進階搜尋


 
系統識別號 U0026-2306201107150700
論文名稱(中文) 台灣西南部泥火山泥漿及液體之生物地球化學特性及過程
論文名稱(英文) Biogeochemical characters and processes of muds and liquids in the mud volcanoes of Southwestern Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 99
學期 2
出版年 100
研究生(中文) 劉家全
研究生(英文) Chia-Chuan Liu
學號 l4892102
學位類別 博士
語文別 中文
論文頁數 137頁
口試委員 指導教授-簡錦樹
口試委員-何漣漪
口試委員-劉振宇
口試委員-楊燦堯
口試委員-林立虹
中文關鍵字 泥火山        嘉南平原  腐質物質  飽和指數  生物地球化學過程 
英文關鍵字 Mud volcano  Arsenic  Iron  Manganese  Chianan plain  Humic substance  Saturation index  Biogeochemical processes 
學科別分類
中文摘要 本研究之目的為了解台灣西南部泥火山液體及固體之主要陰陽離子、微量元素及腐質酸濃度是否受到季節性降雨、水岩交互作用、微生物活動及區域地質構造之影響而有所變化。本研究採集了位於旗山斷層(烏山頂、新養女湖)、古亭坑背斜(小滾水、鹽水坑)及西部海岸平原(滾水坪、鯉魚山)等不同構造區泥火山包括泥火山之泥漿樣本,進行主要陰陽離子、腐質酸及微量元素之分析,結果顯示泥漿液體中高濃度之氯化鈉離子,顯示此區域為海洋沉積來源之環境。泥漿液體中主要陰陽離子及微量元素之分析結果顯示泥漿液體中砷之釋放可能與嘉南平原地下水中的砷有關聯。泥漿液體中大部分的微量元素濃度皆偏低,但是泥漿固體中砷、鐵、錳的濃度偏高,本研究推測腐質酸可能與這些微量元素結合而沉澱於泥漿固體中。而傅利葉轉換紅外線光譜儀(FT-IR)分析烏山頂及小滾水泥漿中腐質酸的可能官能基組成包括二級胺(secondary amines)、脲類(ureas)、氨基甲酸酯(urethanesm )、矽(silicon)等鍵結。經由泥火山泥漿液體的飽和指數(SI)計算台灣西南部泥火山液體中所有含砷礦物是未飽合狀態,而在鐵氧化礦物的分析上,所有泥火山液體中的針鐵礦都過飽和,而且碳酸鹽礦物的分析也顯示大部分泥火山泥漿液體中的白雲石都是過飽和的。包括碳酸鹽及鐵氧化礦物(FeOOH or Fe(OH)3)皆有可能為泥火山砷之潛在來源,由於泥火山液體中所有含砷礦物是未飽合狀態,而砷在脫水的液體及泥漿中懸浮,可能因為地下潛流及地表傳輸至嘉南平原的含水層而沉積下來。在還原環境下,砷可能自宿主礦物釋放出來(包括鐵及錳之氧化物/氫氧化物),進而造成大面積的地下水污染。泥漿液體之地球化學分析顯示砷與鐵之濃度並沒有相關性(r=0.119, p=0.8485),而液體中腐質酸及砷之濃度可以分成兩個群落,分別為含高濃度的砷及鐵(小滾水及滾水坪泥火山)及低濃度的砷及鐵(烏山頂、鹽水坑、新養女湖)。本研究的結果顯示影響泥火山的生物地球化學過程的因子可以分為(1)鈉離子的富集及鈣離子缺乏; (2)好氧菌及嗜鹽菌的存在; (3)厭氧菌的氧化還原作用。這些因子進一步影響了泥火山的地球化學變化,另外本研究也提出一概念模式(conceptual model)解釋泥火山區域砷的移動性過程。腐質物質可能與沉積物中微量元素的鍵結有重要作用。
英文摘要 The objectives of this study were to understand whether or not the major ions, trace elements, humic acids were affected by seasonal precipitations, water-rock interactions, microbial activity, and regional structural geology. In this study, fluid and mud samples collected from Chishan fault (Wushanting and Sinyangnyuhu mud volcanoes), Kutingkeng anticline (Hsiaokunshui and Yenshuikeng mud volcanoes), and coastal plain (Kunshuiping and Liyushan mud volcanoes) of southwestern Taiwan were characterized for major ions, humic substances (HS) and trace elements concentrations. High Na+ and Cl- concentrations in mud liquids indicated marine depositional source (rich in NaCl and MgCl). Concentrations of major ions and trace elements in mud volcanic fluids were analyzed to find out the possible linkage to elevated arsenic (As) concentrations in the Chianan plain groundwater. The trace element concentrations in the mud volcanic fluids were generally low, high concentrations of As, Fe, and Mn were observed in the mud samples. Humic substances may play an important role in binding with trace elements in muds. FT-IR (Fourier Transform Infrared) spectra of HS from muds of Wushanting and Hsiaokunshui mud volcanoes showed the presence of possible functional groups of secondary amines, ureas, urethanesm, and silicon. Saturation index (SI) calculations indicated that both carbonates and oxide minerals acted as potential sinks for As in the mud volcanic muds. Arsenic in the dewatering fluids and muds may be transported by the subsurface flow and surface streams as suspended solids and eventually precipitated in the Chianan plain aquifers. Under reducing conditions, As may be released from the host minerals (such as Fe-and Mn-oxides/hydroxides), thereby causing widespread groundwater As pollution. The concentrations of As and ion in mud volcano fluids are not correlated (r=0.119, p=0.8485). The As and humic acid concentrations in mud volcano fluids can be divided two groups, they are high concentrations of As and iron in the Hsiaokunshui and Kunshuiping mud volcanoes, and low concentrations of As and iron in the Wushanting, Yenshuikeng and Sinyangnyuhu mud volcanoes.The biogeochemical process of mud volcanoes can be divided into (1) sodium enrichment and calcium deficiency; (2) the presence of aerobic and halophylic bacteria; (3) the redox role of anaerobic bacteria. These biogeochemical processes can affect the geochemical changes in the mud volcanoes. A conceptual model was proposed to explain the mobilization processes of As in the mud volcanoes.
論文目次 目 錄 頁數
封 面⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯I 考試合格證明⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯II摘 要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯III Abstract⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯IV 致 謝⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯V
目 錄⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯VI 表目錄⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯X圖目錄⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯XIII
第一章 緒論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 1-1 研究動機⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 1-2 研究目的⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 1-3 文獻回顧⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 1-3-1 泥火山地質特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 1-3-2 台灣泥火山固、液、氣體之化學性質⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3
1-3-3地 下水中砷的污染⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 1-3-4 砷的吸附脫附行為⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 1-3-5 微生物對於砷之氧化還原⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6
1-3-6 腐質酸之特性研究⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 1-4 研究範圍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 1-5 研究區域之地質概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 第二章 研究方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13
2-1 研究流程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 2-2 泥漿樣本採集與各項化學分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14
2-2-1 樣本採集及野外化學分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14
2-2-2 泥漿及液體之主要陰陽離子分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯15 2-2-3 氫氧同位素分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯16
2-2-4 微量元素分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯16
2-2-5 泥漿固體之吸附脫附試驗⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17
2-2-6 泥漿液體之螢光強度與泥漿中腐質酸的萃取與分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17
2-2-7 泥漿液體及固體之總有機碳分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯19
2-2-8 環境掃描式電子顯微鏡-能量分散X光光譜儀(ESEM-EDX)分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯19 2-3 微生物的培養與分離⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯20 2-3-1 光學及電子顯微鏡觀察⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21
2-3-2 分子生物學實驗所需器材、藥品及溶液之配製⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21
2-3-3 菌種之DNA萃取、PCR(聚合酶連鎖反應)之16S rRNA 基因放大⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22 2-3-4 膠電泳實驗⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯23
2-3-5 基因定序及細菌之親緣關係鑑定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯23 2-3-6 菌種之生理特性測試⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24
2-4 各項軟體之應用及其分析結果代表之意義⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24
2-4-1 Statistica及Sigma plot之分析及其分析意義⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24 2-4-2 Piper diagram之分析及其分析意義⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25 2-4-3 PHREEQC之分析及其分析意義⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25 2-4-4 KnowItAll之分析及其意義⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25
2-4-5 Spectrum之分析及其意義⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25 第三章 結果⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯26 3-1 泥漿樣本之化學分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯26
3-1-1 泥漿液體之主要陰陽離子及微量元素⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯26
3-1-2 泥火山泥漿固體之化學成分分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯32 3-1-3 泥漿液體之同位素分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯41
3-1-4 泥漿氣體之主要成分分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯44
3-1-5 泥漿固體及液體之微量元素比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯45 3-1-6 泥漿固體之腐質酸及其官能基分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯47 3-2 微生物之分析鑑定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55
3-2-1 好氧菌之鑑定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55
3-2-2 好氧菌對於鹽度、pH、溫度之耐受性實驗⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯58 3-2-3 厭氧環境細菌之培養分離鑑定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62
3-2-4 硫酸還原速率分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯63
3-2-5 微生物硫酸還原反應下之產物分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯66
第四章 討論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯68 4-1 泥火山泥漿液體之化學成分比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯68
4-2 泥火山泥漿液體之空間差異性比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76
4-3 利用PHREEQC計算泥漿液體之礦物飽和指數⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯78 4-4 泥漿液體之化學成分對於泥火山環境之影響⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯79
4-5 泥火山泥漿固體之時空差異性分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯83
4-6 泥火山泥漿固體微量元素之相關性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯89 4-7 泥火山泥漿液體中陰陽離子之吸附脫附效應⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯92
4-8 泥火山泥漿固體及液體中砷、鐵、腐質酸之相關性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯94
4-9 泥火山泥漿之生物地球化學過程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯95
4-9-1 鈉離子的富集及鈣離子缺乏⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯97
4-9-2 好氧菌及嗜鹽菌的存在⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯98
4-9-3 厭氧菌的氧化還原作用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯98
4-10 砷於泥火山泥漿傳輸至嘉南平原的可能傳輸模式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯102
第五章 結論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯105
參考文獻⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯108
附錄 表A. 2004年10月至2005年6月期間烏山頂及小滾水泥火山固體之主要陰陽離子、微量元素含量比較(a)烏山頂,(b)小滾水⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯123
附錄 表B. 2004年10月至2005年6月期間烏山頂及小滾水泥火山固體釋放於純水及自來水之主要陰陽離子含量比較(a)烏山頂, (b)小滾水⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯125
附錄 表C. 烏山頂泥火山泥漿固體萃取之腐質酸官能基組成(2007年WST1樣本)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯128
附錄 表D. 烏山頂泥火山泥漿固體萃取之腐質酸官能基組成(2007年 WST2樣本)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯131
附錄 表E.小滾水泥火山泥漿固體萃取之腐質酸官能基組成(2007年 HKS1,HKS2樣本) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯135
自述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯136

表目錄 頁數
表3-1-1 2004年10月至2005年6月期間烏山頂及小滾水泥火山液體之指標化學成分及主要陰陽離子、微量元素濃度比較 (a)烏山頂, (b)小滾水⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯27
表 3-1-2 2007年烏山頂及小滾水泥火山液體及崁頂地下水之指標化學成分及主要陰陽離子濃度比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯28
表3-1-3 2008年2月及2009年2至4月期間鹽水坑、鯉魚山、新養女湖、烏山頂、小滾水及滾水坪等泥火山泥漿液體之指標化學成分及主要陰陽離子濃度比較⋯⋯⋯⋯⋯⋯⋯30
表3-1-4 2008年2月及2009年2至4月期間鹽水坑、鯉魚山、新養女湖、烏山頂、小滾水及滾水坪等泥火山泥漿固體經微波消化後之總微量元素含量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯37
表3-1-5 2008及2009年2至4月期間鹽水坑、鯉魚山、新養女湖、烏山頂、小滾水及滾水坪等泥火山泥漿固體可淋溶之微量元素含量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯38
表3-1-6 2008及2009年2至4月期間鹽水坑、鯉魚山、新養女湖、烏山頂、小滾水及滾水坪等泥火山泥漿固體砷之分佈含量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯39 表3-1-7 2008及2009年2至4月期間鹽水坑、鯉魚山、新養女湖、烏山頂、小滾水及滾水坪等泥火山泥漿流體及固體之總有機碳含量比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯40
3-1-8 泥火山、溫泉泥漿液體及崁頂地下水之氫氧同位素濃度比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42
表3-1-9 2007年3月烏山頂及小滾水泥火山之氣體成分組成比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯44
表3-1-10 2007年3月烏山頂及小滾水泥火山泥漿液體及固體可淋溶微量元素含量比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯46
表3-1-11 烏山頂泥火山泥漿固體萃取之腐質酸官能基組成(2007年WST1樣本)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯50
表3-1-12 烏山頂泥火山泥漿固體萃取之腐質酸官能基組成(2007年WST2樣本) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯52
表3-1-13 小滾水泥火山泥漿固體萃取之腐質酸官能基組成(2007年HKS1,HKS2樣本)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯54
表3-1-14 烏山頂與小滾水腐質酸官能基之異同比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯54
表3-2-1 於不同pH、鹽度、溫度實驗開始前,小滾水及烏山頂泥火山泥漿樣本原始加入之細菌量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯59
表3-2-2 小滾水及烏山頂泥火山泥漿樣本於不同鹽度下培養三天後之細菌量(CFU/mL)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯60
表3-2-3 小滾水及烏山頂泥火山泥漿樣本於不同pH值下培養三天後之細菌量(CFU/mL)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯61
表3-2-4 小滾水與烏山頂泥火山泥漿樣本於不同溫度值下培養三天後之細菌量(CFU/mL)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62
表3-2-5 利用硫酸還原培養基厭氧培養烏山頂泥火山Shewanella putrefaciens之硫酸根、亞硫酸根、硫化物、硝酸根、亞硝酸根等濃度之變化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯64
表3-2-6 利用硫酸還原培養基厭氧培養烏山頂泥火山泥漿中Shewanella putrefaciens的硫酸根、亞硫酸根、硫化物、硝酸根、亞硝酸根之氧化還原速率⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯65
表4-1-1 台灣西南部泥火山泥漿液體及嘉南平原地下水之各項陰陽離子及微量元素濃度比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯71 表4-2-1 鹽水坑(YSK)、鯉魚山(LYS)、新養女湖(SYNH)、烏山頂(WST)、小滾水(HKS)、滾水坪(KSP)等泥火山之泥漿液體化學成分之空間差異性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76
表4-3-1 利用PHREEQC計算泥漿液體之礦物飽和指數⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯79 表4-4-1 台灣西南部泥火山液體之各項指標化學成分及主要陰陽離子、微量元素濃度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯81
表4-4-2 台灣西南部泥火山泥漿液體之化學成分對於泥火山環境之影響⋯⋯⋯⋯⋯⋯⋯82 表4-4-3 泥火山泥漿液體中砷與指標化學成分之相關性分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯82
表4-5-1 烏山頂及小滾水泥火山泥漿固體化學成分含量在2004年10月至2005年6月之時間差異性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯85
表4-5-2 烏山頂及小滾水泥火山泥漿固體化學成分含量在2004年10月至2005年6月之空間差異性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯87
表4-8-1 泥火山泥漿固體及液體中的砷、鐵、腐質酸濃度比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯94
表4-9-1 本研究區域泥火山與泥漿溫泉之物理化學特性比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯96
表4-9-2 油氣演化階段劃分(修改自王將克等,2000)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯97
表4-9-3 利用硫酸還原培養基於好氧及厭養環境所培養鑑定之好氧及厭氧菌種名稱及形態⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯99
表4-9-4 利用硫酸還原培養基於好氧及厭養環境所培養鑑定之好氧及厭氧菌種的序列號碼⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯100


圖目錄 頁數
圖1-1 研究區域--台灣西南部泥火山樣本之採樣區域⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9
圖1-2 (a)烏山頂泥火山之泥漿錐, (b)泥漿噴口, (c)小滾水泥火山泥漿噴口⋯⋯⋯⋯⋯⋯⋯9
圖1-3 泥火山泥漿樣本的採樣方式(a)烏山頂,(b)小滾水⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10
圖1-4 旗山斷層沿線泥火山地表地質圖 (耿文溥, 1981) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 圖1-5 旗山斷層沿線烏山頂泥火山地下岩層之地層電性探勘(Sung et al., 2010)⋯⋯12
圖2-1 本研究流程與架構⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14
圖3-1-1 烏山頂、小滾水泥火山泥漿液體及崁頂地下水之主要陰陽離子的水化趨勢(2007年)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29
圖3-1-2 2008年2月及2009年2~4月鹽水坑、鯉魚山、新養女湖、烏山頂、小滾水、滾水坪等泥火山泥漿之主要陰陽離子的水化趨勢⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31
圖3-1-3 烏山頂泥火山泥漿固體中鈉、銨、鉀、鎂、鈣、氯、硝酸、硫酸根離子濃度於不同季節中各採樣點之空間變化(2004~2005年)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯33
圖3-1-4 小滾水泥火山泥漿固體中鈉、銨、鉀、鎂、鈣、氯、硝酸、硫酸根離子濃度於不同季節中各採樣點之空間變化(2004~2005年)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯34
圖3-1-5 泥火山、溫泉泥漿液體及崁頂地下水之氫氧同位素分佈(2005年及2011年)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43圖3-1-6 2007年3月烏山頂及小滾水泥火山之主要氣體成分分佈⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯44 圖3-1-7 烏山頂泥火山泥漿固體萃取之腐質酸與腐質酸標準品(Aldrich)之比較⋯⋯⋯47
圖3-1-8 小滾水泥火山泥漿固體萃取之腐質酸與腐質酸標準品(Aldrich)之比較⋯⋯⋯⋯47 圖3-2-1 格蘭氏染色之菌種型態(於1000倍光學顯微鏡下觀察) (a)格蘭氏陰性桿菌; (b) 格蘭氏陽性桿菌⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55
圖3-2-2 不同季節烏山頂泥火山泥漿固體微生物含量之比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯56
圖3-2-3 不同季節小滾水泥火山泥漿固體微生物含量之比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯56
圖3-2-4 小滾水及烏山頂泥火山泥漿菌種比對之親緣關係(好氧培養)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯57
圖3-2-5 烏山頂、小滾水、新養女湖泥火山泥漿微生物之親緣關係(厭氧培養)⋯⋯⋯⋯63 圖3-2-6 Shewanella putrefaciens於硫酸還原培養基中厭氧培養後之硫酸根、亞硫酸根、硫化物、硝酸根、亞硝酸根等濃度比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯64
圖3-2-7 利用硫酸還原培養基厭氧培養烏山頂泥火山泥漿中之Shewanella putrefaciens之硫酸根、亞硫酸根、硫化物、硝酸根、亞硝酸根等氧化還原速率⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯66
圖3-2-8 ESEM-EDX分析經過硫酸還原培養基厭氧培養Shewanella putrefaciens後之砷、鐵、硫沉澱物:(a)培養試管之黑色沉澱物; (b)環境掃描式電子顯微鏡影像; (c)經由EDX分析的元素含量(樣本經過鍍金處理)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯67 圖4-1-1 烏山頂及小滾水泥火山泥漿液體中Na/Cl之相關性(2004-2005年)⋯⋯⋯⋯⋯⋯⋯⋯70 圖4-1-2 台灣地區泥火山泥漿液體、嘉南平原、及全世界泥火山液體中陰陽離子之水化趨勢⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯72
圖4-1-3 台灣南部烏山頂、小滾水、滾水坪、鹽水坑泥火山及關子嶺泥漿液體主要陰陽離子之相關性(a) Na+ vs. Cl-, (b) 2Ca2+ vs. Cl-, (c) (Na++Ca2+) vs. Cl-、及(d) Total cations vs. Cl-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯72
圖4-1-4 鹽水坑、小滾水、烏山頂、滾水坪等泥火山泥漿液體及關子嶺泥漿液體砷、鐵、錳、鍶、硒離子之相關性 (a) As vs. Fe, (b) As vs. Mn, (c) As vs. Sr、及(d) As vs. Se⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯73
圖4-1-5 台灣泥火山液體氫氧同位素之比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯74
圖4-1-6 世界泥火山液體氫氧同位素之比較⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯75
圖4-6-1 泥火山泥漿固體之砷、錳、鋅、銅含量(mg/kgw)之相關性(2004至2005年)(a) 烏山頂, (b) 小滾水⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯90
圖4-6-2 2008年2月及2009年2至4月期間鹽水坑、鯉魚山、新養女湖、烏山頂、小滾水及滾水坪等泥火山泥漿經連續萃取試驗後之固體砷的分佈含量比較⋯⋯⋯⋯⋯⋯⋯⋯91
圖4-7-1 不同季節下烏山頂泥火山泥漿液體原始所含之氯、鈉離子及泥漿固體釋放氯,鈉離子之比較(a)Na+, (b)Cl-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯92
圖4-7-2 不同季節下小滾水泥火山泥漿液體原始所含之氯,鈉離子及泥漿固體釋放氯,鈉離子之比較(a)Na+, (b)Cl-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯93
圖4-8-1 泥火山泥漿液體中砷、鐵、腐質酸之相關性(a)砷-腐質酸;(b)砷-鐵⋯⋯⋯⋯⋯⋯95
圖4-10-1 泥火山至嘉南平原地下水流流網圖⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯103
圖4-10-2 泥火山泥漿砷移動性的概念模式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯104
參考文獻 Aiken, G. R., D. M. McKnight, R. L.Wershaw and P. MacCarthy(Editor), Humic Substances in Soil,Sediment, and Water, John Wiley and Sons, New York, pp.1-9. 1985.
Anawar, H. M., J. Akai, K. Komaki, H. Terao, T. Yoshioka, T. Ishizuka, S. Safiullah and K. Kato. Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes.J. Geochem. Explor. 77: 109-131. 2003.
Antonio, V., P. Massimo and R. Raffaella. Factors affecting arsenate adsorption/desorption on/from variable charge minerals and soils. 17th WCSS, 14-21 August. Thailand. Symposium no.47 paper no.133-1~133-8. 2002.
Banfield, J. F. and K. H. Nealson. Geomicrobiology: Interactions between Microbes and Minerals. Reviews in Mineralogy Vol. 35, Mineralogical Society of America, Washington DC, 448p. 1997.
Bauer, M. and C. Blodau. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci. Total Environ. 354: 179-190. 2006.
Bergoglio, R. M. Mortality from cancer in regions of arsenical waters of the province of Cordaba,Argentine Republic. Prensa. Med. Argent. 51: 994-998. 1964.
Bhattacharyya, R., D. Chatterjee, B. Nath, J. Jana, G. Jacks and M. Vahter. High arsenic groundwater: mobilization, metabolism and mitigation—an overview in the Bengal Delta Plain. Mol. Cell. Biochem. 253: 347-355. 2003.
Biagini, R. E., G. C. Quiroga and V. Elias. Chronic hydroarsenism in Urutau. Arch. Argent. Dermatol. 24: 8-11. 1974.
Bray, C.J. and D.E. Karig. Porosity of sediments on accretionary prisms and some implications for dewatering processes. J. Geophys. Res. 90: 768-787. 1985. Brouwere, K. De, E. Smolders and R. Merckx. Soil properties affecting solid distribution of As(V) in soils. Eur. J. Soil Sci. 55: 165-173. 2004.
Buschmann, J., A. Kappeler, U. Lindauer, D. Kistler, M. Berg, and L. Sigg. Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum. Environ. Sci. Technol. 40: 6015-6020. 2006.
Cebrian, M. E., A. Albores, M. Anguilar and E. Blackely. Chronic arsenic poisoning in the north of Mexico. Human Toxicol. 2: 121-133. 1983.
Chang, C. P., J. Angelier and C. Y. Huang, Origin and evolution of a melange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophys 325: 43-62. 2000.
Chao, H.-C., C.-F.You, C.-H.Sun. Gases in Taiwan mud volcanoes: chemical composition, methane carbon isotopes, and gas fluxes. Appl. Geochem. 25: 428-436. 2010.
Chen, L.. A Study on Occurrences and Eruptive Activities of Mud-volcanoes Along the Chishan Fault, Southwestern Taiwan. Masters Thesis, Department of Geography, National Kaohsiung Normal University. 2005.
Chiou, C. T., R. L. Malcolm, T. I. Brinton and D. E. Kile. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol. 20: 502-508. 1986.
Christl, I. and R. Kretzschmar. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. proton binding . Environ. Sci. Technol. 35: 2505-2511. 2001.
Christl, I., C. J. Milne, D. G. Kinniburgh, and R. Kretzchmar. Relating ion binding fulvic and humic acids to chemical composition and molecular size. 2. metal binding. Environ. Sci. Technol. 35: 2512-2517. 2001.
Craig, H.. Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science 154: 1544-1548. 1966.
Dählmann A. and G.J. de Lange. Fluid^sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160. Earth and Planetary Science Letters 212: 377-391. 2003.
Dia, A. N., M. Castrec, J. Boulègue and P. Comeau. Trinidad mud volcanoes: Where do the expelled fluids come from? Geochim. Cosmochim. Acta 63: 1023-1038. 1999.
Dowling, C. B., R. J. Poreda, A. R. Basu, S. L. Peters and P. K. Aggarwal. Geochemical study of arsenic release mechanisms in the Bengal basin groundwater, Wat. Resour. Res. 38: 1029/2001WR000968. 2002.
Drever, J. I. The geochemistry of natural water, 3rd ed. Prentice-Hall international Inc. New Jersey. 1997.
Dubey, R.C., Maheshwari, D.K. Practical microbiology. 1st ed. (reprint). S. Chand and Company Ltd., New Delhi, 10-25. 2005.
Etiope, G., Caracausi, A., Favara, R., Italiano, F. and C.Baciu. Reply to comment by A. Kopf on‘Methane emission from the mud volcanoes of Sicily (Italy)’, and notice on CH4 flux data from European mud volcanoes. Geophys. Res. Lett., 30: 1094. doi: 10.1029/2002GL016287. 2003.
Fitts, T.G. and K.M. Brown. Stess-induced smectite dehydration: ramifications for patterns of freshening and fluid expulsion in the N. Barbados accretionary prism. Earth Planet. Sci. Lett. 172: 179-197. 1999.
Galloway, J.N., F. J.Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, C. C. Cleveland, P. A.Green, E. A. Holland, D. M. Karl, A. F. Michaels, J. H. Porter, A. R. Townsend and C. J. Vorosmarty. Nitrogen cycles: past,present, and future. Biogeochemistry 70: 153-226. 2004.
George, J., C. S. Purushothaman and Y. S. Shouche. Isolation and characterization of sulphate-reducing bacteria Desulfovibrio vulgaris from Vajreshwari thermal springs in Maharashtra, India. World J. of Micro. & Biotech. 24: 681-685. 2008.
Gieskes, J.M., C.-F. You, T. Lee, T.-F. Yui and H.-W. Chen. Hydrogeochemistry of mud volcanoes in Taiwan. Acta Geol. Taiwan 30: 79-88. 1992.
Goldhaber, M. B., R. C. Lee, J. R. Hatch, J. C. Pashin and J. Treworgy. Role of large scale fluid flow in subsurface arsenic enrichment, in Arsenic in Groundwater, edited by A. H. Welch, and K. G. Stollenwerk, pp. 127-164, Kluwer Academic Publishers, Boston. 2003.
Goldsmith, J. R., M. Deane, J. Thom and G. Gentry. Evaluation of health implications of elevated arsenic in drinking water. Water Res. 6: 1133-1136. 1972.
Gray, N. D., D. Comaskey, I. P. Miskin, R. W. Pickup, K. Suzuki and I. M. Head. Adaptation of sympatric Achromatium spp. to different redox conditions as a mechanism for co-existence of functionally similar sulfur bacteria. Environmental Microbiology 6: 669-677. 2004.
Harrington, J. M., J. P. Middaugh, D.-L. Morse and J. Housworth. A survey of a population exposed to high concentrations of arsenic in well water in Fairbanks. Alaska, Am. J. Epidemiol. 108: 377-385. 1978.
Heleen, P.G., T. S. B. Henricus, J. M. S. Alfons and A. H.Theo. Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp. nov. Int. J. System. Evolut. Microbiol. 53: 1223-1229. 2003.
Hower, J., E. V. Eslinger, M. E.Hower, and E. A. Perry. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin 87: 725-737. 1976.
Hu, Q. and D. K. Smith. Field-Scale Migration of 99Tc and 129I at the Nevada Test Site. Materials Research Society Spring Meeting San Francisco, CA, United States April 12-16, 2004.
Hu, J.C. J. Angelier, C. T. Lee, H.T. Chu, and B. Byme. Active deformation of Taiwan from GPS measurements and numerical simulations. J.G.R., 106: 22650-2280. 2001.
Hu, J.C., J. Angelier, C.T. Lee, H.T. Chu, and B.Byrne. Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: A 2-D finite element numerical modeling. Tectonophysics 255: 243-268. 1997.
Huang, Y. Z. Endemic chronic arsenicism in Xinjiang. Chin. Med. J. 98: 219-222. 1985.
Huerta-Diaz, M. D.,and J. W. Morse. Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta. 56: 2681-2702. 1992.
Jansen, S. A., M. Malaty, S. Nwabara, E. Johenson, E. Ghabbour, G. Davies, and J. M. Varnum. Structural modeling in humic acid. Materials science and Engineering C4.175-179. 1996.
Jewett, D. G., T. A. Hilbert, B. E. Logan, R. G. Arnold and R. C. Bales, Bacterial transport in two porous media systems: influence of ionic strength and pH on collision efficiency. Water Research 1: 1673-1680. 1995.
Jie, J., B. Iris, P. Andre and K. Andreas. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinine. Environ. Sci. Technol. 43: 3639-3645. 2009.
Joye, S. B., I. R. MacDonald, J. P. Montoya and M. Peccini. Geophysical and geochemical signatures of Gulf of Mexico seafloor brines. Biogeoscience 2: 295-309. 2005.
Kashefi, K., D. E. Holmes, A. L. Reysenbach and D. R. Lovley. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophlies: isolation and characterization of geothermobacterium ferrireducens gen. Nov., sp. Nov. Appl. Environ. Microbiol 68: 1735-1742. 2002.
Kashefi, K. and D. R. Lovley. Reduction of Fe(III), Mn(V), and toxic metals at 100℃ by Pyrobaculum islandicum. Appl. Environ. Microbiol 66:1050-1056. 2000.
Klute, A.. Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. American Society of Agronomy, Madison, Wisconsin, USA, pp. 23-40. 1986.
Kopf, A., A. Deyhle and E. Zuleger. Evidence for deep fluid circulation and gas hydrate dissociation using boron and isotopes of pore fluids in forearc sediments from Costa Rica (ODP Leg 170). Mar. Geol. 167: 1-28. 2000.
Kronberg, L., L. Tikkanen, B. Holmbom and M. Reunanen. Indentification and quantification of the ames mutagenic compound 3-chloro-4-(dichloromethyl)-5-hydroxy-2-(5H)- furanone and of its geomrtric isomer (E)-2-chloro-3- (dichloro-methyl)-4-oxobutenoic acid in chlorine-treated humic water and drinking water extracts. Environ. Sci. Technol. 22: 1097-1103. 1988.
Kruglyakova, R. P., Y. A. Byakov, M. V. Kruglyakova, L. A. Chalenko, and A N. T. Shevtsova. Natural oil and gas seeps on the Black Sea floor. Geo-Mar Lett 24: 150-162. 2004.
Kumar, S., K. Tamura, I. B. Jakobsen and M. Nei. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245. 2001.
Lacombe, O., F. Mouthereau, B.Deffontaines, and J. Angelier. Geometry and Quaternary kinematics of fold-and-thrust units of southwestern Taiwan. Tectonics, 18: 1198-1223. 1999.
Lacombe, O.. F. Mouthereau, J. Angelier, and B. Deffontaines. Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan. Tectonophysics 333: 323-345. 2001.
Lau, L.-S., J. F. Mink and C. Lao. Ground water resources and development: coastal plain regin-erh Jen Chi-Kaohsiung, Taiwan. Proc. Vol. 13 Intnl. Symp. on development of ground water resources. Nov. 1973.
Leenheer, J. A.. Comprehensive approach to preparative isolation and fraction of dissolved organic-carbon from natural waters and wastewaters. Environ. Sci. Technol. 15: 578-587. 1981.
Lenoble, V., O. Bouras, V. Deluchat, B. Serpaud, and J. C. Bollinger. Arsenic adsorption onto pillared clays and iron oxides. J. Colloid interface Sci. 255: 52-58. 2002.
Leu, J.-Y., C. P. Mcgovern-traa, A. J. R. Porter and W. A. Hamilton. The same species of sulfate-reducing Desulfomicrobium occur in different oil field environment in the North Sea. Letters in Applied Microbiology 29: 246-252. 1999.
Li, Y. H.. Denudation of Taiwan island since Pliocene epoch. Geology 4: 105–107. 1976.
Lin, H. T., Wang, M. C., and G. C. Li. Complexation of arsenate with humic substance in water extract of compost. Chemosphere 56: 1105-1112. 2004.
Lin, Z. and R. W. Puls. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environmental Geology 39: 753-759. 2000.
Liu, C.-C., J.-S. Jean, B. Nath, M.-K. Lee, L.-I. Hor, K.-H. Lin, J. P. Maity. Geochemical characterization of the fluids and mud from two southern Taiwan mud volcanoes: Implications for water-sediment interaction and groundwater as enrichment. Applied Geochemistry 24: 1793-1802. 2009.
Liu, C.-C., J. P. Maity, J.-S. Jean, S. Ondra, S. Kar, , Z. Li, J. Bundschuh, C.-Y. Chen. Biogeochemical interactions among the arsenic, iron, humic substances, and bacterial activities in mud volcanoes in southern Taiwan. Journal of Environmental Science and Health, Part A (accepted for publication). 2011.
Livens, F. R.. chemical reactions of metals with humic material. Environmental Pollution. 70: 183-208. 1991.
Maity, J. P., C-C. Liu, B. Nath, J. Bundschuh, S. Kar, J.-S. Jean, P. Bhattacharya, J.-H. Liu, S. B. Atla, C.-Y. Chen. Biogeochemical characteristics of Kuan-Tzu-Ling, Chung-Lun and Bao-Lai hot springs in southern Taiwan. Journal of Environmental Science and Health, Part A (in press) 2011.
Mantoura, R. F. C. and J. P. Riley. The analytical concentration of humic substance from natural water. Anal. Chim. Acta. 76: 97-106. 1975.
Maynard, D.G., and Y. P. Kalra. Nitrate and exchangeable ammonium nitrogen. In: Carter, M.R. (Ed.), Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis publishers, Boca Raton, Fla, pp. 25-38. 1993.
Mazurenko, L. L., V. A. Soloviev, I. Belenkaya, M. K. Ivanov, and L. M. Pinheiro. Mud volcano gas hydrates in the Gulf of Cadiz. Terra Nova 14: 321-329. 2002.
McArthur, J.M., P. Ravenscroft, S. Safiulla and M. F. Thirlwall. Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 37: 109-117. 2001.
Milkov, A. V.. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 167: 29-42. 2000.
Milkov, A. V., P. R. Vogt, K. Crane, A. Y. Lein,R. Sassen, and Ge. A. Cherkashev Geological, geochemical, and microbial processes at the hydrate-bearing Ha°kon Mosby mud volcano: a review. Chemical Geology 205: 347-366. 2004.
Molnar, P. and P. Tapponnier. Active tectonics of Tibet: J. Geophys. Res. 83: 5361-5375. 1978.
Moody, C. D., J. W. Kaakinen, J. C. Lozier and P. E. Laverty. Yuma-desaltihg-test-facility-foulant component study. Desalination 47: 239-253. 1983.
Morton, W., G. Starr, D. Pohl, J. Stoner, S. Wagner and P. Weswig. Skin cancer and water arsenic in lane County. Oregon. Cancer. 37: 2523-2532. 1976.
Nath, B., J.-S. Jean, M.-K. Lee, H.-J. Yang, and C.-C. Liu. Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: possible sources and reactive transport of arsenic. J. Contam. Hydrol. 99: 85-96. 2008.
Nickson, R. T., J. M. McArthur, P. Ravenscroft, W. G. Burgess and K. M. Ahmed. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal, Appl. Geochem. 15: 403-413. 2000.
Nordstrom, D. K.. Worldwide occurrences of arsenic in groundwater. Science, 296: 2143-2145. 2002.
Ona-Nguema, G., G.Morin, Y. Wang, N. Menguy, F. Juillot, L. Olivi, G. Aquilanti, M. Abdelmoula, C. Ruby, J. R. Bargar, F. Guyot, G. Calas, and G. E. Brown Jr. Arsenite sequestration at the surface of nano-Fe(OH)2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens. Geochim. Cosmochim. Acta. 73: 1359-1381. 2009.
O'Reilly, S. E., D. G. Strawn and D. L. Sparks. Residence time effects on arsenate adsorption/desorption mechanisms on goethite. soil Sci. Soc. Am. J. 65: 67-77. 2001.
Pachiadaki, M. G., V. Lykousis, E. G. Stefanou1, and K. A. Kormas. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazanmudvolcano, East Mediterranean Sea. FEMS Microbiol Ecol 72: 429-444 2010.
Paolis, F. D. and J. Kukkonen. Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere 34: 1693-1704. 1997.
Parkhurst, D. L. and C. A. J. Appelo. User’s guide to PHREEQC: A computer program for speciation, reaction-path, 1-D transport, and inverse geochemical calculations, US Geol. Surv. Water Resour. Invest. Rep. 99-4259. 1999.
Parkin, T.B.. Soil microsites as a source of denitrification variability. Soil Sci. Soc. Am. J. 51: 1194-1199. 1987.
Peech, M., L. T. Alexander, L. A. Dean and J. F. Reed. Methods of Soil Analysis for Soil-Fertility Investigation. US Department of Agriculture, Circulation No. 757, US Government Print Office, Washington, DC. 1947.
Plank, T., and C. H. Langmuir. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145: 325-394. 1998.
Planke, S., H. Svensen, M. Hovland, D. A. Banks, B. Jamtveit. Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar. Lett. 23: 258-268. 2003.
Raghoebarsing, A.A., A. Pol, , K. T. van de Pas-Schoonen, A. J. P. Smolders, K. F. Ettwig, W. I. C. Rijpstra, S. Schouten, J. S. S. Damste, H. J. M. Op den Camp, M. S. M. Jetten and M. Strous. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440: 918-921. 2006.
Rahman, M., M. Tondel, S. A.. Ahmad and C. Axels. Diabetes mellitus associated with arsenic exposure in Bangladesh. American Journal of Epidemiology 148: 198-203. 1998.
Reckhow, D. A., P. C. Singer and R. L. Malcolm. Chlorination of humic materials: Byproduct formation and chemical interpretations. Environment science and technology 24: 1655-1664. 1990.
Redman, A.D.; D. L. Macalady and D. Ahmann. Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol. 36: 2889-2896. 2002.
Robertson, L.A., T. Dalsgaard, N.-P. Revsbech and J. G. Kuenen. Confirmation of‘aerobic denitrification’ in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol. Ecol. 18: 113-120. 1995.
Rook, J. J.. Chlorination reaction of fulvic acids in natural water. Environ. Sci. Technol. 11: 478-482. 1977.
Różański K., Aragus-Aguas L., and R. Gonfiantini. Isotopic patterns in modern global precipitation, In: Stewart, P.K., Lohmann, K.C., McKenzie, J. and Savin, S (eds). Climate Change in Continental Isotopic Records, AGU Geophysical Monograph Series 76: 1-36. 1993.
Saunders, J. A., M. K Lee, A. S. Uddin, S. Mohammad, R. Wilkin, M. Fayek and N. Korte. Natural arsenic contamination of Holocene alluvial aquifers by linked glaciation, weathering, and microbial processes, Geochemistry, Geophysics, and Geosystems 6: Q04006, doi:10.1029/2004GC000803. 2005.
Saunders, J. A., Pritchett, M. A.,and R. B. Cook. Geochemistry of biogenic pyrite and ferromanganese stream coatings: A bacterial connection? Geomicrobiology Journal, 14: 203-217. 1997.
Shih, T. T.. A survey of the active mud volcanoes in Taiwan and a study of their types and the character of the mud. Petrol. Geol. Taiwan 5, 259-311. 1967.
Southwick, J. W., A. E. Western, M. M. Beck., T. Whitley, R. Isaacs, J. Petajan and C. D. Hansen. An epidemiological study of arsenic in drinking in Millard County, Utah, in:Lederer WH, Fensterheim RJ(eds.),Arsenic: Industrial, Biochemical, and Environmental
perspectives. Proceedings Arsenic: Industrial, Biochemical, and Environmental perspectives. Proceedings arsenic symposium, Van Nostrand reinhold, New York. 1983.
Stollenwerk, K. G., G. N.Breit, A. H.Welch, J. C. Yount, J. W. Whitney, A. L. Foster, M. N. Uddin, R.K. Majumder and N. Ahmed. Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Sci Total Environ 379: 133-150. 2007.
Sung, Q.-C., H.-G. Chang, H.–C. Liu, and Y.-C. Chen. mud volcanoes along the Chihshan Fault in southwestern Taiwan: a release bend model. Geomorphology 118: 188-198. 2010.
Suppe, J. Imbricated structure of western foothills belt, south central Taiwan. Petrol Geol Taiwan 30: 163-176. 1980.
Tan, Z., R. G. Mclaren, K. C. Cameron. Forms of sulfur extracted from soils after different methods of sample preparation. Aust. J. Soil Res. 32: 823-834. 1994.
Tarits, C., R. W. Renaut, J.-J. Tiercelin, A. L. Herisse, J. Cotton and J.-Y. Cabon, Geochemical evidence of hydrothermal recharge in Lake Baringo, central Kenya. Rift valley. Hydrol. Process. 20: 2027-2055. 2006.
Teng, L. S.. Geotectonic evolution of Late Cenozoic arccontinent collision in Taiwan. Tectonophys 183: 57-76. 1990.
Thauer, R. K. and S. Shima, Methane and microbes. Nature 440: 878-879. 2006.
Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res. 24: 4876-4882. 1997. Tsuda, T., T. Nagira, M. Yamamoto, N. Kurumatani, N. Hotta, M. Harada and H. Aoyama. Malignant neoplasms among residents who drink well water contaminated by arsenic from a King’s Yellow factory. J. Univ. Occup. Environ. Health. 11: 289-301. 1989.
Turner, J., M.-K. Lee, A. Uddin, J.-S. Jean, J. A. Saunders, Y. Wang and K. M. Ahmed. Natural arsenic contamination of alluvial aquifers by linked geologic and microbial processes, GSA Annual Meeting, Abstract with Programs, p. 164. 2005.
Vandanapu, V., D. Sarkar, R. Datta and S. Sharma. Arsenic adsorption and desorption by water treatment residuals: preliminary results. Denver Annual Meeting November 7-10. 2004.
van Geen, A., Y. Zheng, R. Versteeg, M. Stute, A. Horneman, R. Dhar, M. Steckler, A. Gelman, C. Small, H. Ahsan, J. Graziano, I. Hussain and K. M. Ahmed. Spatial variability of arsenic in 6000 contiguous tubewells of Araihazar, Bangladesh, Wat. Res. Res. 39: 1140. doi:10.1029/2002WR001617. 2003.
Vencelides, Z., O. Sracek and H. Prommer. Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic. J. Contam. Hydrol. 89: 270-294. 2007.
Wang C.-H., Kuo C.-H., Peng T.-R., Chen W.-F., Liu T.-K., Chiang C.-J., Liu W.-C. and J.-J.Hung. Isotope characteristics of Taiwan Groundwaters. West Pac Earth Sci 1: 415-428. 2001.
Wang, S., M. Shu and C. Yang. Morphological study of mud volcanoes on land in Taiwan. J. Nat. Taiwan Mus. 31: 31-49. 1988.
Wei, Y, W. K. Doggs, M. K. Banks, J. Skalsky and E. A. Strauss. Optimal staining and sample storage time for direct microscopic enumeration of total and active bacteria in soil with two fluorescent Dyes. Appl and Environ Microbiol 61: 3367-3372. 1995.
Werne, J. P., R. R. Haese, T. Zitter, G. Aloisi,I. Bouloubassi, S. Heijs, A. Fiala-Me´dioni, R. D. Pancost,J. S. S. Damste´, Gert de Langed, L. J. Forney,J. C. Gottschal, J.-P. Foucher, J. Mascle, J. Woodside and the MEDINAUT and MEDINETH Shipboard Scientific Parties. Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea. Chemical Geology 205: 367-390. 2004.
Wilkie, J. A. and J. G. Hering. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierrs Nevada. Environmental Science and Technology 32: 657-662. 1998.
Wood, C. P. Mineralogy at the magma-hydrothermal system interface in andesite volcanoes, New Zealand. Geology 22, 75-78. 1994.
Wu C. M. Characteristics of groundwater geology in the blackfoot disease endemic area. The Blackfoot Disease Prevention and Control Research Group of Taiwan, Provincial Health Department, Blackfoot Disease Research Report 5: 1-24. 1978.
Yakimov, M. M., L. Giuliano, E. Crisafi, T. N. Chernikova, K. N.Timmis, and P. N. G olyshin. Microbial community of a saline mud volcano at San Biagio-Belpasso, Mt.Etna (Italy). Environ. Microbiol. 4: 249-256. 2002.
Yang T. F., Yeh G.-H., Fu C.-C., Wang C.-C., Lan T.-F., Lee H.-F., Chen C.-H., Walia V and Q-C. Sung. Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environ Geol 46: 1003-1011. .2004.
Yeh, G.-H., T.-F. Yang, J.-C.Chen, Y.-G. Chen and S.-R. Song. Fluid geochemistry of mud volcanoes in Taiwan. In: Martinelli, G., Panahi, B. (Eds.), NATO Science Series: IV. Earth and Environmental Sciences, 51: 227-237. 2004.
You, C. F., J. M. Gieskes, T. Lee, T.-F. Yui, and H.-W. Chen. Geochemistry of mud volcano liquids in the Taiwan accretionary prism. Appl. Geochem. 19: 695-707. 2004.
Yu, S.B., Y.S. Chen, and L.C. Kuo. Velocity field of GPS stations in Taiwan area. Tectonophysics 274: 41-59. 1997.
Zaldivar, R.. Arsenic contamination of drinking water and foodstuffs causing endemic chronic poisoning. Beitr. Pathol. 151: 384-400. 1974.
Zaldivar, R.. Ecologucal investigations on arsenic dietary intake and endemic chronic poisoning in man: dos-response curve. Zentralbl. Bakteriol. Parasitenkd infktionskr. Hyg. Bbt. 1: Orig. Reihe B. 164: 481-484. 1977.
石再添. 臺灣活泥火山的調查及其類型與噴泥性質之關係的研究,台灣石油地質 5: 259-311. 1967.
呂鋒洲、楊重光、林國煌.嘉南烏腳病患區飲用地下水之理化性質。台灣醫學會雜誌,74:96-605. 1975.
吳建民、連倚南、杜美如、劉寶猜. 烏腳病之研究報告第五輯。台灣省政府烏腳病防治小組,台灣省政府衛生處資助出版,共31頁。1978.
耿文溥. 台南以東丘陵區之地質。經濟部中央地質調查所彙刊第1號,共32頁。1981.
王一雄、高玉燦、陳玉麟. 重金屬鎘、鉻、銅及鋅在土壤中移動性之預測。中國農業化學會誌 23: 119-125。1985.
王明遠、章申. 生物地球化學及地方病的探討。中國科學第10期. 【DOI】:CNKI:SUN:JBXK.0.1985-10-007。1985.
呂鋒洲、郭浩然、江漢聲、洪清霖.烏腳病地區膀胱癌流行病學調查報告,第5報,井水螢光物質強度與膀胱癌發病率的關係,中華癌症醫學會雜誌,2:14-23. 1986.
王鑫. 泥火山地景保留區調查報告,行政院農業委員會。1986.
趙杏媛、張有瑜,黏土礦物與黏土礦物分析,海洋出版社,中國北京,341 頁,1990.
謝兆申、王明果編著. 台灣地區主要土類圖輯。國立中興大學土壤調查試驗中心中興大學。 1991.
鄭仁覺.高雄附近海域可溶性腐質物質的螢光現象研究。國立中山大學海洋資源研究所碩士論文 92頁。1993.
陳立夫、楊秋忠. 土壤精華—腐植質。科學月刊全文資料庫,科學月刊雜誌社 0277期。1993年。
田永銘、張惠文、王仁正. 泥岩穩定處理成效探討,地工技術,第四十八期 83-94。1994.
劉鎮宗. 砷與生態環境的關係,科學月刊0302期。 1995.
李豐、呂鋒洲.螢光腐質酸與砷所引起動物組織的病理變化.臺灣醫學11月. 1997.
王將克、常弘、廖金鳳、鄭卓、鄒和平、王建華、鐘月明編著。生物地球化學。淑馨出版社。786頁. 2000.
謝佩珊.台灣地區溫泉與泥火山氣體來源之初探。國立台灣大學地質科學研究所碩士論文,共77頁。2000.
詹博舜.由穩定氫氧同位素探討台灣西南活動構造帶泉水之來源。國立台灣大學地質科學研究所碩士論文。2001.
林啟文、盧詩丁、石同生、黃文正.台灣活動斷層概論-五十萬分之一臺灣活動斷層分佈圖說明書,第二版。經濟部中央地質調查所特刊,第13 號,共122 頁。2000.
葉高華.由流體地球化學探討台灣泥火山的成因。國立台灣大學海洋研究所碩士論文,共61頁。2003.
趙鴻椿.台灣地區泥火山氣體成分分析及其對全球甲烷來源之可能影響。國立成功大學地球科學研究所碩士論文,共76頁。2003.
黃舒瑜.土壤重金屬0.1N HCl萃取量與全量濃度之相關性研究。逢甲大學環境工程與科學學系碩士論文,共191頁。2003.
張鴻成、宋國城、陳昭男、陳力、陳彥傑. 旗山斷層位移與其沿線泥火山之相關性之探討。西太平洋地質科學 第五卷 73-96頁. 2005.
張阡肇. 台灣泥火山沉積物之特性、來源與西南部石灰岩體之隱示。國立台灣大學地質科學研究所碩士論文 123頁。2005.
任維傑. 探討厭氧產氫純菌Clostridium在不同pH之反應動力機制。國立成功大學環境工程學所碩士論文 132頁。2006.
盧郁文. 高效率流體化床結晶技術除鐵之研究。國立成功大學化學工程研究所碩士論文 118頁。2006.
張育唐及陳藹然. 胺類(Amines)。國科會高瞻計畫中學教學資源平台。http://highscope.ch.ntu.edu.tw/wordpress/?p=28920。 2011。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw