進階搜尋


下載電子全文  
系統識別號 U0026-2305201104122000
論文名稱(中文) 二氧化碳環境下纖維摻料對套管水泥性質之研究
論文名稱(英文) The Study of Fiber Casing Cement in the Carbon Dioxide Environment
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 楊昀叡
研究生(英文) Yun-Jui Yang
學號 n46981026
學位類別 碩士
語文別 中文
論文頁數 107頁
口試委員 指導教授-王建力
口試委員-陳昭旭
口試委員-吳建宏
口試委員-蔡易縉
中文關鍵字 鋼纖維  聚丙烯纖維  混合型纖維  纖維套管水泥  二氧化碳封存 
英文關鍵字 Steel fibers  Polyphenylene fibers  Mixed type fibers  Fiber casing cement  Carbon dioxide storage 
學科別分類
中文摘要 添加纖維於套管水泥的主要目的是希望藉由纖維來控制水泥內裂縫的形成與擴展,並藉由橋接效應改變起裂後的抗拉行為,進而提高其韌度。也因纖維套管水泥內的裂縫減少,能大量減少氣、液體於水泥內流竄,達到防漏與堵漏的作用,運用於封存工程上可提供比傳統套管水泥更高的穩定性與安全性。

本研究以聚丙烯纖維與鋼纖維兩者為研究對象,討論套管水泥摻入纖維後的力學性質變化,及在二氧化碳環境下對水泥性質的影響。第一部分以 API-G 級水泥為主,波特蘭一型水泥為輔,將摻入不同纖維(聚丙烯纖維、鋼纖維與兩者所調配之混合型纖維)的水泥試體,進行單軸壓縮與三點彎曲試驗,以求取各項試驗參數,並觀察其基本力學性質的變化。第二部分的主題則是將不同纖維摻料的 API-G 級水泥試體,分別依照不同環境養護後(基本養護、70℃ 養護與 70℃ 腐蝕),進行斷裂韌度試驗,以取得各試體的斷裂韌度,藉此推測在二氧化碳環境下對其性質的影響。

本研究的結果表示,API-G 級鋼纖維水泥與 API-G 級混合型纖維水泥皆能提高套管水泥之基本力學性質與斷裂韌度,在 70℃ 常壓二氧化碳環境下最具實用性。其中,又以鋼纖維水泥的效果為最佳,而混合型纖維水泥可透過不同種類的纖維與所含比例來改變其力學性質與單位造價,實為一大優勢。
英文摘要 Adding fibers into casing cement can help to control the formation of cracks and the extension of cracks. Besides, it improves its tenacity by the effect of fiber bridging and changes the tensile movements of cracks. Moreover, the fluid volumes of gas and liquid in cement are reduced to prevent leaking, because cracks decrease in fibrous casing cement. This method in storage engineering can provide better stability and safety than general casing cement without fibers.

This research focused on Polyphenylene (PP) fibers and steel fibers. After adding fibers, the mechanical mechanism and the effects of CO2 environment in casing cement are investigated. In first part, API Class G cement is experimental group, and Portland Type I cement is control group. Different kinds of fibers (PP fibers, steel fibers and mixed fibers which mix PP fibers with steel fibers) are added into the two groups respectively. The fundamental mechanism of cement sample are investigated by uniaxial compression test and three-point bending test. In second part, API Class G cement samples mixed with different fibers incubate in different conditions (Basic curing, 70℃ curing and 70℃ corrosion). Then, the fracture toughnesses are calculated. According to the data, variation of physical properties after CO2 incubation are predicted.

It is concluded that API Class G cement with steel fibers and API Class G cement with mixed fibers can improve basic mechanical properties of casing cement and fracture toughness in CO2 environment, 1 atm, 70℃. The material showing best mechanical properties is cement with steel fibers. The advantages of mixing fibrous cement are that mechanical properties and unit cost are significantly improved by adding different kinds of fibers and regulating the proportion of fibers.
論文目次 摘要 I
Abstract II
致謝 III
總目錄 IV
表目錄 VIII
圖目錄 IX

第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究目的 3
1-4 研究內容與流程 4

第二章 文獻回顧與理論 6
2-1 二氧化碳封存簡介 6
2-1-1 地表封存 7
2-1-2 海洋封存 8
2-1-3 地質封存 9
2-2 套管水泥工程簡介 11
2-2-1 套管功用 11
2-2-2 水泥功用 13
2-3 高溫對套管水泥性質之影響 16
2-4 二氧化碳對套管水泥的腐蝕 18
2-4-1 二氧化碳腐蝕之相關研究 18
2-4-2 二氧化碳的物理性質及其超臨界性 19
2-4-3 二氧化碳的腐蝕機制 20
2-5 纖維水泥簡介 22
2-5-1 纖維水泥的發展 22
2-5-2 纖維水泥的破壞行為 23
2-5-3 纖維水泥的韌性行為 25
2-6 纖維水泥加強機制分析 27
2-7 影響纖維水泥強度及工作性之因素 31
2-8 纖維水泥的類型及工程性質 34
2-8-1 纖維摻料的種類與特性 34
2-8-2 聚丙烯纖維水泥 35
2-8-3 鋼纖維水泥 36
2-8-4 混合型纖維水泥 37

第三章 試驗設計與方法 38
3-1 試驗設備 40
3-2 試驗材料 42
3-2-1 水泥 42
3-2-2 纖維摻料及水 43
3-3 試體製備 44
3-3-1 水泥試體製作 44
3-3-2 應變片之黏貼 49
3-3-3 常壓 70°C 養護環境之設定 52
3-4 試驗規劃 54
3-4-1 基本力學性質試驗 54
3-4-2 斷裂韌度試驗 55
3-5 試驗步驟 57
3-5-1 基本力學性質試驗 57
3-5-2 斷裂韌度試驗 59

第四章 試驗結果與討論 61
4-1 基本力學試驗—單軸壓縮試驗結果 61
4-1-1 單軸壓縮試驗結果 61
4-1-2 單軸抗壓強度結果之說明 64
4-1-3 柏松比結果之說明 66
4-2 基本力學試驗—三點彎曲試驗結果 70
4-2-1 三點彎曲試驗結果 70
4-2-2 抗彎強度結果之說明 73
4-2-3 殘餘抗彎強度結果之說明 76
4-3 斷裂韌度試驗結果 78
4-3-1 斷裂韌度試驗結果 78
4-3-2 斷裂韌度結果之說明 82
4-4 試驗結果之討論 86
4-4-1 纖維水泥試體之基本力學性質 87
4-4-2 API-G 級水泥試體之斷裂韌度 92

第五章 結論與建議 95
5-1 結論 95
5-2 建議 100

參考文獻 101
參考文獻 [ 1] 穆海朋、步玉環、程榮超,“纖維水泥的發展及應用,”石油鑽探技術,第 33 卷,第 2 期,第 33~36 頁,2005。
[ 2] 范振暉、宣大衡,“以地下封存方式進行二氧化碳減量之可行性探討,”第二屆資源工程研討會論文集,第 278~283 頁,台灣,2005。
[ 3] 李彥佑,“儲氣田氣井套管水泥之封固性之研究,”國立成功大學資源工程研究所碩士論文,2006。
[ 4] 林鎮國,“二氧化碳的儲存,”科學發展,第 413 期,第 28~33 頁,2007。
[ 5] 賴勝權,“聚丙烯纖維增強混凝土機械性能之研究,”國立東華大學材料科學與工程研究所碩士論文,2001。
[ 6] 賴勝權,“纖維材料對提昇混凝土工程性質與成本效益之研究,”國立中興大學土木工程研究所博士論文,2008。
[ 7] 賴森榮,“纖維混凝土之發展與應用,”財團法人台灣營建研究中心,1983。
[ 8] 齊宏科、馬軍志,“纖維韌性水泥漿技術在中原油田的應用,”鑽採工藝,第 29 卷,第 6 期,第 121~124 頁,2006。
[ 9] 謝孟勳、凃啟仁、宋佩瑄,“不同型式聚丙烯纖維混凝土之耐磨及抗衝擊性研究,”第 14 屆鋪面工程學術研討會暨 2007 世界華人鋪面專家聯合學術研討會,台灣,2007。
[10] 朱健軍,“CO2 對油井水泥的腐蝕規律及應用研究,”中國大慶石油學院油氣井工程研究所碩士論文,2006。
[11] 鄭伯乾,“聚丙烯纖維混凝土之抗裂力學行為,”國立成功大學土木工程研究所碩士論文,2003。
[12] 陳勇全,“套管水泥之熱傳導與破壞力學性質之研究,”國立成功大學資源工程研究所碩士論文,2006。
[13] 張元曦,“儲氣田氣井套管水泥之應力分析,”國立成功大學資源工程研究所碩士論文,2005。
[14] 邵國士、焦中輝、洪世勳、李易叡、黃連通、鄭錦桐,“三維地質空間資訊於節能減碳之應用,”2010 年亞洲地理資訊系統國際研討會暨台灣地理資訊學會年會、兩岸四地 GIS 與應用遙感研討會,台灣,2010。
[15] 孫富全,“二氧化碳對固井水泥的腐蝕研究,”複雜氣藏開發技術研討會,第 63~64 頁,中國,2006。
[16] 宋佩瑄,“纖維混凝土實務,”現代營建雜誌社,1991。
[17] 姚曉、馮玉軍,“氣田開發中 CO2 對井內管材的腐蝕與預防,”鑽採工藝,第 19 卷,第 6 期,第 31~37 頁,1996。
[18] 姚曉,”CO2 對油井水泥石的腐蝕:熱力學條件、腐蝕機理及防護措施,”西南石油學院學報,第 20 卷,第 3 期,1998。
[19] 營建自動化專案計劃,“隧道鋼纖維噴凝土技術自動化研究 (II),”內政部營建署,1999。
[20] 吳柏裕,“天然氣儲氣窖注氣功能及效益,”台灣天然氣供需輸儲現況及展望研討會論文集,第 63~64 頁,台灣,2010。
[21] 王德宗,“地熱及深井用水泥在高溫下硬化之特性研究,”國立成功大學礦冶及材料科學研究所碩士論文,1985。
[22] 翁豐源,“耐高溫水泥乳之研究,”石油鑽採工程,第 18 期,第 20~47 頁,1977。
[23] Alhozaimy, A. M., Soroushian, P. and Mirza, F.,“Mechanical Properties of Polypropylene Fiber Reinforced Concrete and the Effects of Pozzolanic Materials, ”Cement and Concrete Composites, Volume 18, Issue 2, pp. 85-92, 1996.
[24] Balaguru, P. and Dipsia, M. G.,“Properties of Fiber Reinforced High-strength Semi-lightweight Concrete, ”ACI Materials Journal, September-October, pp. 399-405, 1993.
[25] Banthia, N. and Trottier, J. F.,“Concrete Reinforced with Deformed Steel Fiber, Part I: Bond-Slip Mechanisms, ”ACI Materials Journal, September-October, pp. 435-446, 1994.
[26] Bensted, J.,“Oil Well Cements, ”World Cement, October, pp. 346-357, 1989
[27] Blankenhorn, P. R., Silsbee, M. R., Blankenhorn, B. D., Cola, M. D. and Kessler, K.,“Temperature and Moisture Effects on Selected Properties of Wood Fiber Cement Composites, ”Cement and Concrete Research, Volume 29, Issue 5, pp. 737-741, 1999.
[28] Bruckdorfer, R. A.,“Carbon Dioxide Corrosion in Oilwell Cements, ”SPE Rocky Mountain Regional Meeting, USA, 1986.
[29] Carpenter, R. B., Brady, J. L. and Blount, C. G.,“Effects of Temperature and Cement Admixes on bond Strength, ”Journal of Petroleum Technology, Volume 44, Number 8, pp. 936-941, 1992.
[30] Crolet, J. L. and Bonis, M. R.,“A Tentative Method for Predicting the Corrosion of Wells in New CO2 Fields, ”NACE Corrosion 85, USA, 1985.
[31] Daniel, L. and Loukili, A.,“Behavior of High-Strength Fiber-Reinforced Concrete Beams under Cyclic Loading, ”ACI Materials Journal, Volume 99, Issue 3, pp. 248-256, 2002.
[32] Edgington, J. and Hannant, D. J.,“Steel Fiber Reinforced Concrete, ”The Construction Press Ltd, 1978.
[33] El-Hassan, H. I., Abbas, R., Jarouj, H. and Munk, T.,“Using a Novel Fiber Cement System to Control Lost Circulation: Case Histories from the Middle East and the Far East, ”SPE/IADC Middle East Drilling Technology Conference and Exhibition, United Arab Emirates, 2003.
[34] Gao, J., Sun, W. and Morino, K.,“Mechanical Properties of Steel Fiber-reinforced, High-strength, Lightweight Concrete, ”Cement and Concrete Composites, Volume 19, Issue 4, pp. 307-313, 1997.
[35] Goodwin, K. J. and Crook, R. J.,“Cement Sheath Stress Failure, ”SPE Drilling Engineering, Volume 7, Number 4, pp. 291-296, 1997.
[36] Gopalartnam, V. S., Shah, S. P., Batson, G., Criswell, M., Ramakishnan, V. and Wecharatana, M.,“Fracture Toughness of Fiber Reinforced Concrete, ”ACI Materials Journal, July-August, pp. 339-353, 1991.
[37] IPCC,“Carbon Dioxide Capture and Storage, ”IPCC Special Report, 2005.
[38] Krstulovic-Opara, N. and Malak, S.,“Tensile Behavior of Slurry Infiltrated Mat Concrete (SIMCON), ”ACI Materials Journal, January-February, pp. 39-46, 1997.
[39] Krstulovic-Opara, N. and AI-Shannag, M. J.,“Compressive Behavior of Slurry Infiltrated Mat Concrete, ”ACI Materials Journal, May-June, pp. 367-376, 1999.
[40] Milestone N. B., Kukacka, L. E. and Carciello, N.,“Effects of Carbon Dioxide Attack on Geothermal Cement Grouts, ”Geothermal Resources Council Annual Meeting, USA, 1986.
[41] Milestone N. B., Sugama, T., Kukacka, L. E. and Carciello, N.,,“Carbonation of Geothermal Grouts Part 1: CO2 Attack at 150℃, ”Cement and Concrete Research, Volume 16, Issue 6, pp. 941-950, 1986.
[42] Milestone N. B., Sugama, T., Kukacka, L. E. and Carciello, N.,,“Carbonation of Geothermal Grouts Part 2: CO2 Attack at 250℃, ”Cement and Concrete Research, Volume 17, Issue 1, pp. 37-46, 1987.
[43] Mindess, S. and Young, J. F.,“Concrete, ”Prentice-Hall Inc., 1981.
[44] Mindess, S., Bentur, A., Yan, C. and Vondran, G.,“Impact Resistance of Concrete Containing both Conventional Steel Reinforcement and Fibrillated Polypropylene Fibers, ”ACI Materials Journal, November-December, pp. 545-549, 1989.
[45] Paskova, T. and Meyer, C.,“Low-Cycle Fatigue of Plain and Fiber-Reinforced Concrete, ”ACI Materials Journal, July-August, pp. 273-285, 1997.
[46] Pearson, K.,“On Lines and Planes of Closest Fit to Systems of Points in Space, ”Philosophical Magazine, Volume 2, Number 6, pp. 559-572, 1901.
[47] Qian, C. and Stroeven, P.,“Development of Hybrid Polypropylene-steel Fiber-reinforced Concrete, ”Cement and Concrete Research, Volume 30, Issue 1, pp. 63-69, 2000.
[48] Robins, P., Austin, S., Chandler, J. and Jones, P.,“Flexural Strain and Crack Width Measurement of Steel-fiber-reinforced concrete by Optical Grid and Electrical Gauge Methods, ”Cement and Concrete Research, Volume 31, Issue 5, pp. 719-729, 2001.
[49] Rudi Rubiandini R. S.,“New Additive for Improving Shearbond Strength in High Temperature and Pressure Cement, ”SPE/IADC Asia Pacific Drilling Technology, Malaysia, 2000.
[50] Song, P. S., Wu, J. C., Hwang, S. and Sheu, B. C.,“Statistical Analysis of Impact Strength and Strength Reliability of Steel-polypropylene Hybrid Fiber-reinforced Concrete, ”Construction and Building Materials, Volume 19, Number 1, pp. 1-9, 2005.
[51] Soroushian, P., Elyamany, H., Tlili, A. and Ostowari, K.,“Mixed-mode Fracture Properties of Concrete Reinforced with Low Volume Fractions of Steel and Polypropylene Fibers, ”Cement and Concrete Composites, Volume 20, Issue 1, pp. 67-78, 1998.
[52] Stewart, R. B., Gill, D. S., Lohbeck, W. C. M. and Baaijens, M. N.,“An Expandable-slotted-tubing, Fiber-cement Wellbore-lining System, ”European Petroleum Conference, Italy, 1996.
[53] Swamy, R. N., Mangat, P. S. and Rao, C. V. S. K.,“The Mechanics of Fiber Reinforced of Cement Matrices, ”International Symposium on Fiber Reinforced Concrete, Canada, 1973.
[54] Ward, R. J. and Li, V. C.,“Dependent of Flexural Behavior of Fiber Reinforced Mortar on Material Fracture Resistance and Beam Size, ”ACI Materials Journal, November-December, pp. 627-637, 1990.
[55] Wen, S. and Chung, D. D. L.,“Piezoresistivity in Continuous Carbon Fiber Cement-matrix Composite, ”Cement and Concrete Research, Volume 29, Issue 3, pp. 445-449, 1999.
[56] Yeol, C. and Robert, L. Y.,“Experimental Relationship between Splitting Tensile Strength and Compressive Strength of GFRC and PFRC, ”Cement and Concrete Research, Volume 35, Issue 8, pp. 1587-1591, 2005.
[57] Zhang, J. and Stang, H.,“Applications of Stress Crack Width Relationship in Predicting the Flexural Behavior of Fibre-Reinforced Concrete, ”Cement and Concrete Research, Volume 28, Issue 3, pp. 439-452, 1998.
[58] Zollo, R. F.,“Fiber-reinforced Concrete: An Overview After 30 Years of Developmen, ”Cement and Concrete Composites, Volume 19, Issue 2, pp. 107-122, 1997.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-06-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-06-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw