進階搜尋


 
系統識別號 U0026-2306201401161500
論文名稱(中文) 具有高度模態干涉結構系統之模態參數識別
論文名稱(英文) Identification of Modal Parameters of Structural Systems with Severe Modal Interference
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 102
學期 2
出版年 103
研究生(中文) 郭力文
研究生(英文) Li-Wen Kuo
學號 P46011547
學位類別 碩士
語文別 中文
論文頁數 63頁
口試委員 指導教授-江達雲
口試委員-崔兆棠
口試委員-楊世銘
中文關鍵字 模態干涉  模態參數識別 
英文關鍵字 modal interference  identification of modal parameters 
學科別分類
中文摘要 在模態參數識別的過程中,模態干涉常會影響識別結果的精度甚至造成可識別性的問題。造成模態干涉的主要原因通常有相近頻率及高阻尼比等等。在相近模態的干涉因素下,重根模態又為最嚴重的狀況,在此模態干涉的影響下,識別時容易造成可識別性的問題,導致識別上的困難。本文利用模態分析理論的頻率響應函數說明當系統具有重根模態的狀況下,需利用多輸入的識別方法才能完整地識別出重根模態。吾人可藉由複模態指示函數曲線圖來確定系統的模態數進而判斷是否具有相近模態或重根模態,再進一步搭配各模態的增強頻率響應函數進行模態參數識別,能夠提高該模態的響應並且降低其他模態的干涉與雜訊的影響。吾人也可直接利用奇異值的數據與其關係式進行模態參數識別,可省略計算增強頻率響應函數的過程,計算較為快速。
英文摘要 In the process of identification of modal parameters, modal interference often affects the accuracy of the result of identification and even causes the problem of identifiability. Major causes of modal interferences include closely spaced modal frequencies, high damping ratios, and so on. Regarding closely spaced modes, the repeated modes are the most severe situation, which may lead to the problem of identifiability of modal parameters. This thesis explains why we need to use multiple references to identify repeated modes according to the formulation of frequency response function in modal analysis theory. We can determine the number of significant modes of a system by the Complex Mode Indicator Function, even when there are close modes or repeated modes. The Complex Mode Indication Function has been combined with the Enhanced Frequency Response Function to be a modal parameter estimation method. We can also use directly the data of singular values to identify modal parameters, and this method does not need to calculate the Enhanced Frequency Response Function.
論文目次 中文摘要……………………………………………………………I
英文摘要…………………………………………………………II
誌謝…………………………………………………………………VII
目錄…………………………………………………………………VIII
表目錄………………………………………………………………X
圖目錄………………………………………………………………XII
第一章 緒論…………………………………………………………… 1
1-1 引言…………………………………………………………… 1
1-2 模態分析與系統識別………………………………………… 2
1-3 文獻回顧……………………………………………………… 5
1-4 研究動機與目的……………………………………………… 7
1-5 論文架構……………………………………………………… 8
第二章 模態分析之頻率響應函數…………………………………… 9
2-1 引言…………………………………………………………… 9
2-2 實模態理論的頻率響應函數…………………………………10
2-3 複模態理論的頻率響應函數…………………………………12
第三章具 具有重根模態系統的模態參數識別………………………20
3-1 引言……………………………………………………………20
3-2 模態干涉………………………………………………………21
3-3 模態向量的分析………………………………………………22
3-4 頻率響應函數…………………………………………………25
第四章 複模態指示函數法與直接應用奇異值識別法之識別理論…29
4-1 引言……………………………………………………………29
4-2 奇異值分解……………………………………………………30
4-3 複模態指示函數法……………………………………………31
4-4 直接應用奇異值識別法………………………………………37
4-5 模態可信度……………………………………………………38
第五章 數值模擬………………………………………………………40
5-1 引言……………………………………………………………40
5-2 具有相近模態的系統之模擬…………………………………40
5-3 具有重根模態的系統之模擬…………………………………43
第六章 結論……………………………………………………………47
參考文獻.………………………………………………………………49
參考文獻 Avitabile, P., Haselton, D. and Moore, J.,” Modal Test Reference Selection Using an SVD Procedure”, Proceedings of 14th International Modal Analysis Conference,1996
Allemang, R.J. and Brown, D.L.,” A Complete Review of the Complex Mode Indicator Function (CMIF) with Applications”, Proceedings of International Conference on Noise and Vibration Engineering, 2006.
Brigham, E.O., “The Fast Fourier Transform”, Prentice-Hall ,1974.
Ewins, D. J., “Modal Testing:Theory and Practice”,Research Studies Press, 1984
Fladung, W. A.,” The Development and Implementation of Multiple Reference Impact Testing”, Masters Thesis ,University of Cincinnati, 1994.
Hansen, P. C. “The truncated SVD as a method for regularization”, BIT, 27,1987, Pages 534-553.
Heylen, W., Lammens, S. and Sas, P.,”Modal Analysis Theory and Testing”, Katholieke Universiteit Leuven,1997
Hougen, J. O. and Walsh, R. A., “Pulse Testing Method”, Chemical Engineering Progress ,Vol.57 ,No.3, 1961, Pages 69-79.
Kirshenboim, J., “Real vs. complex mode shapes”, Proceeding of 5th International Modal Analysis Conference, London, England, 1987, Pages 1594-1599
Lin, R. M. and Lin, M. K., “Modal analysis of close modes using perturbative sensitivity approach”, Engineering Structures, Vol.19 ,No.6, 1997, pages 397-406
Phillips, A. W.and Allemang, R. J.,” The Enhanced Frequency Response Function (eFRF):Scaling and Other Issues”, Proceedings of International Conference on Noise and Vibration Engineering, 1998.
Rayleigh, L,“The Theory of Sound”, Vols.1, 2, 2nd ed. Dover Publications, 1897 (re-issue 1945).
Shye, K., VanKarsen, C. and Richardson, M., ”Modal Testing using Multiple References”, Structural Measurement Systems, April 6, 1987

Shih, C. Y., Tsuei, Y. G., Allemang, R. J., and Brown, D. L., “A Frequency Domain Global Parameter Estimation Method for Multiple Reference Frequency Response Measurements” Proceedings of the 6th IMAC, 1988.Pages 349-365.
Shih, C. Y., Tsuei, Y. G., Allemang, R. J. and Brown, D. L.,” Complex Mode Indication Function and its Applications to Spatial Domain Parameter Estimation”, Proceedings of 7th International Modal Analysis Conference, January 30,1989
Vold, H. and Rocklin, G. T., “The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computers”, Proceedings of 1st International Modal Analysis Conference, 1982, Pages 542 -548.
Wei, M. L., Allemang, R. J. and Brown, D. L., “Real-Normalization of measured complex modes”, Proceedings of 5th International Modal Analysis Conference, London, England 1987, Pages 708-712
黃煜程, “結構系統模態干涉指標之研究”,碩士論文,國立成功大學航空太空工程研究,2012
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-06-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw