安全衛生費」。
69. 行政院公共工程委員會(2015)。公共建設工程經費估算編列手冊. 臺北市: 行政院文化建設委員會。
70. 行政院經濟建設委員會(2008)。公共建設計畫經濟效益評估及財務計畫作業手冊。
71. 行政院環保署(2013)。降雨逕流非點源汙染最佳管理技術(BMPS)手冊。
72. 吳振發、林裕彬、朱宏杰、黃韜、蕭戎雯(2012)。農田水利生態工程減碳效益評估方法之建立。農業工程學報 58:1 2012.03[民101.03] 頁33-46。
73. 吳濟華、何柏正(2009)。組織效率與生產力評估:資料包絡分析法.前程文化
74. 李皎榮(2004)。都市計畫區公園用地開發經營策略之研究-以高雄市公園用地為例。國立成功大學建築學系專班碩士論文,台南市。取自https://hdl.handle.net/11296/tf74wa。
75. 林子平、何友鋒、楊鴻銘(2005)。都市地表不透水率之預估與分析:以台中市為例。都市與計劃,32(3),333-354。doi:10.6128/CP.32.3.333。
76. 林文欽、李佩蓉(2004)。近河段都會區利用雨水貯留系統降低逕流量之研究。 第十四屆水利工程研討會。
77. 林逸璇(2016)。以生態環境影響觀點探討滯洪公園之共效益。國立成功大學都市計劃學系碩士論文,台南市。取自https://hdl.handle.net/11296/6dtjp7。
78. 姜承吾(1998)。應用水文學。科技圖書。
79. 施上粟、黃國文、黃志偉、洪崇航、任秀慧(2016)。滯洪池濕地生態功能評價指數建立及應用。農業工程學報62(3),1-12。doi:10.29974/JTAE.201609_62(3).0001。
80. 柯佩婷(2006)。都市土地使用發展之環境績效評估-以永康市為例。國立成功大學都市計劃學系碩博士班碩士論文,台南市。取自https://hdl.handle.net/11296/m55xj8
81. 高強(2003)。管理績效評估:資料包絡分析法 (初版)。台灣:華泰文化。
82. 國家災害防救科技中心(2016)。臺灣災害損失評估研究與應用規劃。
83. 張四明(2001)。成本效益分析在政府決策上的應用與限制。行政暨政策學報, (3),45–80。
84. 張學聖、廖晉賢(2013)。臺南市土地使用計畫之水災風險分析。都市與計劃, 40(1), 59-79。
85. 張學聖、廖晉賢(2014)。複合性災害評估架構研究: 莫拉克風災為例。都市與計劃,41(3),305-327.
86. 黃成甲、許銘熙、李懿軒(2014)。格網局部細化之淹水平行演算模式。農業工程學報 60(2), 85-100。
87. 黃韜(2012)。地景變遷對生態系統服務影響之研究。國立臺灣大學生物環境系統工程學研究所碩士論文,台北市。取自https://hdl.handle.net/11296/b4ntgm。
88. 新北市水利局(2012)。「透水保水設施規劃手冊」新北市水利局,民國101 年。
89. 楊子廣(2006)。都市公園系統可及性水準之研究-以台南市計畫都市公園為例。國立成功大學都市計劃學系碩博士班碩士論文,台南市。取自https://hdl.handle.net/11296/7ddt2n。
90. 楊智強(2009)。台灣22縣市之效率評估-Undesirable Output之應用。東吳大學經濟學系碩士論文,台北市。取自https://hdl.handle.net/11296/2yhzwj
91. 經濟部水利署(2009)。水資源空間資料料標準—河川類類。
92. 經濟部水利署(2014)。修正「流域綜合治理計畫(103-108年) 」 (核定本)。
93. 經濟部水利署(2015)。水災潛勢圖資更新研發及加值應用,2015年12月。
94. 經濟部水利署水利規劃試驗所(2004)。區域淹水損失圖建立先行計畫,2004年12月。
95. 經濟部水利署水利規劃試驗所(2006)。滯洪設施模式分析評估與規劃設計標準作業程序之研究。
96. 經濟部水利署水利規劃試驗所(2006)。滯洪設施模式分析評估與規劃設計標準作業程序之研究(2/2)。
97. 經濟部水利署水利規劃試驗所(2007)。防洪工程經濟效益評估之檢討修正。
98. 經濟部水利署水利規劃試驗所(2013)。淹水深度與損失關係研究:水文地文區域化不確定性對西南沿海淹水敏感區之影響研究(2/2), 2013年12月。P.113。
99. 經濟部水利署水利規劃試驗所(2013)都會區洪水災害損失調查分析(1/2) ,2013年12月。
100. 經濟部水利署水利規劃試驗所(2013)。淹水深度與損失關係研究:水文地文區域化不確定性對西南沿海淹水敏感區之影響研究(2/2)。
101. 經濟部水利署水利規劃試驗所(2016) 運用閒置公有(營)土地做為滯洪設施之研究。
102. 經濟部水利署水利規劃試驗所,2009。防洪工程經濟效益評估之檢討修正總報告。
103. 劉漢奎、陳建良(2012)。都市公園綠地外部性之空間分析─以臺中市為例。國立彰化師範大學文學院學報,(6),243–257。
104. 賴承農、林伯勳、許振崑、冀樹勇、簡以達、蔡明發(2013)。曾文南化烏山頭水庫集水區防砂設施調查及河道防砂量評估,水保技術,8(1), 35-41。
105. 謝昕穎(2013)。減洪式土地使用規劃架構之研究-以高雄新市鎮為例。國立成功大學都市計劃學系碩博士班碩士論文,台南市。 取自https://hdl.handle.net/11296/8h5xvp。
106. 闕裕倫(2015)。都市滯洪公園與地區房價關聯性研究 - 以高雄市三民區為例。國立成功大學都市計劃學系碩士論文,台南市。 取自https://hdl.handle.net/11296/35g6j5。
網路資源
1. 內政部消防局(2018)歷年災害紀錄https://www.nfa.gov.tw/cht/index.php?code=list&ids=77,取用日期:2019年5月24
2. 台北市政府(2013)臺北市政府工程經費估算原則http://www.rootlaw.com.tw/LawContent.aspx?LawID=B010060031002300-1020827,取用日期:2019年5月24
3. 行政院農業委員會 (2015)行政院農業委員會農業試驗所土壤資料供應查詢平台https://data.coa.gov.tw/Query/ServiceDetail.aspx?id=159,取用日期:2019年5月24
4. 經濟部(2016)經濟部水利署颱風或豪雨事件淹水災害調查作業注意事項http://wralaw.wra.gov.tw/wralawgip/cp.jsp?lawId=8ab8b1aa5d3aa47001608c82c3e915d0,取用日期:2019年5月24
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-06-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-06-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw