進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2301201914460000
論文名稱(中文) 添加還原氧化石墨烯於鈣鈦礦太陽能電池之電子傳輸層
論文名稱(英文) Integration of Reduced Graphene Oxide in Electron Transport Layer of Perovskite Solar Cells
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 白青山
研究生(英文) Bach Thanh Son
學號 N56057049
學位類別 碩士
語文別 英文
論文頁數 52頁
口試委員 指導教授-丁志明
口試委員-張高碩
口試委員-阮至正
口試委員-陳昭宇
中文關鍵字 none 
英文關鍵字 Nitrogen-doped graphene  Perovskite solar cells  Electron transport layer 
學科別分類
中文摘要 none
英文摘要 The electron transport layer (ETL) plays a crucial role in facilitating electron extraction and inhibiting recombination in perovskite solar cells. Reduced graphene oxide (RGO) is a potential complement to the common ETL material TiO2 thanks to its excellent electrical conductivity and mobility and the suitability for scalable, low-temperature solution-processed deposition. RGO powder is synthesized through microwave-assisted hydrothermal method, and various amounts of o-phenylenediamine (OPD) are added into the precursor to create Nitrogen-doped RGO of different doping levels. The as-synthesized RGO samples characteristics are examined by XRD, XPS and Raman spectroscopy. The perovskite layer of CH3NH3PbI3 is deposited on RGO and TiO2 using a two-step spin coating process, and the as-deposited perovskite characteristics are examined through photoluminescence and UV-Vis spectroscopy. Finally, photovoltaic performance measurements of completed RGO-integrated devices is conducted under illumination of 1 Sun AM 1.5G sunlight simulator.
論文目次 TABLE OF CONTENTS
ABSTRACT III
ACKNOWLEDGEMENTS IV
TABLE OF CONTENTS V
LIST OF FIGURES VIII
CHAPTER I INTRODUCTION 1
1.1 Research Background 1
1.2 Motivation and Objective 2
CHAPTER II LITERATURE REVIEW 3
2.1 Fundamentals of Perovskite Solar Cells 3
2.1.1 The development from dye-sensitized solar cells (DSC) 3
2.1.2 Organometal halide perovskites 5
2.1.3 Working mechanism of perovskite solar cells 8
2.1.4 Types of perovskite solar cells 9
2.1.5 Important parameters of solar cells 11
2.2 Graphene and its various forms 14
2.2.1 Pristine graphene 14
2.2.2 Graphene oxide (GO) 14
2.2.3 Reduced graphene oxide (RGO) 14
2.3 Graphene-based Materials in Perovskite Solar Cell Research 15
2.3.1 Graphene for semi-transparent electrodes 15
2.3.2 Graphene for electron transport layer 16
2.3.3 Graphene for hole transport layer 16
CHAPTER III RESEARCH DESIGN AND METHODOLOGY 18
3.1. Synthesis of Reduced Graphene Oxide 18
3.2. Solar Cell Fabrication 18
3.2.1 Substrate preparation 18
3.2.2 Electron transport layer deposition 19
3.2.3 Perovskite layer deposition 19
3.2.4 Hole transport layer and top electrode deposition 20
3.3. Characterization 20
3.3.1 Raman spectroscopy 20
3.3.2 X-ray diffraction (XRD) 21
3.3.3 X-ray photoelectron spectroscopy (XPS) 23
3.3.4 Photoluminescence spectroscopy (PL) 24
3.3.5 UV-Vis / NIR spectroscopy 25
3.3.6 Solar cell performance characterization 25
CHAPTER IV RESULTS & DISCUSSION 27
4.1. Material Characterization of Reduced Graphene Oxide 27
4.1.1.XRD diffraction patterns 27
4.1.2 Raman characteristics 29
4.1.3 XPS chemical analysis 30
4.2 Characterization of Perovskite Layer deposited on top of RGO 34
4.2.1 Photoluminescence spectroscopy 34
4.2.2 UV-Vis spectroscopy 35
4.3 Solar cells Performance Measurements 35
CHAPTER V CONCLUSION 37
REFERENCES 38


參考文獻 REFERENCES

1. Bouclé, J. and N. Herlin-Boime, The benefits of graphene for hybrid perovskite solar cells. Synthetic Metals, 2016. 222: p. 3-16.
2. O'Regan, B. and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353: p. 737.
3. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
4. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2012. 2: p. 591.
5. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643.
6. Park, N.-G., Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 2015. 18(2): p. 65-72.
7. Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341.
8. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499: p. 316.
9. Yang, W.S., et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015. 348(6240): p. 1234.
10. Ball, J.M., et al., Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science, 2013. 6(6): p. 1739-1743.
11. Bi, D., et al., Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances, 2013. 3(41): p. 18762-18766.
12. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501: p. 395.
13. Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
14. Heo, J.H., et al., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015. 8(5): p. 1602-1608.
15. Schwierz, F., Graphene transistors. Nature Nanotechnology, 2010. 5: p. 487.
16. Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308.
17. Liu, Z., S.P. Lau, and F. Yan, Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chemical Society Reviews, 2015. 44(15): p. 5638-5679.
18. Eda, G., et al., Insulator to Semimetal Transition in Graphene Oxide. The Journal of Physical Chemistry C, 2009. 113(35): p. 15768-15771.
19. Jun, L., et al., Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells. Advanced Materials, 2012. 24(17): p. 2228-2233.
20. Li, S.-S., et al., Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano, 2010. 4(6): p. 3169-3174.
21. Stankovich, S., et al., Graphene-based composite materials. Nature, 2006. 442: p. 282.
22. Tung, V.C., et al., High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 2008. 4: p. 25.
23. Eda, G., G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 2008. 3: p. 270.
24. Peng, Y., et al., Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. Advanced Materials, 2015. 27(24): p. 3632-3638.
25. Wang, J.T.-W., et al., Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Letters, 2014. 14(2): p. 724-730.
26. Han, G.S., et al., Reduced Graphene Oxide/Mesoporous TiO2 Nanocomposite Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015. 7(42): p. 23521-23526.
27. Wu, Z., et al., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014. 6(18): p. 10505-10510.
28. Li, W., et al., Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. Journal of Materials Chemistry A, 2014. 2(47): p. 20105-20111.
29. Wang, Y.-X., et al., Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon, 2013. 57: p. 202-208.
30. Sari, F.N.I. and J.-M. Ting, One step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor. Applied Surface Science, 2015. 355: p. 419-428.
31. Zhongmin, Z., et al., Stable Inverted Planar Perovskite Solar Cells with Low-Temperature-Processed Hole-Transport Bilayer. Advanced Energy Materials, 2017. 7(22): p. 1700763.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw