進階搜尋


下載電子全文  
系統識別號 U0026-2306201218390700
論文名稱(中文) 光聚合法對光子晶體結構拓印之能量及機械拉伸效應研究
論文名稱(英文) Energy and Mechanical Stretching Effect on The Imprinting of Photonic Structures via UV-Polymerization
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 陳柏丞
研究生(英文) Bo-Cheng Chen
學號 n36991320
學位類別 碩士
語文別 中文
論文頁數 73頁
口試委員 指導教授-劉瑞祥
口試委員-陳雲
口試委員-吳逸謨
口試委員-林唯芳
口試委員-時國誠
中文關鍵字 拓印  光聚合  膽固醇液晶  拉伸  高效率 
英文關鍵字 imprinting  photopolymerization  cholesteric liquid crystals  stretching  high efficiency 
學科別分類
中文摘要 膽固醇液晶為具週期性排列的螺旋結構體,具有布拉格光反射、圓偏光二色性等光學性質。一般,膽固醇液晶的形成是將手性分子摻混於向列型液晶中,利用手性分子來誘導出膽固醇液晶相。本研究利用非手性且不具有液晶相之單體4,4’-Bis(6-(acryloyloxy)hexyloxy)biphenyl (BAHB)以及 (4-Cyanophenyl)-4'-(6-acryloyloxyhexyloxy)benzoate (CAHB),利用多次光聚合法,在聚酯基板上製備出具有膽固醇螺旋結構之拓印高分子薄膜。除了探討拓印螺旋結構體其誘導向列型液晶之選擇性光反射特性外,更利用可變溫式拉伸試驗機來拉伸所製成的聚酯基板,調變選擇性光反射波長。此外,利用高能量紫外光進行短時間的光聚合反應,並調控溫度來提升單體的擴散效率,縮短多次光聚合法所需時間,以製備出具完整結構的的拓印高分子薄膜。本研究針對光聚合時間、擴散溫度和擴散時間,在固定光聚合次數下,找出此製程下的最適化條件。本研究利用不同光罩進行區域性的光聚合反應,以製備出較清晰的拓印高分子圖案。選用面積更小的光罩進行光聚合反應時,在室溫下也能有效的提升單體的擴散效率,製備出完整且多樣化的拓印高分子薄膜圖案。
英文摘要 Helical arranged cholesteric liquid crystal (ChLC) reveals both Bragg reflection and circular dichroism. In general, cholesteric liquid crystals are prepared by adding chiral components into nematic liquid crystals. In this study, both achiral 4,4’-Bis(6-(acryloyloxy)hexyloxy)biphenyl (BAHB) monomer and (4-Cyanophenyl)-4'-(6-acryloyloxyhexyloxy)benzoate (CAHB) were used to imprint cholesteric helical structure via multiple UV polymerization. Dependence of reflection properties on imprinted polymer matrices was investigated. Tuning properties of the reflection band of the imprinted polymer matrices were investigated using uniaxial thermo stretching equipment. In order to shorten the fabrication period, both conditions of high energy short time irradiation and high surrounding temperature were applied. Optimal irradiation time, diffusion temperature, and UV exposure times of the imprinting processes were studied. Dependence of mask pattern size on imprinting efficiency was studied. It was found that masks with smaller spot pattern are available for the improving of imprinting efficiency at ambient temperature via this multiple UV polymerization.
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號表 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 液晶簡介 3
2.2 液晶的物理性質 5
2.2.1 液晶的光學異方性 5
2.2.2 溫度對液晶相之影響 8
2.3 液晶的分類 9
2.3.1 相形成條件 10
2.3.2 分子形狀 11
2.4 膽固醇液晶概述 16
2.4.1 光學活性物質的效應 16
2.4.2 膽固醇液晶的光學特性 17
2.4.3 膽固醇型液晶之光學紋理 19
2.5 液晶-聚合物混和薄膜之介紹 20
2.5.1 高分子分散膽固醇液晶薄膜之介紹 20
2.5.2 高分子分散膽固醇液晶薄膜之應用 21
第三章 實驗部份 24
3.1 實驗藥品 24
3.2 實驗儀器 25
3.3 實驗步驟 27
3.3.1 單官能性單體之合成 27
3.3.2 雙官能性單體之合成 28
3.3.3 手性高分子膜板之製備 30
3.3.3.1 單體之選擇 30
3.3.3.2 材料配方 31
3.3.3.3 拓印高分子元件之製備 32
3.3.4 選擇性光反射的測量 34
3.3.5 拓印高分子薄膜其結構分析 35
第四章 結果與討論 36
4.1 單體之鑑定 36
4.2 拓印高分子膜之製備及其拉伸試驗之探討 40
4.2.1 單次照光高分子分散膽固醇液晶薄膜拉伸試驗之探討 40
4.2.2 多次照光拓印高分子薄膜拉伸試驗之探討 45
4.3 高能量光聚合對拓印高分子薄膜探討 50
4.3.1 光聚合時間對高分子構形之影響 50
4.3.2 溫度對膽固醇液晶planar結構排列之影響 56
4.3.3 擴散時間對膽固醇液晶planar結構排列之影響 57
4.4 拓印高分子薄膜之光學性質探討 65
第五章 結論 68
參考文獻 69
參考文獻 [1] 松本正一,角田市良合著,劉瑞祥編譯,液晶之基礎與應用,(國立編譯館,1996)。

[2] Lub J., van de Witte P., Doornkamp C., Vogels J.P.A., and Wegh R.T. Stable photopatterned cholesteric layers made by photoisomerization and subsequent photopolymerization for use as color filters in liquid-crystal displays. Advanced Materials 15, 1420-1425 (2003).

[3] Yoshioka T., Ogata T., Nonaka T., Moritsugu M., Kim S.N., and Kurihara S. Reversible-photon-mode full-color display by means of photochemical modulation of a helically cholesteric structure. Advanced Materials 17, 1226-1229 (2005).

[4] Tamaoki N. Cholesteric liquid crystals for color information technology. Advanced Materials 13, 1135-1147 (2001).

[5] Cheng K.T., Liu C.K., Ting C.L., and Fuh A.Y.G. Optical addressing in dye-doped cholesteric liquid crystals. Optics Communications 281, 5133-5139 (2008).

[6] Wu S.T., and Yang D.K. Reflective liquid crystal displays. (Wiley Chichester, UK, 2001).

[7] Xie P., and Zhang R.B. Liquid crystal elastomers, networks and gels: advanced smart materials. Journal of Materials Chemistry 15, 2529-2550 (2005).

[8] Bobrovsky A., and Shibaev V. Novel type of combined photopatternable and electro-switchable polymer-stabilized cholesteric materials. Journal of Materials Chemistry 19, 366-372 (2009).

[9] Broer D.J., Lub J., and Mol G.N. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378, 467-469 (1995).




[10] Huang Y.P., Shieh H.P.D., and Wu S.T. Applications of multidirectional asymmetrical microlens-array light-control films on reflective liquid-crystal displays for image quality enhancement. Applied Optics 43, 3656-3663 (2004).

[11] Relaix S., Bourgerette C., and Mitov M. Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal. Applied Physics Letters 89, 251907 (2006).

[12] 宋昀潔,含光致變性光學活性摻混物膽固醇液晶聚酯之光學特性探討,國立成功大學化學工程研究所碩士論文,(2010)。

[13] 簡孜潔,含不同光致變及末端基團之液晶共聚高分子之合成及特性探討,國立成功大學化學工程研究所碩士論文,(2009)。

[14] Delden R.A. Controlling molecular chirality and motion. (Cordon Art, 2002).

[15] 張阜權,孫策山,唐偉國合著,光學,(亞東書局印行,1988)。

[16] 方皓,膽固醇型液晶拓印之光子晶體結構及其光學特性之探討,國立成功大學化學工程研究所碩士論文,(2011)。

[17] 陳怡君,對膽固醇液晶雷射輸出大範圍調控之研究,國立成功大學化學工程研究所碩士論文,(2005)。

[18] 周彥伶,新穎性三成份液晶共聚高分子之合成及光學特性探討,國立成功大學化學工程研究所碩士論文,(2008)。

[19] 楊博智,光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討,國立成功大學化學工程研究所博士論文,(2007)。

[20] Sergeyev S., Pisula W., and Geerts Y.H. Discotic liquid crystals: A new generation of organic semiconductors. Chemical Society Reviews 36, 1902-1929 (2007).

[21] 謝峰銘,新穎性多彩膽固醇液晶與功能性材料之合成及特性研究,國立成功大學化學工程研究所博士論文,(2009)。


[22] Alam M.Z., Yoshioka T., Ogata T., Nonaka T., and Kurihara S. The influence of molecular structure on helical twisting power of chiral azobenzene compounds. Liquid Crystals 34, 1215-1219 (2007).

[23] De Gennes P.G., and Prost J. The Physics of Liquid Crystals. (Clarendon Press, 1995).

[24] Yuan X.T., Zhang L.P., and Yang H. Study of selectively reflecting characteristics of polymer stabilised chiral nematic liquid crystal films with a temperature-dependent pitch length. Liquid Crystals 37, 445-451 (2010).

[25] Tzeng S.Y.T., Chen C.N., and Tzeng Y. Thermal tuning band gap in cholesteric liquid crystals. Liq. Cryst. 37, 1221-1224 (2010).

[26] Hikmet R.A.M., and Kemperman H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature 392, 476-479 (1998).

[27] Hu W., Zhang L.P., Cao H., Song L., Zhao H.Y., Yang Z., Cheng Z.H., Yang, H.A., and Guo L. Electro-optical study of chiral nematic liquid crystal/chiral ionic liquid composites with electrically controllable selective reflection characteristics. Physical Chemistry Chemical Physics 12, 2632-2638 (2010).

[28] Hu W., Zhao H.Y., Song L., Yang Z., Cao H., Cheng Z.H., Liu Q., and Yang H. Electrically Controllable Selective Reflection of Chiral Nematic Liquid Crystal/Chiral Ionic Liquid Composites. Advanced Materials 22, 468-472 (2010).

[29] Krzyzanski D., and Derfel G. Magnetic-field-induced periodic deformations in planar nematic layers. Physical Review E 61, 6663-6668 (2000).

[30] Menzel A.M., and Brand H.R. Cholesteric elastomers in external mechanical and electric fields. Physical Review E 75, 011707 (2007).

[31] Warner M., Terentjev E.M., Meyer R.B., and Mao Y. Untwisting of a cholesteric elastomer by a mechanical field. Physical Review Letters 85, 2320-2323 (2000).


[32] Tsutsui T., and Tanaka R. Solid cholesteric films for optical applications. Polymer 21, 1351-1352 (1980).

[33] Dierking I. Polymer network-stabilized liquid crystals. Advanced Materials 12, 167-181 (2000).

[34] Dierking I., Kosbar L.L., Lowe A.C., and Held G.A. Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures - I. The influence of curing temperature. Liquid Crystals 24, 387-395 (1998).

[35] Dierking I., Kosbar L.L., Lowe A.C., and Held G.A. Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures - II. The effect of UV curing conditions. Liquid Crystals 24, 397-406 (1998).

[36] Guo R.W., Li K.X., Cao H., Wu X.J., Wang G.J., Cheng Z.H., Wang F.F., Zhang H.Q., and Yang H.A. Chiral polymer networks with a broad reflection band achieved with varying temperature. Polymer 51, 5990-5996 (2010).

[37] McConney M.E., Tondiglia V.P., Hurtubise J.M., Natarajan L.V., White T.J., and Bunning T.J. Thermally Induced, Multicolored Hyper-Reflective Cholesteric Liquid Crystals. Advanced Materials 23, 1453-1457 (2011).

[38] McConney M.E., Tondiglia V.P., Hurtubise J.M., White T.J., and Bunning T.J. Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization. Chemical Communications 47, 505-507 (2011).

[39] Styring P., Vuijk J.D., Nishiyama I., Slaney A.J., and Goodby J.W. Inversion of chirality-dependent properties in optically-active liquid-crystals. Journal of Materials Chemistry 3, 399-405 (1993).

[40] Mitov M., and Dessaud N. Going beyond the reflectance limit of cholesteric liquid crystals. Nature Materials 5, 361-364 (2006).

[41] 王裕堪,側鏈型光學活性液晶高分子之合成及光學特性探討,國立成功大學化學工程研究所碩士論文,(2006)。

[42] Finkelmann H., Kim S.T., Munoz A., Palffy-Muhoray P., and Taheri B. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Advanced Materials 13, 1069-1072 (2001).

[43] Fudouzi H. Optical properties caused by periodical array structure with colloidal particles and their applications. Advanced Powder Technology 20, 502-508 (2009).

[44] Liu J.H., Fang H., and Chien C.C. Solvent-Tunable Colors in Imprinted Helical Structures on Polymer Template via Multiple UV-Induced Polymerization. Journal of Polymer Science Part A-Polymer Chemistry 49, 1256-1262 (2011).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-07-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw