進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2304201815040000
論文名稱(中文) 基於回程網路之5G協作式小型基地台快取研究
論文名稱(英文) Backhaul-Based Cooperative Caching in 5G Small Cell Network
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 林賢哲
研究生(英文) Sian-Jhe Lin
學號 P76044114
學位類別 碩士
語文別 英文
論文頁數 32頁
口試委員 指導教授-蔡孟勳
口試委員-蘇淑茵
口試委員-陳盈如
口試委員-蔡佩璇
口試委員-陳建志
中文關鍵字 小型基地台  協作快取  5G  回程網路  快取檔案放置 
英文關鍵字 small cell  cooperative caching  5G  backhaul  content placement 
學科別分類
中文摘要 近年來行動裝置越來越普及,行動數據的需求大幅提升,預估2016年到2021年 全球的行動數據將成長7倍。為了因應這樣的挑戰,快取被視為有效節省重複傳輸的 方法。行動網路中,把受歡迎的檔案快取在小型基地台上並直接提供給使用者,不 需從遠端伺服器獲取檔案,可降低請求檔案的延遲。由於快取帶來的優勢受限於快 取的容量大小,因此協作式快取的概念被提出,它使得快取空間被更有效地利用, 提高快取命中率,進一步縮短使用者存取檔案的延遲。目前有關協作式快取的研究 是假設一個使用者能同時連接多台小型基地台,但會需要改動設備的物理層,成本 昂貴。此外,連接多台小型基地台將無可避免地造成較遠基地台頻譜效率的下降。
我們提出基於回程網路的協作式小型基地台快取架構,數個小型基地台透過有 線的傳輸介面來協作,不需要額外的節點,也不會降低頻譜使用率。本篇論文定義 延遲最小化的問題,提出貪婪演算法找出最佳快取存放方式,相較未採用協作式快 取的架構,平均一個使用者請求一個檔案的延遲可以降低 16.2%,對於其它協作式 基地台快取的研究,我們可以降低 9.6%的延遲。另外我們也探討小型基地台分佈密 度、叢集大小以及檔案受歡迎分佈歪斜的程度對延遲造成的影響。
英文摘要 As mobile devices become more and more ubiquitous, mobile traffic demands are exponentially increasing. It is forecasted that worldwide mobile data traffic would increase 7-fold between 2016 and 2021. To deal with such challenge, caching is considered as an effective way to reduce redundant transmission. With popular contents stored at base stations in mobile networks, the requested contents can be directly delivered to users without fetching from remote servers and thus the end-to-end latency is shortened. However, the cache gain is limited by cache capacity. Hence the idea of cooperative caching is coming up. Cooperative caching allows the cache storage to be used more efficiently and increases cache hit rate to further reduce the downloading latency. Recent researches assume that a mobile user can be served by multiple small cell base stations (SBSs) simultaneously, yet this hypothesis requires costly re-design of the infrastructure’s physical layer. Besides, spectral efficiency inevitably degrades due to larger transmission distances between mobile users and SBSs.
In this thesis, we propose a backhaul-based cooperative caching scheme by grouping several SBSs into a cluster and cooperating through wired interfaces. By utilizing backhaul facilities, the proposed scheme does not degrade the spectral efficiency and needs no additional nodes. We first formulate a delay minimization problem for cooperative caching, and then propose a greedy algorithm to obtain the near-optimal content placement. The proposed scheme can reduce downloading delay by 16.2% compared to non-cooperative caching at SBSs, and by 9.6% compared with cooperative caching at SBSs in existing works. We also explore the impact on end-to-end latency under different simulation parameters, such as SBSs distribution density, cluster size and the skewness of the popularities of requested contents.
論文目次 中文摘要 ....................................... i
Abstract........................................ ii
Acknowledgements .................................. iv
Contents........................................ v
List ofTables..................................... vi
List of Figures .................................... vii
1 Introduction.................................... 1
2 RelatedWorks................................... 3
3 ProposedScheme ................................. 6
3.1 SystemModel................................ 6
3.2 WirelessTransmission ........................... 10
3.3 ProblemFormulation............................ 13
3.4 BCC greedy algorithm ........................... 14
4 PerformanceEvaluation ............................. 17
5 Conclusions .................................... 28
References....................................... 29
參考文獻 [1] Cisco Visual Networking Index. Global mobile data traffic forecast update, 2016–2021 white paper, accessed on may 2, 2017.
[2] Xiaohu Ge, Song Tu, Guoqiang Mao, Cheng-Xiang Wang, and Tao Han. 5g ultra-dense cellular networks. IEEE Wireless Communications, 23(1):72–79, 2016.
[3] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue Moon. Analyzing the video popularity characteristics of large-scale user generated content systems. Ieee/Acm Transactions On Networking (Ton), 17(5):1357–1370, 2009.
[4] Chao Fang, F Richard Yu, Tao Huang, Jiang Liu, and YunJie Liu. Energy-efficient distributed in-network caching for content-centric networks. In Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on, pages 91–96. IEEE, 2014.
[5] Jun Li, Youjia Chen, Zihuai Lin, Wen Chen, Branka Vucetic, and Lajos Hanzo. Distributed caching for data dissemination in the downlink of heterogeneous networks. IEEE Transactions on Communications, 63(10):3553–3568, 2015.
[6] Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G Dimakis, Andreas F Molisch, and Giuseppe Caire. Femtocaching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory, 59(12):8402–8413, 2013.
[7] Shan Zhang, Peter He, Katsuya Suto, Peng Yang, Lian Zhao, and Xuemin Sherman Shen. Cooperative edge caching in user-centric clustered mobile networks. IEEE Transactions on Mobile Computing, 2017.
[8] Fran ̧cois Baccelli and Bart lomiej B laszczyszyn. Stochastic geometry and wireless networks. volume i. theory. NoW PublishersBreda, 2009.
[9] George Pallis and Athena Vakali. Insight and perspectives for content delivery networks. Communications of the ACM, 49(1):101–106, 2006.
[10] Mukaddim Pathan and Rajkumar Buyya. A taxonomy of cdns. In Content delivery networks, pages 33–77. Springer, 2008.
[11] Negin Golrezaei, Andreas F Molisch, Alexandros G Dimakis, and Giuseppe Caire. Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Communications Magazine, 51(4):142–149, 2013.
[12] Xiaofei Wang, Min Chen, Tarik Taleb, Adlen Ksentini, and Victor Leung. Cache in the air: exploiting content caching and delivery techniques for 5g systems. IEEE Communications Magazine, 52(2):131–139, 2014.
[13] Michael Zink, Kyoungwon Suh, Yu Gu, and Jim Kurose. Characteristics of youtube network traffic at a campus network–measurements, models, and implications. Computer networks, 53(4):501–514, 2009.
[14] Dilip Kumar Krishnappa, Samamon Khemmarat, Lixin Gao, and Michael Zink. On the feasibility of prefetching and caching for online tv services: a measurement study on hulu. In International Conference on Passive and Active Network Measurement, pages 72–80. Springer, 2011.
[15] Jie Gong, Sheng Zhou, Zhenyu Zhou, and Zhisheng Niu. Policy optimization for content push via energy harvesting small cells in heterogeneous networks. IEEE Transactions on Wireless Communications, 16(2):717–729, 2017.
[16] Wei Jiang, Gang Feng, and Shuang Qin. Optimal cooperative content caching and delivery policy for heterogeneous cellular networks. IEEE Transactions on Mobile Computing, 16(5):1382–1393, 2017.
[17] Negin Golrezaei, Parisa Mansourifard, Andreas F Molisch, and Alexandros G Dimakis. Base-station assisted device-to-device communications for high-throughput wireless video networks. IEEE Transactions on Wireless Communications, 13(7):3665–3676, 2014.
[18] Hye Joong Kang and Chung Gu Kang. Mobile device-to-device (d2d) content delivery networking: A design and optimization framework. Journal of Communications and Networks, 16(5):568–577, 2014.
[19] Zheng Chen, Jemin Lee, Tony QS Quek, and Marios Kountouris. Cooperative caching and transmission design in cluster-centric small cell networks. IEEE Transactions on Wireless Communications, 16(5):3401–3415, 2017.
[20] Jaeyoung Song, Hojin Song, and Wan Choi. Optimal caching placement of caching system with helpers. In Communications (ICC), 2015 IEEE International Conference on, pages 1825–1830. IEEE, 2015.
[21] David JC MacKay. Fountain codes. IEE Proceedings-Communications, 152(6):1062–1068, 2005.
[22] Yee W Teh, David Newman, and Max Welling. A collapsed variational bayesian inference algorithm for latent dirichlet allocation. In Advances in neural information processing systems, pages 1353–1360, 2007.
[23] Dmitri Moltchanov. Distance distributions in random networks. Ad Hoc Networks, 10(6):1146–1166, 2012.
[24] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue Moon. I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, pages 1–14. ACM, 2007.
[25] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and zipf-like distributions: Evidence and implications. In INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 1, pages 126–134. IEEE, 1999.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-04-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-04-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw