進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2301201922175700
論文名稱(中文) 微波諧振器之品質因素量測與誤差分析
論文名稱(英文) Q-Factor Measurements and Error Analysis of Microwave Resonators
校院名稱 成功大學
系所名稱(中) 電腦與通信工程研究所
系所名稱(英) Institute of Computer & Communication
學年度 106
學期 2
出版年 107
研究生(中文) 吳仲麟
研究生(英文) Zhong-Lin Wu
學號 Q36044646
學位類別 碩士
語文別 中文
論文頁數 86頁
口試委員 指導教授-蔡智明
口試委員-李勝源
口試委員-謝政憲
中文關鍵字 微波量測  校正  微波諧振器 
英文關鍵字 Microwave Measurement  Calibration  Microwave Resonators 
學科別分類
中文摘要 本論文研究Darko Kejfez博士提出的微波諧振器之三種Q值演算法,並觀察其網路分析儀系統性殘餘誤差影響Q值量測之分析方法[5]。發現此分析方法透過網儀規格書的曲線圖來決定量測誤差,較適合單埠諧振電路。對於雙埠可能需要回溯至微波量測之殘餘誤差模型來分析,其中殘餘誤差幾乎由校正套件S參數誤差所貢獻。首先提出一般同軸校正套件之尺寸與製造偏差,再對多種尺寸變動組合做電磁模擬,接著建立等效電路和等效元件值的平均與標準差,即可對殘餘誤差做敏感度分析。為了找出最佳的Q值演算法,將Q值誤差歸因於演算法與殘餘誤差所造成。首先在量測儀器是完美的情況下,找出各種演算法的最小Q值演算誤差與最佳耦合係數配置。接著將最佳耦合係數配置的電路做為DUT,比較殘餘誤差造成的Q值誤差,可知如何去選擇最佳的Q值演算法。另外由於目前文獻仍未使用上述方法來量測槽線諧振器,因此進行電磁模擬和電路板實作來量測Q值,並與結構互補之微帶線諧振器來比較。最後分析出槽線諧振器的Q值誤差可能由量測儀器之殘餘誤差所主導。
英文摘要 The errors of Q calculations from three different schemes proposed by Dr. Kejfez are analyzed in this thesis. The effects of system residual errors on Q measurements are also studied by using a complete two-port error model. The element values in the model are derived from electromagnetic simulations of calibration standards with typical dimensions and manufacture tolerance, and then scaled according to the specifications of coaxial calibration kits. It is found that the algorithm based on the transmission coefficients of the transmission-type scheme could yield lowest error if the coupling is assumed lossless and the coupling coefficient k can be made very small. Under these conditions, the effects of residual errors are also minimized. However, the above conditions may not be practical because coupling loss is inevitable and the sensitivity of a measurement system is always limited. Two resonators, based on microstrip lines and slot lines, are designed and measured. The results agree with the analysis.
論文目次 摘要 I
Q-Factor Measurement and Error Analysis of Microwave Resonators II
誌謝 XIII
目錄 XIV
圖目錄 XVI
表目錄 XIX
第一章 緒論 1
1-1 研究動機 1
1-2 論文簡介 3
第二章 微波諧振器之量測電路及Q值演算法 4
2-1 三種諧振器量測電路之Q值與耦合係數 4
2-1-1 Reflection-Type演算法 5
2-1-2 Transmission-Type演算法 6
2-1-3 Reaction-Type演算法 8
2-2 Over-Determined演算法 10
2-3 殘餘誤差影響Q值量測之問題 15
第三章 微波諧振器之模擬與Q值誤差分析 19
3-1 殘餘誤差對量測DUT之影響 19
3-1-1 單埠量測之殘餘誤差模型 20
3-1-2 雙埠量測之殘餘誤差模型 23
3-2 同軸SOL校正套件之誤差分析 29
3-2-1 同軸SOL校正套件之電磁模擬與等效電路模型 29
3-2-2 校正套件S參數誤差與殘餘誤差之敏感度分析 44
3-3 殘餘誤差影響Q值誤差之分析 49
3-3-1 適合做Q值計算之諧振器量測電路配置 49
3-3-2 殘餘誤差影響Q值量測之模擬實驗 60
第四章 微波諧振器之實作及Q值誤差分析 63
4-1 微帶線與槽線諧振器之Q值比較 63
4-2 微帶線與槽線諧振器之設計與模擬 68
4-2-1 微帶線諧振器之設計與模擬 68
4-2-2 槽線諧振器之設計與模擬 70
4-3 微帶線與槽線諧振器之實作與量測 73
4-3-1 微帶線諧振器之實作與Q值誤差分析 73
4-3-2 槽線諧振器之實作與Q值誤差分析 77
第五章 結果與討論 82
5-1 結論 82
5-2 未來展望 84
參考文獻 85
參考文獻 [1] D. Kajfez, “Graphical Analysis of Q Circles,” IEEE Trans. Microwave Theory Tech., vol.11, pp. 453-454, Sept. 1963.
[2] D. Kajfez, “Linear Fractional Curve Fitting for Measurement of High Q Factors,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1149-1153, July 1994.
[3] D. Kajfez, S. Chebolu, M. R. Abdul-Gaffoor, and A. A. Kishk, “Uncertainty Analysis of the Transmission-Type Measurement of Q-Factor,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 367-371, Mar. 1999.
[4] W. P. Wheless and D. Kajfez, “Experimental Characterization of Multimoded Microwave Resonators using Automated Network Analyzer,” IEEE Trans. Microwave Theory Tech., vol.35, pp. 1263-1270, Dec. 1987.
[5] D. Kajfez, “Random and Systematic Uncertainties of Reflection-Type Q-Factor Measurement with Network Analyzer,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 512-519, Feb. 2003.
[6] D. Kajfez, Q Factor, Oxford, MS: Vector Fields, 1994.
[7] D. Kajfez, Q Factor Measurement Using MATLAB, Norwood, MA, Artech House, 2011.
[8] R. D. Pollard, “Verification of System Specifications of a High Performance Network Analyzer,” in Proc. 23rd ARFTG Conference Digest, vol. 5, pp. 38-50, June 1984.
[9] D. K. Rytting, “Network Analyzer Accuracy Overview,” in 58th ARFTG Conference Digest, vol. 40, pp. 1-13, Nov. 2001.
[10] IEEE Standard for Precision Coaxial Connectors (DC to 100 GHz), IEEE Standard 287-2007, pp. 71-74, Sept. 2007.
[11] Agilent Technologies 85052D 3.5 mm Economy Calibration Kit, Agilent Technologies, pp. 2-4, Dec. 2009.
[12] B. Bianco, A. Corana, L. Gogioso, and S. Ridella, “Open-Circuited Coaxial Lines as Standards for Microwave Measurements,” Electron. Lett., vol. 16, pp. 373-374, May 1999.
[13] E8362A, E8363A, E8364A Agilent Technologies PNA Series Microwave Network Analyzers, Agilent Technologies, pp. A-9, June 2005.
[14] R. Garg and K. C. Gupta, “Expressions for Wavelength and Impedance of a Slotline,” IEEE Trans. Microwave Theory Tech., vol. 24, p. 532, Aug. 1976.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-01-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw