
系統識別號 
U00262306201900490700 
論文名稱(中文) 
多載波多細胞蜂巢網路下之資源分配與干擾抑制演算法設計 
論文名稱(英文) 
Resource Allocation and Interference Suppression Algorithms for Multicarrier Multicell Cellular Networks 
校院名稱 
成功大學 
系所名稱(中) 
電腦與通信工程研究所 
系所名稱(英) 
Institute of Computer & Communication 
學年度 
107 
學期 
2 
出版年 
108 
研究生(中文) 
池宗修 
研究生(英文) 
TsungHsiu Chih 
學號 
Q38991158 
學位類別 
博士 
語文別 
英文 
論文頁數 
60頁 
口試委員 
指導教授蘇賜麟 召集委員侯延昭 口試委員吳承崧 口試委員劉光浩 口試委員郭文光 口試委員張志文

中文關鍵字 
蜂巢網路
單輸入單輸出
多輸入多輸出
資源管理
干擾抑制
圖形理論
預編碼
主成分分析

英文關鍵字 
Cellular networks
SISO
MIMO
resource management
interference suppression
graph theory
precoding
principal component analysis

學科別分類 

中文摘要 
針對多細胞多載波蜂巢網路，本論文分別提出在singleinputsingleoutput (SISO)與multipleinputmultipleoutput (MIMO)環境下之資源分配與干擾抑制演算法設計。在SISO蜂巢網路下，本論文所提出之演算法包括初始資源分配與用戶補償兩部分，第一部分結合圖學理論(Graph Theory)，將每個載波分配給擁有較佳通道品質與低互干擾之行動用戶，第二部分則針對於執行第一部分後仍不滿足服務品質用戶進行補償。為了更進一步提升頻譜效益，本論文進一步討論在MIMO蜂巢網路下之資源分配與干擾抑制演算法設計，為了避免系統內大量資料交換，本演算法首先提出一個分散式載波分配機制，使每個基地台能獨立於每個載波內分配一組擁有semiorthogonal通道之行動用戶，接下來採用block diagonalization (BD)預編碼來處理細胞內與鄰近細胞間干擾問題，為了克服在MIMO環境下之可用維度(degree of freedom, DoF)不足問題，該BDtype預編碼設計將有限的DoF分為兩部分，一部分用來處理較為嚴重的細胞內干擾問題，另一部分則採用principal component analysis (PCA)特性找出對鄰近細胞的主要干擾，並完全消除之，以達到降低對鄰近細胞干擾之目的。本論文針對不同環境所提出之演算法，模擬結果均顯示，相較於其他方法，皆能提供較多滿足服務品質之行動用戶。

英文摘要 
This thesis considers the multicarrier multicell cellular networks, and addresses on the resource allocation and interference suppression for the singleinputsingleoutput (SISO) and multipleinputmultipleoutput (MIMO) scenarios. For the SISO cellular networks, the proposed algorithm consists of an initial assignment phase and a compensation phase. The first phase adopts graph theory, and each subcarrier is assigned to mobile users with higher channel gain and lower mutual cochannel interference. The second phase compensates the mobile users who do not get adequate resources to meet the requirement of quality of service (QoS) after the first phase. In order to improve spectrum efficiency, this thesis further studies the resource allocation and interference suppression for the MIMO cellular networks. To avoid enormous channelstateinformation (CSI) exchange among base stations (BSs), this algorithm presents a distributed subcarrier assignment scheme that each sector’s BS independently assigns a subset of served mobile users, which channel gains of a particular subcarrier hold semiorthogonal property, to be served over the subcarrier. Then, a BDtype precoding is presented to deal with both intrauser interference (IUI) and intercell interference (ICI). To overcome the insufficient degreeoffreedom (DoF) problem for the MIMO environment, the available DoF is divided into two parts: The first part is used to handle the severe IUI, and the second part is used to suppress the major part of the leakage interference to the adjacent sectors by exploiting principal component analysis. In this thesis, for both SISO and MIMO cellular networks, the simulation results show that both proposed algorithms can provide more QoSsatisfied UEs than previous work.

論文目次 
摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Tables v
List of Figures vi
1.Introduction 1
2.Resource Allocation to Reduce Interference for Multicell SISO Systems 3
21.Literature survey 3
22.System Model 6
23.Two phase Subcarrier Allocation 9
231.Initial Assignment Phase 10
232.Compensation Phase 17
24.Performance Evaluation of Twophase Algorithm 20
241.Thresholds Discussion 21
242.Performance Comparison 25
3.Resource Allocation and Interference Suppression for Multicell MUMIMO Systems 27
31.Literature survey 27
32.System Model 31
33.Distribution Subcarrier Assignment 35
34.Block Diagonalization Precoding with PCA 40
341.Principal Component Analysis (PCA) 41
342.Block Diagonalization (BD) 43
35.Complexity Analysis 46
36.Performance Evaluations of BDtype Precoding with PCA 47
361.Thresholds Discussion 48
362.Performance Comparison 51
4.Conclusions 54
References 55

參考文獻 
[1]G. Song and Y. Li, “Crosslayer optimization for OFDM wireless networks—part I: theoretical framework,” IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 614–624, Mar. 2005.
[2]I. Kim, I. S. Park, and Y. H. Lee, “Use of linear programming for dynamic subcarrier and bit allocation in multiuser OFDM,” IEEE Trans. Veh. Technol., vol. 55, no. 4, pp. 1195–1207, July 2006.
[3]S. H. Ali and V. C. M. Leung, “Dynamic frequency allocation in fractional frequency reused OFDMA networks,” IEEE Trans. Wireless Commun., vol. 8, no. 8, pp. 4286–4295, Aug. 2009.
[4]C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit and power allocation,” IEEE J. Sel. Areas Commun., vol. 17, no. 10, pp. 1747–1758, Oct. 1999.
[5]N. Y. Ermolova and B. Makarevitch, “Low complexity adaptive power and subcarrier allocation for OFDMA,” IEEE Trans. Wireless Commun., vol. 6, no. 2, pp. 433–437, Feb. 2007.
[6]A. Ganti, T. E. Klein, and M. Haner, “Base station assignment and power control algorithms for data users in a wireless multiaccess framework,” IEEE Trans. Wireless Commun., vol. 5, no. 9, pp. 2493–2503, Sep. 2006.
[7]S. Sadr, A. Anpalagan, and K. Raahemifar, “Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems,” IEEE Commun. Surveys Tuts., vol. 11, no. 3, pp. 92–106, 2009.
[8]G. Li and H. Liu, “Downlink radio resource allocation for multicell OFDMA system,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp.3451–3459, Dec. 2006.
[9]L. Venturino, N. Prasad, and X. Wang, “Coordinated scheduling and power allocation in downlink multicell OFDMA networks,” IEEE Trans. Veh. Technol., vol. 58, no. 6, pp. 2835–2848, Jul. 2009.
[10]S. Gault, W. Hachem, and P. Ciblat, “Performance analysis of an OFDMA transmission system in a multicell environment,” IEEE Trans. Commun., vol. 55, no. 4, pp. 740–751, Apr. 2007.
[11]H. Lei, L. Zhang, X. Zhang, and D. Yang, “A novel multicell OFDMA system structure using fractional frequency reuse,” in Proc. IEEE PIMRC, pp. 1–5, Sep. 2007.
[12]R. Ghaffar and R. Knopp, “Fractional frequency reuse and interference suppression for OFDMA networks,” in Proc. 8th Int. Symp. Modeling Optimization Mobile, Ad Hoc Wireless Netw., pp. 273–277, May 2010.
[13]K. Doppler, C. Wijting, and K. Valkealahti, “Interference aware scheduling for soft frequency reuse,” in Proc. IEEE 69th Vehicular Technology Conference, pp. 1–5, Apr. 2009.
[14]M. Bohge, J. Gross, and A. Wolisz, “Optimal power masking in soft frequency reuse based OFDMA networks,” in Proc. European Wireless Conference, pp. 162–166, 2009.
[15]C. Kosta, B. Hunt, A. U. Quddus, and R. Tafazolli, “On interference avoidance through intercell interference coordination (ICIC) based on OFDMA mobile systems,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 973–995, 2013.
[16]A. S. Hamza, S. S. Khalifa, H. S. Hamza, and K. Elsayed, “A survey on intercell interference coordination techniques in OFDMAbased cellular networks,” IEEE Commun. Surveys Tuts., vol. 15, no. 4, pp. 1642–1670, 2013.
[17]G. lv, S. Zhu, and H. Hui, “A distributed power allocation algorithm with intercell interference coordination for multicell OFDMA systems,” in Proc. IEEE GLOBECOM, pp. 1–6, 2009.
[18]D. LópezPérez, Í. Güvenç, G. de la Roche, M. Kountouris, T. Q. S. Quek, and J. Zhang, “Enhanced intercell interference coordination challenges in heterogeneous networks,” IEEE Wireless Commun. Mag., vol. 18, no. 3, pp. 22–30, Jun. 2011.
[19]G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, “Interference coordination and cancellation for 4G networks,” IEEE Commun. Mag., vol. 47, no. 4, pp. 74–81, Apr. 2009.
[20]E. Jorswieck and R. Mochaourab, “Power control game in protected and shared bands: Manipulability of Nash equilibrium,” in Proc. Int. Conf. Game Theory for Networks, pp. 428–437, 2009.
[21]Q. D. La, Y. H. Chew, and B.H. Soong, “An interference minimization game theoretic subcarrier allocation algorithm for OFDMAbased distributed systems,” in Proc. IEEE GLOBECOM, pp. 2799–2804, Dec. 2009.
[22]Q. Yu, J. Chen, Y. Fan, X. Shen, and Y. Sun, “Multichannel assignment in wireless sensor networks: A game theoretic approach,” in Proc. IEEE INFOCOM, pp. 1127–1135, 2010.
[23]M. C. Necker, “Interference coordination in cellular OFDMA networks,” IEEE Network, vol. 22, no. 6, pp. 12–19, 2008.
[24]R. Y. Chang, Z. Tao, J. Zhang, and C. C. J. Kuo, “A graph approach to dynamic fractional frequency reuse (FFR) in multicell OFDMA networks,” in Proc. Int. Conf. Commun., pp. 1–6, Jun. 2009.
[25]R. Y. Chang, Z. Tao, J. Zhang, and C.C. J. Kuo, “Multicell OFDMA downlink resource allocation using a graphic framework,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3494–3507, Sep. 2009.
[26]H. Zhang, H. Liu, J. Cheng, and V. C. M. Leung, “Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks,” IEEE Trans. Commun., vol. 66, no. 4, pp. 1705–1716, 2018.
[27]H. Zhang, N. Liu, K. Long, J. Cheng, V. C. M. Leung, and L. Hanzo, “Energy efficient subchannel and power allocation for the software defined heterogeneous VLC and RF networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 3, pp. 658–670, 2018.
[28]N. Mokari, F. Alavi, S. Parsaeefard, and T. LeNgoc, “Limitedfeedback resource allocation in heterogeneous cellular networks,” IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2509–2521, 2016.
[29]H. Zhang, N. Yang, K. Long, M. Pan, G. K. Karagiannidis, and V. C. M. Leung, “Secure communications in NOMA system: subcarrier assignment and power allocation,” IEEE J. Sel. Areas Commun., vol. 36, no. 7, pp. 1441–1452, 2018.
[30]M. Yassin, S. Lahoud, M. Ibrahim, K. Khawam, D. Mezher, and B. Cousin, “Cooperative resource management and power allocation for multiuser OFDMA networks,” IET Commun., vol. 11, no. 16, pp. 2552–2559, 2017.
[31]L. Ferdouse, W. Ejaz, K. Raahemifar, A. Anpalagan, and M. Markandaier, “Interference and throughput aware resource allocation for multiclass D2D in 5G networks,” IET Commun., vol. 11, no. 8, pp. 1241–1250, 2017.
[32]C. Nam, C. Joo, and S. Bahk, “Joint subcarrier assignment and power allocation in fullduplex OFDMA networks,” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3108–3119, 2015.
[33]Y. Kang, K. Kim, and H. Park, “Efﬁcient DFTbased channel estimation for OFDM systems on multipath channels,” IET Commun., vol. 1, no. 2, pp. 197–202, 2007.
[34]F. Coelho, R. Dinis, and P. Montezuma, “Efﬁcient channel estimation for single frequency broadcast systems,” in Proc. VTC, pp. 1–6, 2011.
[35]J. K. Raval, V. K. Patel, and D. J. Shah, “Research on pilot based channel estimation for LTE downlink using LS and MMSE technique,” International Journal of Electronics and Communication Engineering and Technology, vol. 4, no. 3, pp. 70–82, 2013.
[36]Y.S. Liu, S. D. You, and Y.Mi. Liu, “Iterative channel estimation method for longterm evolution downlink transmission,” IET Commun., vol. 9, no. 5, pp. 1906–1914, 2015.
[37]D. J. A. Welsh and M. B. Powell, “An upper bound for the chromatic number of a graph and its application to timetabling problems,” The Computer Journal, vol.10, no.1, pp. 85–86, 1967.
[38]E. Castañeda, A. Silva, A. Gameiro, and M. Kountouris, “An overview on resource allocation techniques for multiuser MIMO systems,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 239–284, 1st Quart., 2017.
[39]G. G. Girmay, Q.V. Pham, and W. J. Hwang, “Joint channel and power allocation for devicetodevice communication on licensed and unlicensed band,” IEEE Access, vol. 7, pp. 22196–22205, 2019.
[40]M. Joham, W. Utschick, and J. A. Nossek, “Linear transmit processing in MIMO communication systems,” IEEE Trans. Signal processing, vol. 53, no. 8, pp. 2700–2712, Aug. 2005.
[41]P. Xiao and M. Sellathurai, “Improved linear transmit processing for singleuser and multiuser MIMO communications systems,” IEEE Trans. Signal processing, vol. 58, no. 3, pp. 1768–1779, Mar. 2010.
[42]D. H. N. Nguyen and T. LeNgoc, “Sumrate maximization in the multicell MIMO broadcast channel with interference coordination,” IEEE Trans. Signal Processing, vol. 62, no. 6, pp. 1501–1513, Mar. 2014.
[43]S. Huang, H. Yin, J. Wu, and V. C. M. Leung, “User selection for multiuser MIMO downlink with zeroforcing beamforming,” IEEE Trans. Veh. Technol., vol. 62, no. 7, pp. 3084–3097, Sep. 2013.
[44]H. Huh, A. M. Tulino, and G. Caire, “Network MIMO with linear zeroforcing beamforming: Large system analysis, impact of channel estimation, and reducedcomplexity scheduling,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 2911–2934, May 2012.
[45]Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Processing, vol. 52, no. 2, pp. 461–471, Feb. 2004.
[46]P. S. Udupa and J. S. Lehnert, “Optimizing zeroforcing precoders for MIMO broadcast systems,” IEEE Trans. Commun., vol. 55, no. 8, pp. 1516–1524, Aug. 2007.
[47]L.N. Tran, M. Juntti, and E.K. Hong, “On the precoder design for block diagonalized MIMO broadcast channels,” IEEE Trans. Commun. Lett., vol. 16, no. 8, pp. 1165–1168, Aug. 2012.
[48]Y.S. Jeon, Y.J. Kim, M. Min, and G.H. Im, “Distributed block diagonalization with selective zero forcing for multicell MUMIMO systems,” IEEE Trans. Signal Processing Lett. , vol. 21, no. 5, pp. 605–609, May 2014.
[49]M. Ding and S. D. Blostein, “MIMO minimum total MSE transceiver design with imperfect CSI at both ends,” IEEE Trans. Signal Processing, vol. 57, no. 3, pp. 1141–1150, Mar. 2009.
[50]D. H. N. Nguyen, L. B. Le, T. LeNgoc, and R. W. Heath, “Hybrid MMSE precoding and combining designs for mmWave multiuser systems,” IEEE Access, vol. 5, pp. 19167–19181, Oct. 2017.
[51]M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inform. Theory, vol. 29, no. 3, pp. 439–441, May 1983.
[52]H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the Gaussian MIMO broadcast channel,” in Proc. IEEE International Symp. Inform. Theory, June 2004.
[53]T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zeroforcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 528–541, Mar. 2006.
[54]Z. Shen , R. Chen , J. G. Andrews , R. W. Heath and B. L. Evans, “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Trans. Signal Processing, vol. 54, no. 9, pp. 3658–3663, Sep. 2006.
[55]L. Jin , X. Gu and Z. Hu, “Lowcomplexity scheduling strategy for wireless multiuser multipleinput multipleoutput downlink system,” IET Commun., vol. 5, no. 7, pp. 990–995, 2011.
[56]K. Ko and J. Lee, “Multiuser MIMO user selection based on chordal distance,” IEEE Trans. Commun., vol. 60, no. 3, pp. 649–654, Mar. 2012.
[57]S. Nam, J. Kim, and Y. Han, “A user selection algorithm using angle between subspaces for downlink MUMIMO systems,” IEEE Trans. Commun., vol. 62, no. 2, pp. 616–624, Feb. 2014.
[58]W. Liu, S. X. Ng, and L. Hanzo, “Multicell cooperation based SVD assisted multiuser MIMO transmissions,” in Proc. IEEE VTC Fall, 2009.
[59]J. Zhang, R. Chen, J. G. Andrews, A. Ghosh, and R.W. Heath, “Networked MIMO with clustered linear precoding,” IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 1910–1921, Apr. 2009.
[60]M. H. A. Khan, K. M. Cho, M. H. Lee, and M. H. Mustary, “Multicell block diagonalization precoding for multiuser MIMO broadcast channel,” in Proc. IEEE Broadband Multimedia Systems and Broadcasting (BMSB), 2014.
[61]R. Holakouei, A. Silva, and A. Gameiro, “Linear preocding for centralized multicell MIMIO networks,” in Proc. IEEE ISCC, 2011.
[62]S. Shim, J. S. Kwak, R.W. Heath, J. G. Andrews, “Block diagonalization for multiuser MIMO with othercell interference,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2671–2681, Jul. 2008.
[63]D. H. N. Nguyen, H. NguyenLe, and T. LeNgoc, “Blockdiagonalization precoding in a multiuser multicell MIMO system: competition and coordination,” IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 968–981, Feb. 2014.
[64]E. Castañeda, A. Silva, R. SamanoRobles, and A. Gameiro, “Distributed linear precoding and user selection in coordinated multicell systems,” IEEE Trans. Veh. Technol., vol. 65, no. 7, pp. 4887–4899, Jul. 2016.
[65]J. Edward Jackson, “A User's Guide to Principal Components,” 2003.
[66]A. Hyvärinen, J. Karhunen, and E. Oja, “Independent Component Analysis,” 2004.
[67]I.T. Jolliffe, “Principal Component Analysis,” 2002.
[68]R. Bro and A. K. Smilde, “Principal component analysis,” Analysis Methods, vol. 9, pp. 2812–2831, 2014, DOI:10.1039/C3AY41907J.
[69]M. Sadek, A. Tarighat and A. H. Sayed, “A leakagebased precoding scheme for downlink multiuser MIMO channels,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1711–1721, May 2007.
[70]J.G.F. Francis, “The QR TransformationPart II”, The Computer Journal, vol.4, no. 4, pp. 332–345, 1962.
[71]W.C. Pao and Y.F. Chen, “Reduced complexity subcarrier allocation schemes for DFTprecoded OFDMA uplink systems,” IEEE Trans. Wireless Commun., vol. 9, no. 9, pp. 2701–2706, 2010.
[72]3GPP TR 36.839, “Mobility enhancements in heterogeneous networks.”

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20190628起公開。 


