進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2306201900490700
論文名稱(中文) 多載波多細胞蜂巢網路下之資源分配與干擾抑制演算法設計
論文名稱(英文) Resource Allocation and Interference Suppression Algorithms for Multicarrier Multicell Cellular Networks
校院名稱 成功大學
系所名稱(中) 電腦與通信工程研究所
系所名稱(英) Institute of Computer & Communication
學年度 107
學期 2
出版年 108
研究生(中文) 池宗修
研究生(英文) Tsung-Hsiu Chih
學號 Q38991158
學位類別 博士
語文別 英文
論文頁數 60頁
口試委員 指導教授-蘇賜麟
召集委員-侯延昭
口試委員-吳承崧
口試委員-劉光浩
口試委員-郭文光
口試委員-張志文
中文關鍵字 蜂巢網路  單輸入單輸出  多輸入多輸出  資源管理  干擾抑制  圖形理論  預編碼  主成分分析 
英文關鍵字 Cellular networks  SISO  MIMO  resource management  interference suppression  graph theory  precoding  principal component analysis 
學科別分類
中文摘要 針對多細胞多載波蜂巢網路,本論文分別提出在single-input-single-output (SISO)與multiple-input-multiple-output (MIMO)環境下之資源分配與干擾抑制演算法設計。在SISO蜂巢網路下,本論文所提出之演算法包括初始資源分配與用戶補償兩部分,第一部分結合圖學理論(Graph Theory),將每個載波分配給擁有較佳通道品質與低互干擾之行動用戶,第二部分則針對於執行第一部分後仍不滿足服務品質用戶進行補償。為了更進一步提升頻譜效益,本論文進一步討論在MIMO蜂巢網路下之資源分配與干擾抑制演算法設計,為了避免系統內大量資料交換,本演算法首先提出一個分散式載波分配機制,使每個基地台能獨立於每個載波內分配一組擁有semi-orthogonal通道之行動用戶,接下來採用block diagonalization (BD)預編碼來處理細胞內與鄰近細胞間干擾問題,為了克服在MIMO環境下之可用維度(degree of freedom, DoF)不足問題,該BD-type預編碼設計將有限的DoF分為兩部分,一部分用來處理較為嚴重的細胞內干擾問題,另一部分則採用principal component analysis (PCA)特性找出對鄰近細胞的主要干擾,並完全消除之,以達到降低對鄰近細胞干擾之目的。本論文針對不同環境所提出之演算法,模擬結果均顯示,相較於其他方法,皆能提供較多滿足服務品質之行動用戶。
英文摘要 This thesis considers the multicarrier multicell cellular networks, and addresses on the resource allocation and interference suppression for the single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) scenarios. For the SISO cellular networks, the proposed algorithm consists of an initial assignment phase and a compensation phase. The first phase adopts graph theory, and each subcarrier is assigned to mobile users with higher channel gain and lower mutual co-channel interference. The second phase compensates the mobile users who do not get adequate resources to meet the requirement of quality of service (QoS) after the first phase. In order to improve spectrum efficiency, this thesis further studies the resource allocation and interference suppression for the MIMO cellular networks. To avoid enormous channel-state-information (CSI) exchange among base stations (BSs), this algorithm presents a distributed subcarrier assignment scheme that each sector’s BS independently assigns a subset of served mobile users, which channel gains of a particular subcarrier hold semi-orthogonal property, to be served over the subcarrier. Then, a BD-type precoding is presented to deal with both intra-user interference (IUI) and inter-cell interference (ICI). To overcome the insufficient degree-of-freedom (DoF) problem for the MIMO environment, the available DoF is divided into two parts: The first part is used to handle the severe IUI, and the second part is used to suppress the major part of the leakage interference to the adjacent sectors by exploiting principal component analysis. In this thesis, for both SISO and MIMO cellular networks, the simulation results show that both proposed algorithms can provide more QoS-satisfied UEs than previous work.
論文目次 摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Tables v
List of Figures vi
1.Introduction 1
2.Resource Allocation to Reduce Interference for Multicell SISO Systems 3
2-1.Literature survey 3
2-2.System Model 6
2-3.Two phase Subcarrier Allocation 9
2-3-1.Initial Assignment Phase 10
2-3-2.Compensation Phase 17
2-4.Performance Evaluation of Two-phase Algorithm 20
2-4-1.Thresholds Discussion 21
2-4-2.Performance Comparison 25
3.Resource Allocation and Interference Suppression for Multicell MU-MIMO Systems 27
3-1.Literature survey 27
3-2.System Model 31
3-3.Distribution Subcarrier Assignment 35
3-4.Block Diagonalization Precoding with PCA 40
3-4-1.Principal Component Analysis (PCA) 41
3-4-2.Block Diagonalization (BD) 43
3-5.Complexity Analysis 46
3-6.Performance Evaluations of BD-type Precoding with PCA 47
3-6-1.Thresholds Discussion 48
3-6-2.Performance Comparison 51
4.Conclusions 54
References 55
參考文獻 [1]G. Song and Y. Li, “Cross-layer optimization for OFDM wireless networks—part I: theoretical framework,” IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 614–624, Mar. 2005.
[2]I. Kim, I. S. Park, and Y. H. Lee, “Use of linear programming for dynamic subcarrier and bit allocation in multiuser OFDM,” IEEE Trans. Veh. Technol., vol. 55, no. 4, pp. 1195–1207, July 2006.
[3]S. H. Ali and V. C. M. Leung, “Dynamic frequency allocation in fractional frequency reused OFDMA networks,” IEEE Trans. Wireless Commun., vol. 8, no. 8, pp. 4286–4295, Aug. 2009.
[4]C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit and power allocation,” IEEE J. Sel. Areas Commun., vol. 17, no. 10, pp. 1747–1758, Oct. 1999.
[5]N. Y. Ermolova and B. Makarevitch, “Low complexity adaptive power and subcarrier allocation for OFDMA,” IEEE Trans. Wireless Commun., vol. 6, no. 2, pp. 433–437, Feb. 2007.
[6]A. Ganti, T. E. Klein, and M. Haner, “Base station assignment and power control algorithms for data users in a wireless multiaccess framework,” IEEE Trans. Wireless Commun., vol. 5, no. 9, pp. 2493–2503, Sep. 2006.
[7]S. Sadr, A. Anpalagan, and K. Raahemifar, “Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems,” IEEE Commun. Surveys Tuts., vol. 11, no. 3, pp. 92–106, 2009.
[8]G. Li and H. Liu, “Downlink radio resource allocation for multi-cell OFDMA system,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp.3451–3459, Dec. 2006.
[9]L. Venturino, N. Prasad, and X. Wang, “Coordinated scheduling and power allocation in downlink multicell OFDMA networks,” IEEE Trans. Veh. Technol., vol. 58, no. 6, pp. 2835–2848, Jul. 2009.
[10]S. Gault, W. Hachem, and P. Ciblat, “Performance analysis of an OFDMA transmission system in a multicell environment,” IEEE Trans. Commun., vol. 55, no. 4, pp. 740–751, Apr. 2007.
[11]H. Lei, L. Zhang, X. Zhang, and D. Yang, “A novel multi-cell OFDMA system structure using fractional frequency reuse,” in Proc. IEEE PIMRC, pp. 1–5, Sep. 2007.
[12]R. Ghaffar and R. Knopp, “Fractional frequency reuse and interference suppression for OFDMA networks,” in Proc. 8th Int. Symp. Modeling Optimization Mobile, Ad Hoc Wireless Netw., pp. 273–277, May 2010.
[13]K. Doppler, C. Wijting, and K. Valkealahti, “Interference aware scheduling for soft frequency reuse,” in Proc. IEEE 69th Vehicular Technology Conference, pp. 1–5, Apr. 2009.
[14]M. Bohge, J. Gross, and A. Wolisz, “Optimal power masking in soft frequency reuse based OFDMA networks,” in Proc. European Wireless Conference, pp. 162–166, 2009.
[15]C. Kosta, B. Hunt, A. U. Quddus, and R. Tafazolli, “On interference avoidance through inter-cell interference coordination (ICIC) based on OFDMA mobile systems,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 973–995, 2013.
[16]A. S. Hamza, S. S. Khalifa, H. S. Hamza, and K. Elsayed, “A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks,” IEEE Commun. Surveys Tuts., vol. 15, no. 4, pp. 1642–1670, 2013.
[17]G. lv, S. Zhu, and H. Hui, “A distributed power allocation algorithm with inter-cell interference coordination for multi-cell OFDMA systems,” in Proc. IEEE GLOBECOM, pp. 1–6, 2009.
[18]D. López-Pérez, Í. Güvenç, G. de la Roche, M. Kountouris, T. Q. S. Quek, and J. Zhang, “Enhanced intercell interference coordination challenges in heterogeneous networks,” IEEE Wireless Commun. Mag., vol. 18, no. 3, pp. 22–30, Jun. 2011.
[19]G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, “Interference coordination and cancellation for 4G networks,” IEEE Commun. Mag., vol. 47, no. 4, pp. 74–81, Apr. 2009.
[20]E. Jorswieck and R. Mochaourab, “Power control game in protected and shared bands: Manipulability of Nash equilibrium,” in Proc. Int. Conf. Game Theory for Networks, pp. 428–437, 2009.
[21]Q. D. La, Y. H. Chew, and B.-H. Soong, “An interference minimization game theoretic subcarrier allocation algorithm for OFDMA-based distributed systems,” in Proc. IEEE GLOBECOM, pp. 2799–2804, Dec. 2009.
[22]Q. Yu, J. Chen, Y. Fan, X. Shen, and Y. Sun, “Multi-channel assignment in wireless sensor networks: A game theoretic approach,” in Proc. IEEE INFOCOM, pp. 1127–1135, 2010.
[23]M. C. Necker, “Interference coordination in cellular OFDMA networks,” IEEE Network, vol. 22, no. 6, pp. 12–19, 2008.
[24]R. Y. Chang, Z. Tao, J. Zhang, and C. -C. J. Kuo, “A graph approach to dynamic fractional frequency reuse (FFR) in multi-cell OFDMA networks,” in Proc. Int. Conf. Commun., pp. 1–6, Jun. 2009.
[25]R. Y. Chang, Z. Tao, J. Zhang, and C.-C. J. Kuo, “Multicell OFDMA downlink resource allocation using a graphic framework,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3494–3507, Sep. 2009.
[26]H. Zhang, H. Liu, J. Cheng, and V. C. M. Leung, “Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks,” IEEE Trans. Commun., vol. 66, no. 4, pp. 1705–1716, 2018.
[27]H. Zhang, N. Liu, K. Long, J. Cheng, V. C. M. Leung, and L. Hanzo, “Energy efficient subchannel and power allocation for the software defined heterogeneous VLC and RF networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 3, pp. 658–670, 2018.
[28]N. Mokari, F. Alavi, S. Parsaeefard, and T. Le-Ngoc, “Limited-feedback resource allocation in heterogeneous cellular networks,” IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2509–2521, 2016.
[29]H. Zhang, N. Yang, K. Long, M. Pan, G. K. Karagiannidis, and V. C. M. Leung, “Secure communications in NOMA system: subcarrier assignment and power allocation,” IEEE J. Sel. Areas Commun., vol. 36, no. 7, pp. 1441–1452, 2018.
[30]M. Yassin, S. Lahoud, M. Ibrahim, K. Khawam, D. Mezher, and B. Cousin, “Cooperative resource management and power allocation for multiuser OFDMA networks,” IET Commun., vol. 11, no. 16, pp. 2552–2559, 2017.
[31]L. Ferdouse, W. Ejaz, K. Raahemifar, A. Anpalagan, and M. Markandaier, “Interference and throughput aware resource allocation for multi-class D2D in 5G networks,” IET Commun., vol. 11, no. 8, pp. 1241–1250, 2017.
[32]C. Nam, C. Joo, and S. Bahk, “Joint subcarrier assignment and power allocation in full-duplex OFDMA networks,” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3108–3119, 2015.
[33]Y. Kang, K. Kim, and H. Park, “Efficient DFT-based channel estimation for OFDM systems on multipath channels,” IET Commun., vol. 1, no. 2, pp. 197–202, 2007.
[34]F. Coelho, R. Dinis, and P. Montezuma, “Efficient channel estimation for single frequency broadcast systems,” in Proc. VTC, pp. 1–6, 2011.
[35]J. K. Raval, V. K. Patel, and D. J. Shah, “Research on pilot based channel estimation for LTE downlink using LS and MMSE technique,” International Journal of Electronics and Communication Engineering and Technology, vol. 4, no. 3, pp. 70–82, 2013.
[36]Y.-S. Liu, S. D. You, and Y.-Mi. Liu, “Iterative channel estimation method for long-term evolution downlink transmission,” IET Commun., vol. 9, no. 5, pp. 1906–1914, 2015.
[37]D. J. A. Welsh and M. B. Powell, “An upper bound for the chromatic number of a graph and its application to timetabling problems,” The Computer Journal, vol.10, no.1, pp. 85–86, 1967.
[38]E. Castañeda, A. Silva, A. Gameiro, and M. Kountouris, “An overview on resource allocation techniques for multi-user MIMO systems,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 239–284, 1st Quart., 2017.
[39]G. G. Girmay, Q.-V. Pham, and W. J. Hwang, “Joint channel and power allocation for device-to-device communication on licensed and unlicensed band,” IEEE Access, vol. 7, pp. 22196–22205, 2019.
[40]M. Joham, W. Utschick, and J. A. Nossek, “Linear transmit processing in MIMO communication systems,” IEEE Trans. Signal processing, vol. 53, no. 8, pp. 2700–2712, Aug. 2005.
[41]P. Xiao and M. Sellathurai, “Improved linear transmit processing for single-user and multi-user MIMO communications systems,” IEEE Trans. Signal processing, vol. 58, no. 3, pp. 1768–1779, Mar. 2010.
[42]D. H. N. Nguyen and T. Le-Ngoc, “Sum-rate maximization in the multicell MIMO broadcast channel with interference coordination,” IEEE Trans. Signal Processing, vol. 62, no. 6, pp. 1501–1513, Mar. 2014.
[43]S. Huang, H. Yin, J. Wu, and V. C. M. Leung, “User selection for multiuser MIMO downlink with zero-forcing beamforming,” IEEE Trans. Veh. Technol., vol. 62, no. 7, pp. 3084–3097, Sep. 2013.
[44]H. Huh, A. M. Tulino, and G. Caire, “Network MIMO with linear zero-forcing beamforming: Large system analysis, impact of channel estimation, and reduced-complexity scheduling,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 2911–2934, May 2012.
[45]Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Processing, vol. 52, no. 2, pp. 461–471, Feb. 2004.
[46]P. S. Udupa and J. S. Lehnert, “Optimizing zero-forcing precoders for MIMO broadcast systems,” IEEE Trans. Commun., vol. 55, no. 8, pp. 1516–1524, Aug. 2007.
[47]L.-N. Tran, M. Juntti, and E.-K. Hong, “On the precoder design for block diagonalized MIMO broadcast channels,” IEEE Trans. Commun. Lett., vol. 16, no. 8, pp. 1165–1168, Aug. 2012.
[48]Y.-S. Jeon, Y.-J. Kim, M. Min, and G.-H. Im, “Distributed block diagonalization with selective zero forcing for multicell MU-MIMO systems,” IEEE Trans. Signal Processing Lett. , vol. 21, no. 5, pp. 605–609, May 2014.
[49]M. Ding and S. D. Blostein, “MIMO minimum total MSE transceiver design with imperfect CSI at both ends,” IEEE Trans. Signal Processing, vol. 57, no. 3, pp. 1141–1150, Mar. 2009.
[50]D. H. N. Nguyen, L. B. Le, T. Le-Ngoc, and R. W. Heath, “Hybrid MMSE precoding and combining designs for mmWave multiuser systems,” IEEE Access, vol. 5, pp. 19167–19181, Oct. 2017.
[51]M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inform. Theory, vol. 29, no. 3, pp. 439–441, May 1983.
[52]H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the Gaussian MIMO broadcast channel,” in Proc. IEEE International Symp. Inform. Theory, June 2004.
[53]T. Yoo and A. Goldsmith, “On the optimality of multi-antenna broadcast scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 528–541, Mar. 2006.
[54]Z. Shen , R. Chen , J. G. Andrews , R. W. Heath and B. L. Evans, “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Trans. Signal Processing, vol. 54, no. 9, pp. 3658–3663, Sep. 2006.
[55]L. Jin , X. Gu and Z. Hu, “Low-complexity scheduling strategy for wireless multiuser multiple-input multiple-output downlink system,” IET Commun., vol. 5, no. 7, pp. 990–995, 2011.
[56]K. Ko and J. Lee, “Multiuser MIMO user selection based on chordal distance,” IEEE Trans. Commun., vol. 60, no. 3, pp. 649–654, Mar. 2012.
[57]S. Nam, J. Kim, and Y. Han, “A user selection algorithm using angle between subspaces for downlink MU-MIMO systems,” IEEE Trans. Commun., vol. 62, no. 2, pp. 616–624, Feb. 2014.
[58]W. Liu, S. X. Ng, and L. Hanzo, “Multicell cooperation based SVD assisted multi-user MIMO transmissions,” in Proc. IEEE VTC Fall, 2009.
[59]J. Zhang, R. Chen, J. G. Andrews, A. Ghosh, and R.W. Heath, “Networked MIMO with clustered linear precoding,” IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 1910–1921, Apr. 2009.
[60]M. H. A. Khan, K. M. Cho, M. H. Lee, and M. H. Mustary, “Multi-cell block diagonalization precoding for multiuser MIMO broadcast channel,” in Proc. IEEE Broadband Multimedia Systems and Broadcasting (BMSB), 2014.
[61]R. Holakouei, A. Silva, and A. Gameiro, “Linear preocding for centralized multicell MIMIO networks,” in Proc. IEEE ISCC, 2011.
[62]S. Shim, J. S. Kwak, R.W. Heath, J. G. Andrews, “Block diagonalization for multi-user MIMO with other-cell interference,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2671–2681, Jul. 2008.
[63]D. H. N. Nguyen, H. Nguyen-Le, and T. Le-Ngoc, “Block-diagonalization precoding in a multiuser multicell MIMO system: competition and coordination,” IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 968–981, Feb. 2014.
[64]E. Castañeda, A. Silva, R. Samano-Robles, and A. Gameiro, “Distributed linear precoding and user selection in coordinated multicell systems,” IEEE Trans. Veh. Technol., vol. 65, no. 7, pp. 4887–4899, Jul. 2016.
[65]J. Edward Jackson, “A User's Guide to Principal Components,” 2003.
[66]A. Hyvärinen, J. Karhunen, and E. Oja, “Independent Component Analysis,” 2004.
[67]I.T. Jolliffe, “Principal Component Analysis,” 2002.
[68]R. Bro and A. K. Smilde, “Principal component analysis,” Analysis Methods, vol. 9, pp. 2812–2831, 2014, DOI:10.1039/C3AY41907J.
[69]M. Sadek, A. Tarighat and A. H. Sayed, “A leakage-based precoding scheme for downlink multi-user MIMO channels,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1711–1721, May 2007.
[70]J.G.F. Francis, “The QR Transformation-Part II”, The Computer Journal, vol.4, no. 4, pp. 332–345, 1962.
[71]W.-C. Pao and Y.-F. Chen, “Reduced complexity subcarrier allocation schemes for DFT-precoded OFDMA uplink systems,” IEEE Trans. Wireless Commun., vol. 9, no. 9, pp. 2701–2706, 2010.
[72]3GPP TR 36.839, “Mobility enhancements in heterogeneous networks.”
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-06-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw