進階搜尋


下載電子全文  
系統識別號 U0026-2306201113294900
論文名稱(中文) 寬頻、微小化平衡式頻率轉換電路之研究
論文名稱(英文) Implementation of Broadband Miniaturized Balanced-type Frequency Conversion Circuits
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 99
學期 2
出版年 100
研究生(中文) 錢韋至
研究生(英文) Wei-Chih Chien
學號 q1891107
學位類別 博士
語文別 英文
論文頁數 112頁
口試委員 指導教授-王永和
口試委員-林志明
口試委員-邱瑞杰
召集委員-陳家豪
口試委員-朱鎮國
口試委員-盧春林
口試委員-劉建志
口試委員-洪茂峰
口試委員-劉宏智
口試委員-蔡俊輝
中文關鍵字 頻率轉換電路  平衡式  混頻器  次諧波混頻器  倍頻器  巴倫電路  諧波抑制  濾波器 
英文關鍵字 Frequency conversion circuits  Balanced-type  Quadrature hybrid  Mixer  Sub-harmonic mixer (SHM)  Doubler  Harmonic suppression  Filter 
學科別分類
中文摘要 近年來,隨著半導體製程技術上的大幅進步,使得微波及毫米波之單晶微波積體電路的需求朝向低製造成本、高積集密度及高效能,並使得無線通訊系統朝著單晶片系統的開發方向前進。雖然,矽製程技術具有極佳的積體整合度,然而受限於主動元件之低崩潰電壓,導致矽製程不利於高功率放大器之製作。因此,本論文主要在研製射頻微波電路中,單平衡式倍頻器、窄頻濾波器、二次諧波混頻器及次諧波鏡頻抑制混頻器單石晶片,以提升積體整合度為目標,並致力於寬頻與微小化之研發標的,針對操作頻寬、中頻頻寬、埠際隔離度、簡化佈局與被動電路微小化提出新穎的設計概念與進行改良。
在混頻器方面,本論文提出之電路設計包含單平衡式與雙平衡式混頻器。在雙平衡式混平器方面,由於混頻器無法抑制鏡頻訊號對中頻的干擾,而單邊帶混頻器利用電路架構來濾除鏡頻訊號,相較於使用表面聲波濾波器來濾除鏡頻訊號的技術,單邊帶混頻器有較寬的頻率響應以及較小的電路面積。因此,本論文中提出一種改良架構,利用一個具有IF 抽取特性的RF雙巴倫電路,以縮減電路面積的二次諧波鏡頻抑制混頻器,並可獲得12 GHz的操作頻寬與34 dB的鏡頻抑制率。
有鑑於高頻高輸出功率的本地振盪器製作困難,因此混頻器常採用兩種頻率轉換電路來解決。第一種解決方式是採用次諧波混頻器,首先提出高隔離度寬頻次諧波升頻混頻器,是利用主動半循環器的各埠隔離特性,用以提高隔離度。最後提出的是離散式寬頻二次諧波混頻器,主要由於傳統離散式主動次諧波混頻器,會因為前級的巴倫電路,侷限了後級離散式架構的頻寬,利用改良式之離散式架構來解決主動混頻器頻寬不足的問題,並可獲得13 GHz的操作頻寬、所有的埠際間隔離度皆大於20 dB與9.1-13 dB的轉換損耗。第二種方式為採用倍頻器。本論文提出一個新式的整合偏壓微小化的螺旋巴倫電路,為一個被動電路與偏壓電路結合以節省面積的寬頻倍頻器,此一設計目的在於減少偏壓元件(如電感)的使用,以縮減電路面積,並簡化電路架構,降低設計時的困難度。
最後,本論文亦提出應用在Ka, V與W頻帶之三階諧波抑制濾波器上的新式設計,利用四分之一波長的諧振器來實現具有寬抑止頻帶之窄頻濾波器,此一多級諧振器設計目的不僅可以改善濾波器中抑止頻帶的抑制與三階諧波響應的壓抑,更可有助於單晶微波積體電路的製作與整合。
英文摘要 Due to the advanced improvements of semiconductor technologies, the performance of monolithic microwave/millimeter-wave integrated circuits (MMICs) has been significantly progressed. Whereas the demands for high-volume and low-cost cannot be ignored in practice, the MMIC chipset should achieve as high an integration level as possible. With the substantial interest in the emerging millimeter-wave CMOS communication systems, more and more attention is being given to complete systems-on-a-chip (SoC).
This research has been focused on the development of miniaturized balanced-type frequency conversion circuits, which include image reject mixers (IRMs), sub-harmonic mixers, doubler, and bandpass filter. In studies on mixers and doubler, several novel design concepts have been proposed to improve operation bandwidth and circuit structure, including single-balanced and double-balanced topology. In the double-balanced configuration, a meandering RF dual balun with broadband IF extraction has been demonstrated on 0.18 μm CMOS process to achieve a high-performance with a wideband operation, superior isolation, and compact configuration. Compared with the conventional IRMs, this configuration can not only provide a flexible way to extraction IF signal and reduce the chip dimension of MMIC but also can improve RF/LO-to-IF isolations without any additional IF filters.
The performances of microwave local oscillators will be degraded as the increasing of operation frequency, thus, two methods are used to avoid fundamental mixers using a high frequency and high power oscillator. The first method is using a sub-harmonic mixer (SHM) to solve this problem. Therefore, two novel configurations were applied to simplify the circuit structure and reduce the chip area, also provided an appropriate wide-band performance and superior port-to-port isolations. Consequently, the proposed a sub-harmonically pumped resistive mixer using the active quasi-circulator instead of the frequency diplexer to improve the SHM not only achieves a wide-band performance appropriately but also obtains inherent port-to-port isolations. Another novel architecture of distributed SHM also shows in this dissertation. The configuration consists of three stages distributed FET mixer and a low-pass filter for IF extraction, to enhance the performance of sub-harmonic mixer with an ultra-wide bandwidth, small chip size, and compact IF extraction as well. The other method is used the frequency doubler preceding a local oscillator. Based on balanced doublers, a novel active doubler was developed. This doubler employs spiral balun and the band pass filter is integrated directly with the DC bias. The topology of the active doubler can be simplified to reduce the use of the bias components, and reduce chip dimension. Thus, this doubler can exhibit a compact chip size, simple layout, good conversion loss, and broadband operation.
Finally, because the design of the narrowband compact filter at microwave/millimeter-wave frequencies is very important for on-chip realization. We proposed a narrowband MMIC filter at 30, 60 and 90 GHz frequency band using quarterwave resonators employed to achieve compact-sized and narrowband BPF with a wide stopband range. These multi-resonators have been demonstrated to improve the stop-band rejection of the filter as well as to suppress the third harmonic response, compact size, and narrowband BPF with a wide stopband range. Thus, this filter technique can contribute significantly to the further integration and miniaturization of advanced microwave systems.
論文目次 ABSTRACT (Chinese)......................................I
ABSTRACT (English)......................................III
ACKNOWLEDGMENT..........................................VI
CONTENTS................................................VII
FIGURE CAPTIONS.........................................X
TABLE CAPTIONS..........................................XIII
CHAPTER 1 Introduction
1.1 Wireless Communication Systems......................1
1.2 Literature Survey...................................4
1.3 Motivation..........................................9
1.4 Organization of the Dissertation....................13
1.5 References..........................................15
CHAPTER 2 Broadband Miniaturized Image Reject Mixer
2.1 Introduction........................................25
2.2 Fundamental Principles and Parameters of the Mixer..26
2.3 9-21 GHz Monolithic Image Reject Mixer..............31
2.3.1 Design Purpose for Image Reject Mixer.............31
2.3.2 Circuit Implementation............................35
2.3.3 Experimental Results..............................36
2.4 Comparison with Reported Image Reject Mixers........40
2.5 Summary.............................................41
2.6 References..........................................41
CHAPTER 3 Wide-Band Sub-harmonic Mixer
3.1 Introduction........................................45
3.2 10-20 GHz Sub-harmonically Pumped Resistive Mixer...47
3.2.1 Design Purpose for the Sub-harmonically Pumped Resistive Mixer.........................................47
3.2.2 Circuit Implementation............................50
3.2.3 Experimental Results..............................51
3.3 8-21 GHz Distributed Single-Balanced Mixer..........55
3.3.1 Circuit Design and Analysis.......................55
3.3.2 Circuit Implementation............................57
3.3.3 Experimental Results..............................58
3.4 Comparison with Reported Sub-harmoni Mixers.........61
3.5 Summary.............................................62
3.5 References..........................................63
CHAPTER 4 Miniaturized Single Balanced Frequency Doubler
4.1 Introduction........................................68
4.2 Fundamental Principles and Parameters of Frequency Doubler.................................................69
4.3 18-38 GHz pHEMT MMIC Frequency Doubler..............73
4.3.1 Design Purpose for the Frequency Doubler..........73
4.3.2 Circuit Implementation............................76
4.3.3 Experimental Results..............................77
4.4 Comparison with Reported Frequency Doublers.........80
4.5 Summary.............................................81
4.6 References..........................................82
CHAPTER 5 Miniaturized Narrowband Bandpass Filters
5.1 Introduction........................................85
5.2 Fundamental Principles and Parameters of Band-Pass Filter..................................................87
5.3 Circuit Design for Ka-, V- and W-Band Band-Pass Filters.................................................89
5.4 Implementation and Experimental Results.............97
5.5 Comparison with Reported Band-Pass Filters..........101
5.6 Summary.............................................102
5.7 References..........................................103
CHAPTER 6 Conclusions and Future Works
6.1 Conclusions.........................................106
6.2 Future Works........................................108
PUBLICATION LIST........................................110
VITA....................................................112
參考文獻 Chapter 1
[1] D.M. Pozar, Microwave and RF Design of Wireless Systems: John Weily & Sons Inc., 2000.
[2] Ian A. Glover, Steve Pennock, and Peter Shepherd, Microwave Devices, Circuits and Subsystems for Communications Engineering. Hoboken, NJ, USA: Wiley, 2006.
[3] H. Samavati, H. R. Rategh, and T. H. Lee, "A 5-GHz CMOS wireless LAN receiver front end," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 765-772, 2000.
[4] B. Razavi, "A 5.2-GHz CMOS receiver with 62-dB image rejection," Solid-State Circuits, IEEE Journal of, vol. 36, pp. 810-815, 2001.
[5] M. T. Faber, J. Chramiec, and M. E. Adamski, Microwave and Millimeter-Wave Diode Frequency Multipliers. Boston: MA: Artech House, 1995.
[6] K. W. Hamed, A. P. Freundorfer, and Y. M. M. Antar, "A monolithic double-balanced direct conversion mixer with an integrated wideband passive balun," Solid-State Circuits, IEEE Journal of, vol. 40, pp. 622-629, 2005.
[7] S. A. Maas, Microwave Mixers, 2nd ed. Norwood: MA: Artech House, 1993.
[8] Yu Liu, Tao Yang, Zi-Qiang Yang, and Jia Chen, "A 3-50 GHz Ultra-Wideband PHEMT MMIC Balanced Frequency Doubler," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 629-631, 2008.
[9] Tsung-Yu Yang and Hwann-Kaeo Chiou, "A 25-75 GHz Miniature Double Balanced Frequency Doubler in 0.18-μm CMOS Technology," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 275-277, 2008.
[10] M. A. D. Lorenzo, N. G. Toledo, and L. T. Sison, "An alternative implementation of a low-cost narrowband double-balanced microwave mixer," in Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific, 2001, pp. 268-271 vol.1.
[11] V. Miraftab and A. Abdipour, "Harmonic balance analysis of a microwave balanced power amplifier," in Electrical and Computer Engineering, 2001. Canadian Conference on, 2001, pp. 901-905 vol.2.
[12] E. Korolkiewicz and B. L. J. Kulesza, "Influence of diode capacitance on performance of balanced microwave mixers," Electronics Letters, vol. 17, pp. 144-146, 1981.
[13] N. Siripon, M. Chongcheawchamnan, and I. D. Robertson, "Injection-locked balanced oscillator-doubler," Electronics Letters, vol. 37, pp. 958-959, 2001.
[14] C. M. Howell, "Integrated Balanced Mixers for S- and X-band," in G-MTT International Symposium Digest, 1966, 1966, pp. 151-155.
[15] C. Viallon and T. Parra, "Microwave differential structures optimization: application to a double balanced SiGe active down-converter design," in Radio-Frequency Integration Technology: Integrated Circuits for Wideband Communication and Wireless Sensor Networks, 2005. Proceedings. 2005 IEEE International Workshop on, 2005, pp. 91-94.
[16] Dong-Woo Kang, Dong-Hyun Baek, Sang-Hoon Jeon, Jae-Woo Park, and Song-Cheol Hong, "A miniaturized K-band balanced frequency doubler using InGaP HBT technology," in Microwave Symposium Digest, 2003 IEEE MTT-S International, 2003, pp. 107-110 vol.1.
[17] J. Kalish, "Quadrature Compensation in Wide-Band Double Balanced Modulators," Communications, IEEE Transactions on, vol. 32, pp. 322-324, 1984.
[18] Chih-Ming Lin, Hua-Kuei Lin, Yu-Ann Lai, Chieh-Pin Chang, and Yeong-Her Wang, "A 10 - 40 GHz Broadband Sub-harmonic Monolithic Mixer in 0.18μm CMOS Technology," Microwave and Wireless Components Letters, IEEE, vol. 19, pp. 95-97, 2009.
[19] Jeng-Han Tsai, Hong-Yuan Yang, Tian-Wei Huang, and Huei Wang, "A 30-100 GHz Wideband Sub-Harmonic Active Mixer in 90 nm CMOS Technology," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 554-556, 2008.
[20] B. Piernas, H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, "A broadband and miniaturized V-band PHEMT frequency doubler," Microwave and Guided Wave Letters, IEEE, vol. 10, pp. 276-278, 2000.
[21] Kuo-Liang Deng and Huei Wang, "A miniature broad-band pHEMT MMIC balanced distributed doubler," Microwave Theory and Techniques, IEEE Transactions on, vol. 51, pp. 1257-1261, 2003.
[22] Wen-Ren Lee, Shih-Fong Chao, Zuo-Min Tsai, Pin-Cheng Huang, Chun-Hsien Lien, Jeng-Han Tsai, and Huei Wang, "A high-efficiency, broadband and high output power PHEMT balanced K-band doubler with integrated balun," in Microwave Conference, 2006. APMC 2006. Asia-Pacific, 2006, pp. 763-766.
[23] Ching-Chih Weng, Zuo-Min Tsai, and Huei Wang, "A K-band miniature, broadband, high output power HBT MMIC balanced doubler with integrated balun," in Microwave Conference, 2005 European, 2005, p. 3 pp.
[24] H. Yang, K. W. Angel, and K. N. Fry, "A single-chip K-band receiver," in Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1991. Technical Digest 1991., 13th Annual, 1991, pp. 57-60.
[25] F. van Raay and G. Kompa, "Design and stability test of a 2-40 GHz frequency doubler with active balun," in Microwave Symposium Digest., 2000 IEEE MTT-S International, 2000, pp. 1573-1576 vol.3.
[26] Y. Liu, T. Yang, Z. Q. Yang, and J. Chen, "A 3-50 GHz ultra-wideband PHEMT MMIC balanced frequency doubler," Ieee Microwave and Wireless Components Letters, vol. 18, pp. 629-631, Sep 2008.
[27] T. Kaho, Y. Yamaguchi, H. Okazaki, and K. Uehara, "A compact X-band balanced frequency doubler on GaAs pHEMT 3D MMIC," in Radio-Frequency Integration Technology, 2009. RFIT 2009. IEEE International Symposium on, 2009, pp. 237-240.
[28] A. M. Pavio, S. D. Bingham, R. H. Halladay, and C. A. Sapashe, "A distributed broadband monolithic frequency multiplier," in Microwave Symposium Digest, 1988., IEEE MTT-S International, 1988, pp. 503-504 vol.1.
[29] Yu-Lung Tang, Po-Yo Chen, and Huei Wang, "A broadband PHEMT MMIC distributed doubler using high-pass drain line topology," Microwave and Wireless Components Letters, IEEE, vol. 14, pp. 201-203, 2004.
[30] K. Nishikawa, B. Piernas, T. Nakagawa, and K. Araki, "Miniaturized and broadband V-band balanced frequency doubler for highly integrated 3-D MMIC," in Microwave Symposium Digest, 2002 IEEE MTT-S International, 2002, pp. 351-354.
[31] C. Fager, L. Landen, and H. Zirath, "High output power, broadband 28-56 GHz MMIC frequency doubler," in Microwave Symposium Digest., 2000 IEEE MTT-S International, 2000, pp. 1589-1591 vol.3.
[32] D. L. Ingram, L. Sjogren, J. Kraus, M. Nishimoto, M. Siddiqui, S. Sing, K. Cha, M. Huang, and R. Lai, "A highly integrated multi-functional chip set for low cost Ka-band transceiver," in Radio Frequency Integrated Circuits (RFIC) Symposium, 1998 IEEE, 1998, pp. 227-230.
[33] J. A. Macedo and M. A. Copeland, "A 1.9-GHz silicon receiver with monolithic image filtering," Solid-State Circuits, IEEE Journal of, vol. 33, pp. 378-386, 1998.
[34] S. K. Reynolds, B. A. Floyd, U. R. Pfeiffer, T. Beukema, J. Grzyb, C. Haymes, B. Gaucher, and M. Soyuer, "A Silicon 60-GHz Receiver and Transmitter Chipset for Broadband Communications," Solid-State Circuits, IEEE Journal of, vol. 41, pp. 2820-2831, 2006.
[35] Anh-Tuan Phan, Chang-Wan Kim, Choong-Yul Cha, Min-Suk Kang, Sang-Gug Lee, Chun-Deok Su, and Hoon-Tae Kim, "A low noise image rejection down CMOS mixer," in Circuits and Systems, 2004. MWSCAS '04. The 2004 47th Midwest Symposium on, 2004, pp. iii-327-30 vol.3.
[36] B. Razavi, RF Microelectronics: Upper Saddle River, NJ: Prentice-Hall, 1998.
[37] K. Fujii and H. Morkner, "A 6-30GHz image-rejection distributed resistive MMIC mixer in a low cost surface mount package," in Microwave Symposium Digest, 2005 IEEE MTT-S International, 2005, p. 4 pp.
[38] S. E. Gunnarsson, D. Kuylenstierna, and H. Zirath, "Analysis and Design of Millimeter-Wave FET-Based Image Reject Mixers," Microwave Theory and Techniques, IEEE Transactions on, vol. 55, pp. 2065-2074, 2007.
[39] M. Gavell, M. Ferndahl, S. E. Gunnarsson, M. Abbasi, and H. Zirath, "An Image Reject Mixer for High-Speed E-Band (71-76, 81-86 GHz) Wireless Communication," in Compound Semiconductor Integrated Circuit Symposium, 2009. CISC 2009. Annual IEEE, 2009, pp. 1-4.
[40] S. Basu P. K. Singhal, and Y.-H. Wang, "Integrated Compact Broad Ka-Band Sub-Harmonic Single Sideband Up-Converter MMIC," Progress In Electromagnetics Research B, vol. 8, pp. 179-194, 2009.
[41] Hwann-Kaeo Chiou, Wan-Ru Lian, and Tsung-Yu Yang, "A Miniature Q-Band Balanced Sub-Harmonically Pumped Image Rejection Mixer," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 463-465, 2007.
[42] C. H. Lee, A. Sutono, and J. Laskar, "Development of a high-power and high-efficiency HBT MMIC VCO," in Radio and Wireless Conference, 2001. RAWCON 2001. IEEE, 2001, pp. 157-160.
[43] K. Choumei, T. Matsuzuka, S. Suzuki, S. Hamano, K. Kawakami, N. Ogawa, M. Komaru, and Y. Matsuda, "A Ka-band direct oscillation HBT VCO MMIC with a parallel negative resistor circuit," in Microwave Symposium Digest, 2005 IEEE MTT-S International, 2005, p. 4 pp.
[44] Y. Yamauchi, H. Kamitsuna, M. Nakatsugawa, H. Ito, M. Muraguchi, and K. Osafune, "A 15-GHz monolithic low-phase-noise VCO using AlGaAs/GaAs HBT technology," Solid-State Circuits, IEEE Journal of, vol. 27, pp. 1444-1447, 1992.
[45] R. K. Maharjan and Nam-Young. Kim, "InGaAs/GaAs HBT based MMIC differential VCO for S-band satellite communication applications," in Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2009 3rd IEEE International Symposium on, 2009, pp. 493-496.
[46] M. Cohn, J. E. Degenford, and B. A. Newman, "Harmonic Mixing with an Antiparallel Diode Pair," Microwave Theory and Techniques, IEEE Transactions on, vol. 23, pp. 667-673, 1975.
[47] V. Sedghi, A. Abdipour, and A. Mohammadi, "A flat conversion gain sub-harmonically pumped image rejection mixer in mm-wave band," in Microwave and Millimeter Wave Technology, 2004. ICMMT 4th International Conference on, Proceedings, 2004, pp. 312-315.
[48] S. Sarkar, P. Sen, S. Pinel, Chang-Ho. Lee, and J. Laskar, "Si-based 60GHz 2X Sub-harmonic Mixer for Multi-Gigabit Wireless Personal Area Network Application," in Microwave Symposium Digest, 2006. IEEE MTT-S International, 2006, pp. 1830-1833.
[49] S. Sarkar, D. Yeh, S. Pinel, and J. Laskar, "Wideband direct conversion hybrid LCP millimeter-wave 4X sub-harmonic mixer for gigabit wireless module," in Microwave Conference, 2005 European, 2005, p. 4 pp.
[50] K. Itoh, A. Iida, Y. Sasaki, and S. Urasaki, "A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair," in Microwave Symposium Digest, 1991., IEEE MTT-S International, 1991, pp. 879-882 vol.2.
[51] K. L. Deng, Y. B. Wu, Y. L. Tang, H. Wang, and C. H. Chen, "Broadband monolithic GaAs-based HEMT diode mixers," in Microwave Conference, 2000 Asia-Pacific, 2000, pp. 1135-1138.
[52] C.-M. Lin, J.-T. Chang, C.-C. Su, S.-H. Hung, and Y.-H. Wang, "A 16-31 GHz miniature quadruple sub-harmonic monolithic mixer with lumped diplexer," Progress in Electromagnetics Reserch L, vol. 11, pp. 21-30, 2009.
[53] Che-Hung Lin, Yu-Ann Lai, Jui-Chieh Chiu, and Yeong-Her Wang, "A 23-37 GHz Miniature MMIC Sub-harmonic Mixer," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 679-681, 2007.
[54] M. W. Chapman and S. Raman, "A 60-GHz uniplanar MMIC 4× sub-harmonic mixer," Microwave Theory and Techniques, IEEE Transactions on, vol. 50, pp. 2580-2588, 2002.
[55] K. Kanaya, K. Kawakami, T. Hisaka, T. Ishikawa, and S. Sakamoto, "A 94 GHz high performance quadruple sub-harmonic mixer MMIC," in Microwave Symposium Digest, 2002 IEEE MTT-S International, 2002, pp. 1249-1252.
[56] Won-Young Uhm, Woo-Suk Sul, Hyo-Jong Han, Sung-Chan Kim, Han-Sin Lee, Dan An, Sam-Dong Kim, Dong-Hoon Shin, Hyung-Moo Park, and Jin-Koo Rhee, "A high performance V-band monolithic quadruple sub-harmonic mixer," in Microwave Symposium Digest, 2003 IEEE MTT-S International, 2003, pp. 1319-1322 vol.2.
[57] S. Raman, F. Rucky, and G. M. Rebeiz, "A high-performance W-band uniplanar sub-harmonic mixer," Microwave Theory and Techniques, IEEE Transactions on, vol. 45, pp. 955-962, 1997.
[58] Ming-Quan Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and Xiao Sun, "A 9-31-GHz Sub-harmonic Passive Mixer in 90-nm CMOS Technology," Solid-State Circuits, IEEE Journal of, vol. 41, pp. 2257-2264, 2006.
[59] Juo-Jung Hung, T. M. Hancock, and G. M. Rebeiz, "A 77 GHz SiGe sub-harmonic balanced mixer," Solid-State Circuits, IEEE Journal of, vol. 40, pp. 2167-2173, 2005.
[60] Ming-Fong Lei, Pei-Si Wu, Tian-Wei Huang, and Huei Wang, "Design and analysis of a miniature W-band MMIC sub-harmonically pumped resistive mixer," in Microwave Symposium Digest, 2004 IEEE MTT-S International, 2004, pp. 235-238 Vol.1.
[61] K. S. Ang, A. H. Baree, S. Nam, and I. D. Robertson, "A millimeter-wave monolithic sub-harmonically pumped resistive mixer," in Microwave Conference, 1999 Asia Pacific, 1999, pp. 222-225 vol.2.
[62] H. Zirath, I. Angelov, and N. Rorsman, "A millimeterwave sub-harmonically pumped resistive mixer based on a heterostructure field effect transistor technology," in Microwave Symposium Digest, 1992., IEEE MTT-S International, 1992, pp. 599-602 vol.2.
[63] M. W. Chapman and S. Raman, "A 60 GHz uniplanar MMIC 4X sub-harmonic mixer," in Microwave Symposium Digest, 2001 IEEE MTT-S International, 2001, pp. 95-98 vol.1.
[64] S.-H. Hung, W.-C. Chien, and Y.-A. Lai C.-M. Lin, and Y.-H. Wang, "V-band high isolation sub-harmonic monolithic mixer with hairpin diplexer," Progress In Electromagnetics Research Letters, vol. 16, pp. 161-169, 2010.
[65] Cotter W. Sayre, Complete Wireless Design. New York, NY, USA: McGraw-Hill Professional Publishing, 2001.
[66] Ho-Chung Chen and C. K. C. Tzuang, "All-planar dual-mode asymmetric filters at Ka-band," Microwave and Wireless Components Letters, IEEE, vol. 13, pp. 111-113, 2003.
[67] D. Lohinetong, J. Thevenard, C. Nicolas, P. Minard, A. Louzir, J. P. Coupez, and C. Person, "Microstrip to surface mounted foam-based waveguide transition for Ka-band filter integration," in Microwave and Millimeter Wave Technology, 2004. ICMMT 4th International Conference on, Proceedings, 2004, pp. 899-902.
[68] Guo-Qing Luo, Wei Hong, Qing-Hua Lai, Ke Wu, and Ling-Ling Sun, "Design and Experimental Verification of Compact Frequency-Selective Surface With Quasi-Elliptic Bandpass Response," Microwave Theory and Techniques, IEEE Transactions on, vol. 55, pp. 2481-2487, 2007.
[69] Yun Tao, Wei Hong, and Hongjun Tang, "Design of A Ka-Band Bandpass Filter Based on High Order Mode SIW Resonator," in Antennas, Propagation & EM Theory, 2006. ISAPE '06. 7th International Symposium on, 2006, pp. 1-3.
[70] Yuan-Wei Yu, Zhang Yong, and Zhu Jian, "Monolithic silicon micromachined Ka-band filters," in Microwave and Millimeter Wave Technology, 2008. ICMMT 2008. International Conference on, 2008, pp. 1397-1400.
[71] Bo Yang, E. Skafidas, and R. Evans, "Design of integrated millimetre wave microstrip interdigital bandpass filters on CMOS technology," in Microwave Conference, 2007. European, 2007, pp. 680-683.
[72] Yi-Ming Chen, Sheng-Fuh Chang, Chia-Chan Chang, Tin-Jae Hong, and Wei-Cheng Lo, "A Compact Step-Impedance Combline Filter With Symmetric Insertion-Loss Response and Wide Stopband Range," in Microwave Symposium Digest, 2006. IEEE MTT-S International, 2006, pp. 1209-1212.
[73] Xiao-Hua Fan and E. Sanchez-Sinencio, "3-22GHz CMOS distributed single-balanced mixer," in SOC Conference, 2004. Proceedings. IEEE International, 2004, pp. 93-96.
[74] S. B. Cohn, "Parallel-Coupled Transmission-Line-Resonator Filters," Microwave Theory and Techniques, IRE Transactions on, vol. 6, pp. 223-231, 1958.
Chapter 2
[1] J. A. Macedo and M. A. Copeland, "A 1.9-GHz silicon receiver with monolithic image filtering," Solid-State Circuits, IEEE Journal of, vol. 33, pp. 378-386, 1998.
[2] J. Macedo, M. Copeland, and P. Schvan, "A 2.5 GHz monolithic silicon image reject filter," in Custom Integrated Circuits Conference, 1996., Proceedings of the IEEE 1996, 1996, pp. 193-196.
[3] K. A. Baki and M. N. El-Gamal, "A 1 V 0.8mW multi-GHz CMOS differential tunable image reject notch filter," in Circuits and Systems, 2005. 48th Midwest Symposium on, 2005, pp. 802-805 Vol. 1.
[4] Anh-Tuan Phan, Chang-Wan Kim, Choong-Yul Cha, Min-Suk Kang, Sang-Gug Lee, Chun-Deok Su, and Hoon-Tae Kim, "A low noise image rejection down CMOS mixer," in Circuits and Systems, 2004. MWSCAS '04. The 2004 47th Midwest Symposium on, 2004, pp. iii-327-30 vol.3.
[5] M. A. Do, K. Linggajaya, K. S. Yeo, and J. G. Ma, "Broadband image reject down-converters," in VLSI Technology, Systems, and Applications, 2003 International Symposium on, 2003, pp. 140-143.
[6] B. Razavi, RF Microelectronics: Upper Saddle River, NJ: Prentice-Hall, 1998.
[7] J. M. Mourant and S. Jurgiel, "A broadband planar image reject mixer," in Microwave Symposium Digest, 1994., IEEE MTT-S International, 1994, pp. 1637-1640 vol.3.
[8] K. Fujii and H. Morkner, "A 6-30GHz image-rejection distributed resistive MMIC mixer in a low cost surface mount package," in Microwave Symposium Digest, 2005 IEEE MTT-S International, 2005, p. 4 pp.
[9] S. E. Gunnarsson, D. Kuylenstierna, and H. Zirath, "Analysis and Design of Millimeter-Wave FET-Based Image Reject Mixers," Microwave Theory and Techniques, IEEE Transactions on, vol. 55, pp. 2065-2074, 2007.
[10] M. Gavell, M. Ferndahl, S. E. Gunnarsson, M. Abbasi, and H. Zirath, "An Image Reject Mixer for High-Speed E-Band (71-76, 81-86 GHz) Wireless Communication," in Compound Semiconductor Integrated Circuit Symposium, 2009. CISC 2009. Annual IEEE, 2009, pp. 1-4.
[11] S. Basu P. K. Singhal, and Y.-H. Wang, "Integrated Compact Broad Ka-Band Sub-Harmonic Single Sideband Up-Converter MMIC," Progress In Electromagnetics Research B, vol. 8, pp. 179-194, 2009.
[12] Hwann-Kaeo Chiou, Wan-Ru Lian, and Tsung-Yu Yang, "A Miniature Q-Band Balanced Sub-Harmonically Pumped Image Rejection Mixer," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 463-465, 2007.
[13] George D. Vendelin, Anthony M. Pavio, and Ulrich L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques (2nd Edition). Hoboken, NJ, USA: Wiley-Interscience, 2005.
[14] Rowan Gilmore and Les Besser, Practical RF Circuit Design for Modern Wireless Systems : Active Circuits and Systems, Volume II. Norwood, MA, USA: Artech House, Incorporated, 2003.
[15] R. Majidi-Ahy, C. Nishimoto, J. Russell, Wei-Ming. Ou, S. Bandy, and G. Zdasiuk, "23-40 GHz InP HEMT MMIC distributed mixer," in Microwave Symposium Digest, 1992., IEEE MTT-S International, 1992, pp. 1063-1066 vol.2.
[16] Chang-Ho Lee and Joy. Laskar, Compact Ku-Band Transmitter Design for Satellite Communication Applications : From System Analysis to Hardware Implementation. Hingham, MA, USA: Kluwer Academic Publishers, 2002.
[17] Les Besser and Rowan Gilmore, Practical RF Circuit Design for Modern Wireless Systems : Passive Circuits and Systems, Volume I. Norwood, MA, USA: Artech House, Incorporated, 2003.
[18] Chris Coleman, Introduction to Radio Frequency Engineering. West Nyack, NY, USA: Cambridge University Press, 2004.
[19] S. K. Reynolds, B. A. Floyd, U. R. Pfeiffer, T. Beukema, J. Grzyb, C. Haymes, B. Gaucher, and M. Soyuer, "A Silicon 60-GHz Receiver and Transmitter Chipset for Broadband Communications," Solid-State Circuits, IEEE Journal of, vol. 41, pp. 2820-2831, 2006.
[20] G. Passiopoulos and K. Lamacraft, "A compact L-band LTCC mixer with high image rejection," in Microwave Symposium Digest, 2002 IEEE MTT-S International, 2002, pp. 249-252.
[21] R. K. Mongia, I. J. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits (2nd Edition). Norwood, MA, USA: Artech House, 2007.
Chapter 3
[1] K. Itoh, A. Iida, Y. Sasaki, and S. Urasaki, "A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair," in Microwave Symposium Digest, 1991., IEEE MTT-S International, 1991, pp. 879-882 vol.2.
[2] S. Raman, F. Rucky, and G. M. Rebeiz, "A high-performance W-band uniplanar sub-harmonic mixer," Microwave Theory and Techniques, IEEE Transactions on, vol. 45, pp. 955-962, 1997.
[3] M. W. Chapman and S. Raman, "A 60 GHz uniplanar MMIC 4X sub-harmonic mixer," in Microwave Symposium Digest, 2001 IEEE MTT-S International, 2001, pp. 95-98 vol.1.
[4] M. W. Chapman and S. Raman, "A 60-GHz uniplanar MMIC 4× sub-harmonic mixer," Microwave Theory and Techniques, IEEE Transactions on, vol. 50, pp. 2580-2588, 2002.
[5] K. Kanaya, K. Kawakami, T. Hisaka, T. Ishikawa, and S. Sakamoto, "A 94 GHz high performance quadruple sub-harmonic mixer MMIC," in Microwave Symposium Digest, 2002 IEEE MTT-S International, 2002, pp. 1249-1252.
[6] Won-Young Uhm, Woo-Suk Sul, Hyo-Jong Han, Sung-Chan Kim, Han-Sin Lee, Dan An, Sam-Dong Kim, Dong-Hoon Shin, Hyung-Moo Park, and Jin-Koo Rhee, "A high performance V-band monolithic quadruple sub-harmonic mixer," in Microwave Symposium Digest, 2003 IEEE MTT-S International, 2003, pp. 1319-1322 vol.2.
[7] S. Sarkar, P. Sen, S. Pinel, Chang-Ho. Lee, and J. Laskar, "Si-based 60GHz 2X Sub-harmonic Mixer for Multi-Gigabit Wireless Personal Area Network Application," in Microwave Symposium Digest, 2006. IEEE MTT-S International, 2006, pp. 1830-1833.
[8] Che-Hung Lin, Yu-Ann Lai, Jui-Chieh Chiu, and Yeong-Her Wang, "A 23-37 GHz Miniature MMIC Sub-harmonic Mixer," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 679-681, 2007.
[9] Chih-Ming Lin, Hua-Kuei Lin, Yu-Ann Lai, Chieh-Pin Chang, and Yeong-Her Wang, "A 10 - 40 GHz Broadband Sub-harmonic Monolithic Mixer in 0.18μm CMOS Technology," Microwave and Wireless Components Letters, IEEE, vol. 19, pp. 95-97, 2009.
[10] S.-H. Hung, W.-C. Chien, and Y.-A. Lai C.-M. Lin, and Y.-H. Wang, "V-band high isolation sub-harmonic monolithic mixer with hairpin diplexer," Progress In Electromagnetics Research Letters, vol. 16, pp. 161-169, 2010.
[11] C. -M. Lin, J.-T. Chang, C.-C. Su, S.-H. Hung, and Y.-H. Wang, "A 16-31 GHz miniature quadruple sub-harmonic monolithic mixer with lumped diplexer," Progress in Electromagnetics Reserch L, vol. 11, pp. 21-30, 2009.
[12] O. S. A. Tang and C. S. Atchison, "A Practical Microwave Travelling-Wave MESFET Gate Mixer," in Microwave Symposium Digest, 1985 IEEE MTT-S International, 1985, pp. 605-608.
[13] O. S. A. Tang and C. S. Aitchison, "A Very Wide-Band Microwave MESFET Mixer Using the Distributed Mixing Principle," Microwave Theory and Techniques, IEEE Transactions on, vol. 33, pp. 1470-1478, 1985.
[14] Xiao-Hua Fan and E. Sanchez-Sinencio, "3-22GHz CMOS distributed single-balanced mixer," in SOC Conference, 2004. Proceedings. IEEE International, 2004, pp. 93-96.
[15] Jeng-Han Tsai, Hong-Yuan Yang, Tian-Wei Huang, and Huei Wang, "A 30-100 GHz Wideband Sub-Harmonic Active Mixer in 90 nm CMOS Technology," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 554-556, 2008.
[16] Hong-Yuan Yang, Jeng-Han Tsai, Chi-Hsueh Wang, Chin-Shen Lin, Wei-Heng Lin, Kun-You Lin, Tian-Wei Huang, and Huei Wang, "Design and Analysis of a 0.8-77.5-GHz Ultra-Broadband Distributed Drain Mixer Using 0.13-μm CMOS Technology," Microwave Theory and Techniques, IEEE Transactions on, vol. 57, pp. 562-572, 2009.
[17] A. Q. Safarian, A. Yazdi, and P. Heydari, "Design and analysis of an ultrawide-band distributed CMOS mixer," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 13, pp. 618-629, 2005.
[18] Bo-Yu Nie, Jin-Fang Zhou, and Kang-Sheng Chen, "Design and analysis of an ultrawide-band distributed drain-pumped mixer using 0.18 μm CMOS technology," in Microelectronics & Electronics, 2009. PrimeAsia 2009. Asia Pacific Conference on Postgraduate Research in, 2009, pp. 29-32.
[19] Chun-Lin Kuo, Che-Chung Kuo, Chun-Hsien Lien, Jeng-Han Tsai, and Huei Wang, "A Novel Reduced-Size Rat-Race Broadside Coupler and Its Application for CMOS Distributed Sub-Harmonic Mixer," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 194-196, 2008.
[20] I. D. Robertson and S. Lucyszyn, RFIC and MMIC Design and Technology. London, United Kingdom: The Institute of Electrical Engineers, 2001.
[21] Shih-Chieh Shin, Jhih-Yu Huang, Kun-You Lin, and Huei Wang, "A 1.5 - 9.6 GHz Monolithic Active Quasi-Circulator in 0.18 μm CMOS Technology," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 797-799, 2008.
[22] S. Hara, T. Tokumitsu, and M. Aikawa, "Novel unilateral circuits for MMIC circulators," Microwave Theory and Techniques, IEEE Transactions on, vol. 38, pp. 1399-1406, 1990.
[23] You Zheng and C. E. Saavedra, "Active Quasi-Circulator MMIC Using OTAs," Microwave and Wireless Components Letters, IEEE, vol. 19, pp. 218-220, 2009.
[24] H.-M. Hsu, J.-Y. Chang, J.-G. Su, C.-C. Tsai, S.-C. Wong, C.-W. Chen, K.-R. Peng, S.-P. Ma, C.-N. Chen, T.-H. Yeh, C.-H. Lin, Y.-C. Sun, and C.-Y. Chang, "A 0.18 μm foundry RF CMOS technology with 70 GHz fT for single chip system solutions," in Microwave Symposium Digest, 2001 IEEE MTT-S International, 2001, pp. 1869-1872 vol.3.
[25] B. Razavi, "CMOS technology characterization for analog and RF design," Solid-State Circuits, IEEE Journal of, vol. 34, pp. 268-276, 1999.
[26] V. Sedghi, A. Abdipour, and A. Mohammadi, "A flat conversion gain sub-harmonically pumped image rejection mixer in mm-wave band," in Microwave and Millimeter Wave Technology, 2004. ICMMT 4th International Conference on, Proceedings, 2004, pp. 312-315.
[27] Ming-Quan Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and Xiao Sun, "A 9-31-GHz Sub-harmonic Passive Mixer in 90-nm CMOS Technology," Solid-State Circuits, IEEE Journal of, vol. 41, pp. 2257-2264, 2006.
[28] Jeng-Han Tsai and Tian-Wei Huang, "35-65-GHz CMOS Broadband Modulator and Demodulator With Sub-Harmonic Pumping for MMW Wireless Gigabit Applications," Microwave Theory and Techniques, IEEE Transactions on, vol. 55, pp. 2075-2085, 2007.
[29] F. C. Chang, P. S. Wu, M. F. Lei, and H. Wang, "A 4-41 GHz Singly Balanced Distributed Mixer Using GaAs pHEMT Technology," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 136-138, 2007.
Chapter 4
[1] Chih-Ming Lin, Hua-Kuei Lin, Yu-Ann Lai, Chieh-Pin Chang, and Yeong-Her Wang, "A 10 - 40 GHz Broadband Subharmonic Monolithic Mixer in 0.18μm CMOS Technology," Microwave and Wireless Components Letters, IEEE, vol. 19, pp. 95-97, 2009.
[2] Jeng-Han Tsai, Hong-Yuan Yang, Tian-Wei Huang, and Huei Wang, "A 30-100 GHz Wideband Sub-Harmonic Active Mixer in 90 nm CMOS Technology," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 554-556, 2008.
[3] B. Piernas, H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, "A broadband and miniaturized V-band PHEMT frequency doubler," Microwave and Guided Wave Letters, IEEE, vol. 10, pp. 276-278, 2000.
[4] Kuo-Liang Deng and Huei Wang, "A miniature broad-band pHEMT MMIC balanced distributed doubler," Microwave Theory and Techniques, IEEE Transactions on, vol. 51, pp. 1257-1261, 2003.
[5] Chun-Lin Kuo, Che-Chung Kuo, Chun-Hsien Lien, Jeng-Han Tsai, and Huei Wang, "A Novel Reduced-Size Rat-Race Broadside Coupler and Its Application for CMOS Distributed Sub-Harmonic Mixer," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 194-196, 2008.
[6] Rowan Gilmore and Les Besser, Practical RF Circuit Design for Modern Wireless Systems : Active Circuits and Systems, Volume II. Norwood, MA, USA: Artech House, Incorporated, 2003.
[7] C. Fager, L. Landen, and H. Zirath, "High output power, broadband 28-56 GHz MMIC frequency doubler," in Microwave Symposium Digest., 2000 IEEE MTT-S International, 2000, pp. 1589-1591 vol.3.
[8] Cotter W. Sayre, Complete Wireless Design. New York, NY, USA: McGraw-Hill Professional Publishing, 2001.
[9] R. Majidi-Ahy, C. Nishimoto, J. Russell, Wei-Ming. Ou, S. Bandy, and G. Zdasiuk, "23-40 GHz InP HEMT MMIC distributed mixer," in Microwave Symposium Digest, 1992., IEEE MTT-S International, 1992, pp. 1063-1066 vol.2.
[10] Yu-Lung Tang, Po-Yo Chen, and Huei Wang, "A broadband PHEMT MMIC distributed doubler using high-pass drain line topology," Microwave and Wireless Components Letters, IEEE, vol. 14, pp. 201-203, 2004.
[11] Tsung-Yu Yang and Hwann-Kaeo Chiou, "A 25-75 GHz Miniature Double Balanced Frequency Doubler in 0.18-μm CMOS Technology," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 275-277, 2008.
[12] B. Piernas, K. Nishikawa, T. Nagagawa, H. Hayashi, and K. Araki, "Analysis of balanced active doubler for broad-band operation - the frequency-tuning concept," Microwave Theory and Techniques, IEEE Transactions on, vol. 50, pp. 1120-1126, 2002.
[13] F. van Raay and G. Kompa, "Design and stability test of a 2-40 GHz frequency doubler with active balun," in Microwave Symposium Digest., 2000 IEEE MTT-S International, 2000, pp. 1573-1576 vol.3.
[14] A. M. Pavio, S. D. Bingham, R. H. Halladay, and C. A. Sapashe, "A distributed broadband monolithic frequency multiplier," in Microwave Symposium Digest, 1988., IEEE MTT-S International, 1988, pp. 503-504 vol.1.
[15] Wen-Ren Lee, Shih-Fong Chao, Zuo-Min Tsai, Pin-Cheng Huang, Chun-Hsien Lien, Jeng-Han Tsai, and Huei Wang, "A high-efficiency, broadband and high output power PHEMT balanced K-band doubler with integrated balun," in Microwave Conference, 2006. APMC 2006. Asia-Pacific, 2006, pp. 763-766
Chapter 5
[1] Les Thede, Practical Analog and Digital Filter Design. Norwood, MA, USA: Artech House, Incorporated, 2004.
[2] A. Saito, H. Harada, and A. Nishikata, "Development of band pass filter for ultra wideband (UWB) communication systems," in Ultra Wideband Systems and Technologies, 2003 IEEE Conference on, 2003, pp. 76-80.
[3] H. N. Shaman and Jia-Sheng Hong, "Recent development of ultra-wideband (UWB) bandpass filters using distributed stub transmission line structures," in Microwave Symposium (MMS), 2009 Mediterrannean, 2009, pp. 1-4.
[4] T. Prodromakis and C. Papavassiliou, "Distributed filter design on silicon CMOS," in Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, 2006, pp. 4 pp.-3312.
[5] Ho-Chung Chen and C. K. C. Tzuang, "All-planar dual-mode asymmetric filters at Ka-band," Microwave and Wireless Components Letters, IEEE, vol. 13, pp. 111-113, 2003.
[6] Yun Tao, Wei Hong, and Hong-Jun Tang, "Design of A Ka-Band Bandpass Filter Based on High Order Mode SIW Resonator," in Antennas, Propagation & EM Theory, 2006. ISAPE '06. 7th International Symposium on, 2006, pp. 1-3.
[7] Y. C. Chiang, H. C. Chiu, and W. L. Hsieh, "Implementation of Second-order Ku-band Chip Filter on Si Substrate with Commercial 0.18-μm CMOS Technology," in Microwave Symposium Digest, 2006. IEEE MTT-S International, 2006, pp. 1249-1252.
[8] L. Young G. L. Matthaei, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures. New York: McGraw-Hill, 1964.
[9] E. G. Cristal, "Tapped-Line Coupled-Transmission-Lines with Applications to Combline and Interdigital Filters," in Microwave Symposium, 1975 IEEE-MTT-S International, 1975, pp. 110-112.
[10] J. S. Wong, "Microstrip Tapped-Line Filter Design," Microwave Theory and Techniques, IEEE Transactions on, vol. 27, pp. 44-50, 1979.
[11] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001.
[12] B. Yang, E. Skafidas, and R. Evans, "Design of integrated millimetre wave microstrip interdigital bandpass filters on CMOS technology," in Microwave Conference, 2007. European, 2007, pp. 680-683.
[13] Yi-Ming Chen, Sheng-Fuh Chang, Chia-Chan Chang, Tin-Jae Hong, and Wei-Cheng Lo, "A Compact Step-Impedance Combline Filter With Symmetric Insertion-Loss Response and Wide Stopband Range," in Microwave Symposium Digest, 2006. IEEE MTT-S International, 2006, pp. 1209-1212.
[14] Ian A. Glover, Steve Pennock, and Peter Shepherd, Microwave Devices, Circuits and Subsystems for Communications Engineering. Hoboken, NJ, USA: Wiley, 2006.
[15] R. J. Wenzel, "Exact Theory of Interdigital Band-Pass Filters and Related Coupled Band-Pass Structures," Microwave Theory and Techniques, IEEE Transactions on, vol. 13, pp. 559-575, 1965.
[16] Yuan-Wei Yu, Yong Zhang, and Jian Zhu, "Monolithic silicon micromachined Ka-band filters," in Microwave and Millimeter Wave Technology, 2008. ICMMT 2008. International Conference on, 2008, pp. 1397-1400.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-07-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-07-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw