進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2306201413370300
論文名稱(中文) 微型化發光二極體陣列之研製與微型化像素之準直化、高取光與全彩化之研究
論文名稱(英文) The Development of Micro-Light-Emitting Diode Array and the Research of Collimation, Light Extraction, and Color Conversion on Micro-Pixelated Light-Emitting Diodes
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 102
學期 2
出版年 103
研究生(中文) 朱盈蒨
研究生(英文) Ying-Chien Chu
學號 Q18981010
學位類別 博士
語文別 英文
論文頁數 131頁
口試委員 指導教授-蘇炎坤
口試委員-綦振瀛
口試委員-吳孟奇
口試委員-楊志忠
口試委員-朱慕道
口試委員-許渭州
口試委員-劉文超
口試委員-張守進
口試委員-莊文魁
中文關鍵字 發光二極體  微型化發光二極體陣列  微顯示  光子晶體  微圖案化技術  共振腔  取光效率  收光效率  量子點  光色轉換效率 
英文關鍵字 light-emitting diode  micro-LED array  micro-display  photonic crystal  micro-chip shaping  resonant cavity  light extraction efficiency  light-collection efficiency  quantum dot  color conversion efficiency 
學科別分類
中文摘要 高亮度發光二極體已大幅發展於指示燈、顯示器和固態照明等應用領域。其固有之材料與低電壓操作等特性,使得發光二極體於高效能、高可靠度與壽命長之應用需求上立為首選;由於微型化發光二極體製程技術的限制,發光二極體於顯示器產業上僅應用於背光源。本論文提出一創新之微型化發光二極體陣列技術,屏除了一般顯示元件上的液晶與光學零組件,其微型化之光學模組與低功耗將為穿戴式產品之主力技術。
微型化發光二極體技術之最佳化包含反射電極、平台蝕刻、電流絕緣護佈、平坦化與隔光製程已成功被驗證;元件良率與均勻性已分別提升至 99% 與 90%。超小型微型化發光二極體陣列技術之微投影已成功展示,該投影模組體積約為 2 立方公分。此外藉由半導體覆晶封裝製程結合微型化發光二極體陣列與驅動電路背板,成功實現單色之主動驅動式微型化發光二極體顯示面板,其面板尺寸與解析度分別為 0.37 英吋與 427 x 240。面板亮度可達 1500 尼特且良率高達 99%、畫素密度達 1,323,於驅動電路掃描模式與正負 15 度取光錐下,發光效率為 15 流明/瓦,模組效率更高達 21.3 流明/瓦/立方公分。
微型化發光二極體於下世代之微型投影應用上,高光強度與高指向性為技術之關鍵點;取光效率的提升與準直性為降低光學串音現象與提升投影效率的關鍵技術。雖然有很多文獻探討提升取光效率的機制,但皆僅著重於大尺寸晶粒;本論文提出三種方法包含光子晶體、微圖案化晶粒與共振腔技術以提升微型化發光二極體之取光效率與準直性。基於鄰近Γ繞射點之光子晶體設計,頂端平坦化之遠場發光場型可被實現於微尺度的薄膜發光二極體中以增加收光效率。多重繞射之光子晶體於正負 15 度的取光角內,其收光效率可由 6.57% 提升至 10.79%。此外,光子晶體微型化發光二極體之光輸出相較於未製作光子晶體的元件可大幅提升2.93 倍。微圖案化技術於氮化鎵發光二極體陣列上已成功提升取光效率;分別於10、16 以及 50 微米之微晶粒上藉由微圖案化技術 (蝕刻傾斜角: 70 度、蝕刻深度: 1 微米) 將微晶粒側向光導正至取光面進而提升光輸出量。微圖案化技術於小晶粒取光上更具效應,相較於一般垂直側壁元件,最佳效率提升可達 45% ; 此外,於正負 15 度取光角內,最佳取光效率提升可 48%,同時亦以光學模擬軟體確認微圖案化技術之效應。再者,藉由薄膜化共振腔發光二極體以提升收光與取光效率,其遠場發光半功率角為正負 40 至 50 度,相較於未製作布拉格反射鏡之發光二體的朗伯頓光源之 120 度具準直化,50 微米 (100 微米) 尺寸的元件其正負 15 度取光角內的收光能量比為 8.18% (9.73%),總發光量提升 95.26% (127.36%)。實驗結果有助於高集光率限制之發光二極體微型投影技術之發展。
本論文最後提出以硒化鎘/硫化鋅量子點與有機高分子材料進行發光二極體光色轉換,量子點的團聚現象與有機高分子鏈的自鍵結特性可藉由聚甲基丙烯酸甲酯加以改善。有機高分子之最佳光色轉換效率可由 3% 提升至 20%,且成功利用噴印塗佈法將有機高分子材料整合於微型化發光二極體陣列上以實現全彩化陣列。
英文摘要 In the past twenty years, high brightness light-emitting diodes (LEDs) have achieved significant progress and advanced developments in indicators, displays and solid-state lighting. With the intrinsic material properties and low voltage operation characteristics, LEDs are an ideal candidate for many applications where performance, reliability and lifetime are critical. Due to the restriction of micro-sized process technology, LED components were only applied in the backlights of the display industries. In this dissertation, we propose an innovation to simplify the device of micro display called micro-LED technology. Small optical engine can be obtained and be suitable for the wearable device.
The optimized micro-LED process have been fabricated including mirror contact, mesa etching, passivation deposition, planarization, and black matrix integration. The yield and uniformity are modified to above 99% and 90% respectively. Preliminary ultra-compact pico-projector with micro-pixelated GaN LED imager of 80 x 60 resolution was demonstrated with the projector size of around 2 cm^3. Furthermore, the monochrome active matrix micro-sized LED chip by assembling micro-LED array and CMOS wafer through compound semiconductor process technology has also been proposed. Size and resolution of the active micro-LED array are 0.37 inches and 427 x 240 respectively. The brightness and yield of device are over 1500 nits and 99%. The micro-display is with 1,323 ppi which efficiency is around 15 lm/W within ±15 degree extraction cone under CMOS vertical scanning mode. This micro-display with the module efficiency of 21.3 lm/W/cc can not only present the static images but also dynamic videos.
Regarding the prospects of LEDs in the next generation microprojectors, higher radiation intensity and directionality of extracted light are the critical points. Further improvements of light extraction and directionality are required to reduce the optical crosstalk and enhance the projection efficiency. Although several schemes have been proposed to improve the light extraction efficiency, they only emphasized on macro-devices (i.e. regular size, ~ 100 μm or above) rather than micro-LEDs essential for micro-LED array. We have proposed three approaches as photonic crystal (PhC), micro-chip shaping (μCS), and resonant cavity to not only improve the light extraction efficiency but also enhance collimation properties on micro-LEDs. PhC based on the off-Γ diffractions performs a flat-top far-field profile in microsized thin-film LEDs. The off-Γ diffractions improve light-collection efficiency from 6.57% to 10.79% within a ±15 degree extraction cone. In addition, the light output power of the PhC micro-LED is 2.93 times than that of conventional micro-LEDs. The μCSs on the sidewall of micro-LEDs refract light rays through sidewalls into the light extraction cone and consequently improve the luminance. The maximum efficiency improvement on the μCS micro-LED array is over 45% compared with the vertical sidewall micro-LED array. Furthermore, the efficiency improvement exceeds 48% measured within ±15 degree extraction cone. Moreover, the viewing angle of 50 μm (100 μm) ultrathin-film RCLED (uT-RCLED) was near ±51 degree (±47 degree) through the beam profiler and presented the best light-collection efficiency of 8.18% (9.73%) within ±15 degree light extraction cone contrasted with regular non-DBR ultrathin-film light-emitting diodes (uT-LED) (6.57 %). In addition, the absolute light output power of the 50 μm (100 μm) uT-RCLED was 95.26% (127.36%) much higher than the uT-LEDs. These results contribute to the development of LED micro-projectors meeting a high luminance output requirement under the etendue limitation.
At last, CdSe/ZnS quantum dot (QD) and organic light-emitting polymer have been successfully incorporated with LED chip to perform wavelength transferring. The aggregation of QD and chain-conjugated of organic light-emitter polymer is modified by PMMA. The maximum color conversion efficiency of organic light-emitting polymer is also improved from 3% to around 20%. Finally, organic light-emitting polymer has been successfully ink-jet printed onto micro-LED array to perform the full color display.
論文目次 Abstract (In Chinese)--------------------------------------I
Abstract (In English)-------------------------------------IV
Acknowledgement (In Chinese)----------------------------VIII
Contents---------------------------------------------------X
Table Captions-------------------------------------------XIV
Figure Captions-------------------------------------------XV

Chapter 1 Introduction-------------------------------------1
1-1 Development of solid-state lighting----------------1
1-1-1 History of solid-state lighting--------------------1
1-1-2 Progress of light-emitting diode-------------------3
1-2 Application of light emitting diodes---------------6
1-3 Organization of the dissertation-------------------7
Reference-------------------------------------------------10

Chapter 2 Brief Principles of LED-------------------------16
2-1 Introduction of LEDs------------------------------16
2-2 Light extraction restrictions---------------------18
2-2-1 Total reflective loss (ηC)------------------------18
2-2-2 Absorption loss (ηA)------------------------------19
2-2-3 Fresnel loss (ηF)---------------------------------19
2-3 Light Extraction Improvement----------------------20
2-3-1 Micro-LED-----------------------------------------20
2-3-2 Photonic crystal (PhC)----------------------------21
2-3-3 Micro-chip shaping (μCS)--------------------------22
2-3-4 Resonant cavity LED (RCLED)-----------------------23
Reference-------------------------------------------------24

Chapter 3 Demonstration of Monolithic Micro-LED Array-----27
3-1 Motivation----------------------------------------27
3-2 Passive matrix of 80 x 60 micro-LED array---------28
3-2-1 Experimental details------------------------------28
3-2-2 Results and discussions---------------------------29
3-3 Novel development on passive matrix micro-LED array- --------------------------------------------------32
3-3-1 Experiments details-------------------------------32
3-3-2 Results and discussions---------------------------33
3-3-3 Preliminary demonstration of PM projector---------34
3-4 Active matrix of 427 x 240 micro-LED array--------35
3-4-1 Experiments details-------------------------------35
3-4-2 Results and discussions---------------------------36
3-4-3 Preliminary demonstration of HMD------------------38
3-5 Summary-------------------------------------------38
Reference-------------------------------------------------41

Chapter 4 Improvement of Light Extraction and Collimation
on Micro-LED------------------------------------58
4-1 Motivation----------------------------------------58
4-2 Photonic crystal on micro-LEDs--------------------58
4-2-1 Simulation----------------------------------------59
4-2-2 Design concept and experimental details-----------62
4-2-3 Results and discussions---------------------------65
4-2-3-1 Effect of off-Г diffractions--------------------65
4-2-3-2 Effect of size-dependent micro-LEDs-------------67
4-2-3-3 Cavity effect-----------------------------------69
4-2-3-4 PhC etched depth effect-------------------------70
4-3 Micro-chip shaping on micro-LED array-------------70
4-3-1 Simulation----------------------------------------71
4-3-2 Experimental details------------------------------72
4-3-3 Results and discussions---------------------------73
4-4 Resonant Cavity micro-LEDs------------------------76
4-4-1 Experimental details------------------------------77
4-4-2 Results and discussions---------------------------79
4-5 Summary-------------------------------------------81
Reference-------------------------------------------------84

Chapter 5 Color Conversion on LED------------------------111
5-1 Motivation---------------------------------------111
5-2 Quantum dot on LED-------------------------------111
5-2-1 Experimental details-----------------------------112
5-2-2 Results and discussions--------------------------113
5-3 Organic light-emitting polymer on LED------------114
5-3-1 Experimental details-----------------------------115
5-3-2 Results and discussions--------------------------116
5-4 Summary------------------------------------------119
Reference------------------------------------------------120

Chapter 6 Conclusion and Future Prospect-----------------128
6-1 Conclusion---------------------------------------128
6-2 Future Prospect----------------------------------130
參考文獻 [1]J. Y. Tsao, “Solid state lighting-lamps, chips, and
materials for tomorrow”, IEEE Circuits & Devices magazine, Vol. 20, pp. 28-37, 2004.
[2]E. F. Schubert, and J. K. Kim, “Solid-state light source getting smart”, Science, Vol. 308, 27, pp. 13-18, 2005.
[3]D. D. Evans, Jr., “High brightness matrix LED assembly challenges and solutions”, Electronic Components and Technology Conference, pp. 1704-1708, 2008.
[4]A. Bergh, M. G. Craford, A. Duggal, and R. Haitz, “The promise and challenge of solid-state lighting”, Physics Today 54, pp. 42-47, 2001.
[5]M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting”, J. Disp. Technol., Vol. 3, no. 2, pp. 160-175, 2007.
[6]Henry Joseph Round, “A Note on Carborundum,” Electrical World 49, 309, 1907.
[7]E. Fred Schubert, “Light-Emitting Diodes”, second edition, pp. 1-16, 2006.
[8]H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystal-line GaN”, Appl. Phys. Lett., vol. 4, pp. 327, 1969.
[9]J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeryheiser, “Electroluminescence in GaN”, J. Luminescence, vol. 4, pp. 63, 1971.
[10]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films”, Jpn. J. Appl. Phys., vol. 31, pp. L139-L142, 1992.
[11]H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
[12]S. Nakamura, S. M. and M. T., “P-GaN/n-InGaN/GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. vol. 32, pp. L8, 1993.
[13]H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
[14]Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada and T. Mukai, “Ultra-high efficiency white light emitting diodes”, Jap. J. Appl. Phys., vol. 45, no. 41, pp. L1084-L1086, 2006.
[15]J. Day, J. Li, D. Y. C. Lie, C. Bradford, J. Y. Lin, and H. X. Jiang, “Full-scale self-emissive blue and green microdisplays based on GaN micro-LED arrays”, Proc. of SPIE, vol. 8268, pp. 82681X-1-82681X-8, 2012.
[16]S. X. Jin, J. Li, J. Z. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN quantum well interconnected microdisk light emitting diodes,” Appl. Phys. Lett., vol. 77, no. 20, pp. 3236-3238, 2000.
[17]H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitride blue microdisplays,” Appl. Phys. Lett., vol. 78, no. 9, pp. 1303-1305, 2001.
[18]J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photon. Technol. Lett., vol. 21, no. 12, pp. 811–813, 2009.
[19]Z. J. Liu, W. C. Chong, K. M. Wong, K. H. Tam, and K. M. Lau, “A novel BLU-free full-color LED projector using LED on silicon micro-displays”, IEEE Photon. Technol. Lett., vol. 25, no. 23, pp. 2267–2270, 2013.
[20]J. P. Ao, H. Sato, T. Mizobuchi, K. Morioka, S. Kawano, Y. Muramoto, Y. B. Lee, D. Sato, Y. Ohno, and S. Sakai, “Monolithic blue LED series arrays for high-voltage AC operation,” Phys. Status Solidi, vol. 194, no. 2, pp. 376–379, 2002.
[21]V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation”, J. Phys. D: Appl. Phys., vol. 41, pp. 094014, 2008.
[22]E. Fred Schubert,“Light Emitting Diodes and Solid-state Lighting”, HANDBOOK, pp. 13-16.
[23]http://acept.la.asu.edu/courses/phs110/expmts/exp13a.ht
ml
[24]http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/
[25]M. Fukuda, “Optical semiconductor devices”, Wily
Interscience Publication, 1999.
[26]E. F. Schubert, “Light-emitting diodes”, Cambridge University Press, pp. 431-436, 2003.
[27]X. Gage et al., “Optoelectronics / fiber optics applications manual” New York: McGraw-Hill, Chap. 2, 1981.
[28]J. Fan, L. Wang, J. Guo, X. Yi, Z. Liu, G. Wang, and J. Li, “Optimized design on high-power GaN-based micro-LEDs”, Proc. of SPIE, vol. 6841, pp. 684108-1-684108-7, 2007.
[29]H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, and R. W. Martin, “Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes”, J. Appl. Phys., vol. 93, no. 2, pp. 5978, 2003.
[30]C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs – designing light extraction”, Laser & Photon. Rev., vol. 3, no. 3, pp. 262-286, 2009.
[31]S. Noda and M. Fujita, “Light-emitting diodes: photonic crystal efficiency boost”, Nature Photonics, vol. 3, pp. 129-130, 2009.
[32]E. F. Schubert, “Light-emitting diodes”, Cambridge University Press, pp. 255-260, 2006.
[33]J. Day, J. Li, D. Y. C. Lie, C. Bradford, J. Y. Lin, and H. X. Jiang, “Full-scale self-emissive blue and green microdisplays based on GaN micro-LED arrays”, Proc. of SPIE, vol. 8268, pp. 82681X-1-82681X-8, 2012.
[34]Z. J. Liu, W. C. Chong, K. M. Wong, K. H. Tam, and K. M. Lau, “A novel BLU-free full-color LED projector using LED on silicon micro-displays”, IEEE Photon. Technol. Lett., vol. 25, no. 23, pp. 2267-2270, 2013.
[35]H. X. Jiang, and J. Y. Lin, “Nitride micro-LEDs and beyond - a decade progress review”, Opt. Express, vol. 21, no. S3, pp. A475-A484, 2013.
[36]Z. J. Liu, W. C. Chong, K. M. Wong, and K. M. Lau, “360 ppi flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays”, J. Disp. Technol., vol. 9, no. 8, pp. 678-682, 2013.
[37]http://www.kopin.com/offerings/products/displays
[38]http://www.emagin.com/oled-microdisplays/
[39]Y.C. Lin, S.J. Chang, Y.K. Su, T.Y. Tsai, C.S. Chang, S.C. Shei, C.W. Kuo, and S.C. Chen, “InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts”, Solid-State Electron., vol. 47, issue 5, pp. 849-853, 2003.
[40]S. J. Chang, C. S. Chang, Y. K. Su, and C. T. Lee, “Nitride-based flip-chip ITO LEDs”, IEEE Trans. Adv. Packaging, vol. 28, issue 2, pp. 273-277, 2005.
[41]C. H. Chou, C. L. Lin, Y. C. Chumg, and H. Y. Bor, “High thermally stable Ni/Ag(Al) alloy contacts on p-GaN”, Appl. Phys. Lett., vol. 90, issue 2, pp. 022103-1-022103-3, 2007.
[42]http://www.prweb.com/releases/head-mounted-display-hmd/market/prweb9798392.htm
[43]M. R. Krames, et al., “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol., vol. 3, no. 2, pp. 160-175, 2007.
[44]Z. J. Liu, W. C. Chong, K. M. Wong, K. H. Tam, and K. M. Lau, “A novel BLU-free full-color LED projector using LED on silicon micro-displays”, IEEE Photon. Technol. Lett., vol. 25, no. 23, pp. 2267–2270, 2013.
[45]Z. J. Liu, W. C. Chong, K. M. Wong, and K. M. Lau, “360 ppi flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays," J. Display Technol., vol. 9, no. 8, pp. 678-682,
[46]S. H. Huang, R. H. Horng, K. S. Wen, Y. F. Lin, K. W. Yen, and D. S. Wuu, “Improved light extraction of nitride-based flip-chip light-emitting diodes via sapphire shaping and texturing”, IEEE Photon. Technol. Lett., vol. 24, no. 18, pp. 2623–2625, 2006.
[47]H. Kim, K. K. Choi, K. K. Kim, J. Cho, S. N. Lee, Y. Park, J. S. Kwak, and T. Y. Seong, “Light-extraction enhancement of vertical-injection GaN-based light-emitting diodes fabricated with highly integrated surface textures”, Opt. Lett., vol. 33, no. 11, pp. 1273-1275, 2008.
[48]Y. C. Chu, Y. K. Su, C. H. Chao, and W. Y. Yeh, “High collection efficiency achieved by photonic crystal off-Г diffractions in microsized thin-film GaN light-emitting diodes”, IEEE Photon. Technol. Lett., vol. 18, no. 24, pp. 1346–1348, 2012.
[49]M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “Bulk GaN based violet light-emitting diodes with high efficiency at very high current density”, Appl. Phys. Lett., vol. 101, pp. 223509-1-223509-3, 2012.
[50]C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs-designing light extraction”, Laser Photon. Rev., vol. 3, no. 3, pp. 262-286, 2009.
[51]http://en.wikipedia.org/wiki/Perfectly_matched_layer
[52]C. Wiesmann, “Nano-structured LEDs-light extraction mechanisms and applications”, pp. 13-17, 2009.
[53]S. Noda and M. Fujita, “Light-emitting diodes: photonic crystal efficiency boost”, Nat. Photonics, vol. 3, pp. 129-130, 2009.
[54]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett., vol. 78, pp. 3294-3297, 1997.
[55]A. Chutinan, and S. Noda, “Analysis of waveguides and waveguide bends in photonic crystal slabs with triangular lattice,” Jpn. J. Appl. Phys., vol. 39, pp. L595-L596, 2000.
[56]E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, pp. 681, 1946.
[57]A. Revaux, G. Dantelle, D. Decanini, F. Guillemot, A. M. Haghiri-Gosnet, C. Weisbuch, J. P. Boilot , T. Gacoin, and H. Benisty, “Photonic crystal patterning of luminescent sol-gel films for light extraction”, Nanotechnology, vol. 22, pp. 365701-1-365701-10, 2011.
[58]H. M. Ku, C. Y. Huang, and S. Chao, “Fabrication of three-dimensional autocloned photonic crystal on sapphire substrate”, Appl. Opt., vol. 50, no. 9, pp. C1-C4, 2011.
[59]J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching”, Electrochem. Solid-State Lett., vol. 7, no. 1, pp. G11-G13, 2004.
[60]C. F. Lai, H. C. Kuo, P. Yu, T. C. Lu, C. H. Chao, H. H. Yen, and W. Y. Yeh, “Highly-directional emission patterns based on near single guided mode extraction from GaN-based ultrathin microcavity light-emitting diodes with photonic crystals”, Appl. Phys. Lett., vol. 97, pp. 013108-1-013108-3, 2010.
[61]E. F. Schubert, Light Emitting Diodes. Cambridge, U.K.: Cambridge Univ. Press, 2006.
[62]E. Matioli, B. Fleury, E. Rangel, T. Melo, E. Hu, J. Speck, and C. Weisbuch, “High extraction efficiency GaN-based photonic-crystal light-emitting diodes: comparison of extraction lengths between surface and embedded photonic crystals”, Appl. Phys. Express, vol. 3, pp. 032103-1-032103-2, 2010.
[63]Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes”, J. Appl. Phys., vol. 107, pp. 013103-1-013103-6, 2010.
[64]A. J. W. Whang, S. M. Chao, C. N. Chen, Y. Y. Chen, H. C. Hsiao, and X. D. Hu, “High uniform illumination of light-emitting diodes lighting with applying the multiple-curvature Llens”, Opt. Rev., vol. 18, no. 2, pp. 218-223, 2011.
[65]P. M. Pattison, A. David, R. Sharma, C. Weisbuch, S. DenBaars, and S. Nakamura, “Gallium nitride based microcavity light emitting diodes with 2λ effective cavity thickness”, Appl. Phys. Lett., vol. 90, pp. 031111-1-031111-3, 2007.
[66]H. S. Oh, J. H. Joo, J. H. Lee, J. H. Baek, J. W. Seo, and J. S. Kwak, “Structural optimization of high-power AlGaInP resonant cavity light-emitting diodes for visible light communications”, Jpn. J. Appl. Phys., vol. 47, pp. 6214-6216, 2008.
[67]C. L. Tsai, J. Q. Lin, and J. P. Huang, “Fabrication and characterization of the substrate-free InGaN-based resonant-cavity light-emitting diodes for plastic optical fiber communications”, J. Vac. Sci. Technol. B, vol. 27, pp. 1080-1085, 2009.
[68]M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and fture of hgh-power light-emitting diodes for solid-state lighting”, J. Disp. Technol., vol. 3, pp. 160-175, 2007.
[69]C. H. Tsuei, J. W. Pen, and W. S. Sun, “Simulating the illuminance and the efficiency of the LED and fluorescent lights used in indoor lighting design”, Opt. Express, vol. 16, pp. 18692-18701, 2008.
[70]N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED”, J. Lightwave Technol., vol. 27, pp. 5145-5150, 2009.
[71]C. Y. Huang, Y. K. Su, Y. C. Chen, P. C. Tsai, C. T. Wan, and W. L. Li, “Hybrid CdSe-ZnS quantum dot-InGaN-GaN quantum well red light-emitting diodes”, IEEE Electron Device Lett. vol. 29, pp. 711-713, 2008.
[72]M. Wu, Z. Gong, A. J. C. Kuehne, A. L. Kanibolotsky, Y. J. Chen, I. F. Perepichka, A. R. Mackintosh, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, “Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing”, Opt. Express, vol. 17, pp. 16436-16443, 2009.
[73]C. R. Belton, G. Itskos, G. Heliotis, P. N. Stavrinou, P. G. Lagoudakis, J. Lupton, S. Pereira, E. Gu, C. Griffin, B. Guilhabert, I. M. Watson, A. R. Mackintosh, R. A. Pethrick, J. Feldmann, R. Murray, M. D. Dawson, and D. D. C. Bradley, “New light from hybrid inorganic–organic emitters”, J. Phys. D: Appl. Phys., vol. 41, pp. 094006, 2008.
[74]Lighting Research Center, Rensselaer Polytechnic Institute (R.P.I), http://www.lrc.rpi.edu/programs/solidstate/cr_nanocrystal.asp
[75]R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops”, Nature, vol. 389, pp. 827-829, 1997.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw