進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2301201822541500
論文名稱(中文) 周邊調節作用的雙眼機制初探
論文名稱(英文) The Underlying Mechanism of Binocular Surround Modulation
校院名稱 成功大學
系所名稱(中) 心理學系
系所名稱(英) Department of Psychology
學年度 106
學期 1
出版年 107
研究生(中文) 蔡博亘
研究生(英文) Po-Shiuan Tsai
學號 U76031085
學位類別 碩士
語文別 英文
論文頁數 61頁
口試委員 指導教授-黃碧群
口試委員-許儷絹
口試委員-陳奕全
中文關鍵字 周邊調節效應  雙眼抑制  雙眼促進  視覺偵測  心理物理 
英文關鍵字 surround modulation effect  binocular suppression  binocular facilitation  visual detection  psychophysics 
學科別分類
中文摘要 本研究旨在探討周邊調節現象(surround modulation)的作用機制。周邊調節是指我們對於視覺目標刺激的偵測能力會受到周邊刺激的促進或抑制。此一周邊調節的強度會依據周邊刺激與目標刺激的特徵差異與刺激所在的視野位置而有所不同。在本研究中,我們分別探討中央視野與周邊視野(2.7° 視角外)的周邊調節作用,並系統性地測量目標刺激在不同周邊刺激組合下的偵測閾值。我們採用的目標刺激為水平方向的光柵,而周邊刺激有三種,分別是水平方向的環狀光柵,垂直方向的環狀光柵,以及環狀棋盤方格。依目標與周邊刺激呈現於左右兩眼的操弄方式有三種:(1)單眼觀測,指目標與周邊刺激呈現於同一隻眼睛;(2)雙眼觀測,指目標與周邊刺激同時呈現於兩隻眼睛;(3)雙眼分視,指目標與周邊刺激分別呈現在左眼與右眼。在實驗一,我們探討周邊調節作用的產生是發生於視覺雙眼整合階段之前或是之後,並探討該作用機制在不同方向角時的調節效果。我們的研究結果顯示周邊調節在不同視野位置有不同效果:在視野中央,雙眼分視時的周邊抑制效果大於單眼觀測,且無論周邊刺激是何種方向,都出現相似的周邊調節效果,顯示出周邊調節作用伴隨兩眼相互抑制(interocular suppression)且該調節作用發生於雙眼整合階段之前;而在視野周邊,觀測方式不影響對目標刺激的偵測能力,而水平方向的周邊刺激則增加了偵測閾值,顯示此周邊調節作用發生於雙眼整合之後,並對方向角的角度敏感。在實驗二,我們探討重疊抑制(overlay masking)與周邊調節兩種作用發生的先後順序。重疊抑制是指對我們對目標刺激的偵測能力會受到疊加於目標刺激的遮蔽刺激所影響。我們採用棋盤方格作為周邊刺激,棋盤方格可視為水平環狀與垂直環狀的線性疊加。同時,我們使用半雙眼觀測法,即將垂直與水平方向的環狀周邊刺激分別呈現在左右兩眼(雙眼觀測),而目標刺激只呈現在單眼(單眼觀測),藉此探討棋盤方格的形成是在雙眼整合前或後可以形成。我們的實驗結果顯示不同的視野位置重疊抑制所產生的效果不同:在視野中央,因周邊調節沒有方向性(實驗一) 因此我們難以推測周邊抑制效果是否先於重疊抑制,;而在視野周邊,重疊抑制發生於周邊調節之後。棋盤方格的形成於雙眼整合之前或之後,在不同視野位置也出現不同結果:在視野中央,棋盤方格形成於在雙眼整合階段之前;在視野周邊,棋盤方格的知覺形成於雙眼整合之後。在實驗三,我們釐清周邊調節作用是否受雙眼特徵匹配效果的影響,特徵匹配是指當相同刺激同時呈現於雙眼時所產生的雙眼抑制的減弱效果。我們比較目標與周邊刺激呈現於雙眼或單眼時,受試者對目標刺激的偵測能力。結果顯示,在視野中央,只要目標或周邊刺激任一個同時呈現於雙眼,便能有效降低周邊抑制的效果,然而在視野周邊無論是否有雙眼匹配的刺激,周邊調節作用都沒有改變。顯示出在雙眼匹配作用下周邊調節作用下降的效果僅發生在中央視野。我們的研究結果指出,周邊調節在不同的視野位置的作用機制不盡相同。在中央視野,周邊調節的效果主要受到兩眼相互抑制的影響。在周邊視野,兩眼間的周邊調節作用(interocular surround suppression)則先於單眼的周邊調節處理(monocular surround suppression)。
英文摘要 The detection abilities of a visual target can be improved or impaired by its surround stimulus, which is termed surround modulation. The strengths or signs of the modulation effects depend on the properties of the surround mask and target location. In response, we systematically measured the detection threshold of a target (horizontal Gabor, 2 cpd) with respect to various surround types at foveal and parafoveal (2.7 degrees) locations. In Experiment 1, we investigated whether the modulation occurred before or only after the binocular integration stage and its correspondence orientation tuning properties. Our results showed the surround modulation occurred before the binocular integration stage with involvement of interocular suppression at fovea, while it occurs after binocular summation with tuning for orientation at parafovea. In Experiment 2, we investigated the processing order for overlay suppression and surround modulation by using plaid surround. Our results showed the plaid mask formed before the binocular integration at foveal viewing condition, while it formed after binocular integration and suppressed the target detection ability before the plaid was formed at parafovea. In Experiment 3, the binocular target, instead of the monocular target, was used to clarify the influence of feature matching between two eyes in surround modulation effects. Our results showed the surround modulation reduced owing to binocular-matched stimuli only at foveal viewing condition, but not at parafovea. Our results suggested the underlying mechanism of surround modulation was different at foveal and parafoveal locations. At foveal location, the surround modulation was dominated by the interocular suppression occurring before the binocular integration stage. At parafoveal location, the interocular surround modulation occurred before monocular surround modulation processing.
論文目次 Introduction ..............................................1
Physiological studies ...................................1
Psychophysical studies ..................................2
Surround modulation and interocular suppression .........4
Surround modulation and overlay masking .................7
Feature matching and surround modulation ...............11
Methods ..................................................14
Participants ...........................................14
Apparatus ..............................................14
Stimuli ................................................15
Procedure ..............................................20
Results and Discussion ...................................23
Experiment 1: Surround modulation and interocular suppression ..............................................23
Experiment 2: Plaid surround ...........................32
Experiment 3(A): Feature matching and surround modulation ..........................................................36
Experiment 3(B) ........................................39
General Discussion .......................................42
Conclusion ...............................................51
Acknowledgement ..........................................52
References ...............................................53

List of Tables
1. Summary of experiments with dichoptic surround masking .6

List of Figures
1. The stimulus demonstration and viewing configurations. 18
2. Results for Experiment 1. .............................25
3. Threshold elevation under different mask orientations. 29
4. Threshold elevation under different mask contrasts. ...30
5. Threshold elevation under different stimuli durations. 31
6. Results for Experiment 2. .............................35
7. Results for Experiment 3A. ............................38
8. Results for Experiment 3B. ............................41
參考文獻 Bair, W., Cavanaugh, J. R., & Movshon, J. A. (2003). Time course and time-distance relationships for surround suppression in macaque V1 neurons. Journal of Neuroscience, 23(20), 7690-7701.
Baker, D. H., Meese, T. S., & Summers, R. J. (2007). Psychophysical evidence for two routes to suppression before binocular summation of signals in human vision. Neuroscience, 146,435-448.
Baker, D. H., Meese, T. S., & Hess, R. F. (2008). Contrast masking in strabismic amblyopia: Attenuation, noise, interocular suppression and binocular summation. Vision Res, 48(15), 1625-1640. doi: 10.1016/j.visres.2008.04.017
Barch, D. M., Carter, C. S., Dakin, S. C., Gold, J., Luck, S. J., MacDonald III, A., Ragland, J. D., Silverstein, S., & Strauss, M. E. (2011). The clinical translation of a measure of gain control: the contrast-contrast effect task. Schizophrenia Bulletin, 38(1), 135-143. doi: 10.1093/schbul/sbr154
Bonin, V., Mante, V., & Caradini, M. (2005). The suppressive field of neurons in lateral geniculate necleus. Joural of neuroscience, 25, 10844-10856.
Born, R. T., & Tootell, R. B. H. (1991). Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex. Proceedings of the National Academy of Sciences of the United States of America, 88(16), 7071-7075. doi: 10.1073/pnas.88.16.7071
Cannon, M. W., & Fullenkamp, S. C. (1991). Spatial interactions in apparent contrast-inhibitory effects among grating patterns of different spatial-frequencies, spatial positions and orentations. Vision Res, 31(11), 1985-&. doi: 10.1016/0042-6989(91)90193-9
Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002a). Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. J Neurophysiol, 88(5), 2530-2546. doi: 10.1152/jn.00692.2001
Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002b). Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J Neurophysiol, 88(5), 2547-2556. doi: 10.1152/jn.00693.2001
Chen, C. C., & Foley, J. M. (2004). Pattern detection: interactions between oriented and concentric patterns. Vision Res, 44(9), 915-924. doi: 10.1016/j.visres.2003.11.017
Chen, C. C., Foley, J. M., & Brainard, D. H. (2000a). Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements. Vision Res, 40(7), 773-788. doi: 10.1016/s0042-6989(99)00227-8
Chen, C. C., Foley, J. M., & Brainard, D. H. (2000b). Detection of chromoluminance patterns on chromoluminance pedestals II: model. Vision Res, 40(7), 789-803. doi: 10.1016/s0042-6989(99)00228-x
Chen, C. C., & Tyler, C. W. (2001). Lateral sensitivity modulation explains the flanker effect in contrast discrimination. Proc Biol Sci, 268(1466), 509-516. doi: 10.1098/rspb.2000.1387
Chen, C. C., & Tyler, C. W. (2008). Excitatory and inhibitory interaction fields of flankers revealed by contrast-masking functions. J Vis, 8(4). doi: 10.1167/8.4.10
Chubb, C., Sperling, G., & Solomon, J. A. (1989). Texture interactions determine perceived contrast. Proc Natl Acad Sci U S A, 86(23), 9631-9635.
Dakin, S., Carlin, P., & Hemsley, D. (2005). Weak suppression of visual context in chronic schizophrenia. Current Biology, 15(20), R822-R824. doi: 10.1016/j.cub.2005.10.015
Das, A., & Gilbert, C. D. (1995). Long-range horizontal connections and their role in cortical reorganization revealed by optical-recording of cat primary visual-cortex. Nature, 375(6534), 780-784. doi: 10.1038/375780a0
Deangelis, G. C., Freeman, R. D., & Ohzawa, I. (1994). Length and width turning of neurons in the cat's primary visual-cortex. J Neurophysiol, 71(1), 347-374.
Ding, J., & Levi, D. M. (2016). Binocular contrast discrimination needs monocular multiplicative noise. J Vis, 16(5). doi: 10.1167/16.5.12
Ellemberg, D., Wilkinson, F., Wilson, H. R., & Arsenault, A. S. (1998). Apparent contrast and spatial frequency of local texture elements. J Opt Soc Am A Opt Image Sci Vis, 15(7), 1733-1739.
Foley, J. M. (1994). Human luminance pattern-vision mechanisms: masking experiments require a new model. J Opt Soc Am A Opt Image Sci Vis, 11(6), 1710-1719. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J physiol, 160, 106-154.
Hirsch, J.A. Martines, L. M. Pillai, C., Alonso, J. M., Wang, Q., & Sommer, F. T. (2003). Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nature Neuroscience 6, 1300-1308.
Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas(18 and 19) of the cat. J Neurophysiol, 28, 229-289.
Kapadia, M. K., Ito, M., Gilbert, C. D., & Westheimer, G. (1995). Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron, 15(4), 843-856.
Knierim, J. J., & van Essen, D. C. (1992). Neuronal responses to static texture patterns in V1area of the alert macaque monkey. J Neurophysiol, 67(4), 961-980.
Kontsevich, L. L., & Tyler, C. W. (1999). Nonlinearities of near-threshold contrast transduction. Vision Res, 39(10), 1869-1880.
Legge, G. E., & Foley, J. M. (1980). Contrast masking in human vision. J Opt Soc Am, 70(12), 1458-1471.
Levitt, J. B., & Lund, J. S. (1997). Contrast dependence of contextual effects in primate visual cortex. Nature, 387(6628), 73-76. doi: 10.1038/387073a0
Lowe, D. G. (1987). Three-dimensional object recognition from single two-dimensional images. Artificial intelligence, 31(3), 355-395. https://doi.org/10.1016/0004-3702(87)90070-1
Meese, T. S., Georgeson, M. A., & Baker, D. H. (2006). Binocular contrast vision at and above threshold. J Vis, 6(11), 1224-1243. doi: 10.1167/6.11.7
Meese, T. S., & Hess, R. F. (2004). Low spatial frequencies are suppressively masked across spatial scale, orientation, field position, and eye of origin. J Vis, 4(10), 843-859. doi: 10.1167/4.10.2
Meese, T. S., Summers, R. J., Holmes, D. J., & Wallis, S. A. (2007). Contextual modulation involves suppression and facilitation from the center and the surround. J Vis, 7(4), 7. doi: 10.1167/7.4.7
Nachmias, J., & Rogowitz, B. E. (1983). Masking by spatially-modulated gratings. Vision Res, 23(12), 1621-1629.
Nelson, J. I., & Frost, B. J. (1985). Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex. Exp Brain Res, 61(1), 54-61.
Nolt, M. J., Kumbhani, R. D. & Palmer, L. A. (2007). Suppression at high spatial frequencies in the lateral genuculate necleus of the cat. Journal of neurophysiology, 98, 1167-1180.
Olzak, L. A., & Laurinen, P. I. (1999). Multiple gain control processes in contrast-contrast phenomena. Vision Res, 39(24), 3983-3987.
Pelli, D. G. (1985). Uncertainty explains many aspects of visual contrast detection and discrimination. J Opt Soc Am A, 2(9), 1508-1532.
Petrov, Y., Carandini, M., & McKee, S. (2005). Two distinct mechanisms of suppression in human vision. J Neurosci, 25(38), 8704-8707. doi: 10.1523/jneurosci.2871-05.2005
Petrov, Y., & McKee, S. (2006). The effect of spatial configuration on surround suppression of contrast sensitivity. J Vis, 6(3), 224-238. doi: 10.1167/6.3.4
Ross, J., & Speed, H. D. (1991). Contrast adaptation and contrast masking in human vision. Proc Biol Sci, 246(1315), 61-69. doi: 10.1098/rspb.1991.0125
Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. (1995). Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378(6556), 492-496. doi: 10.1038/378492a0
Snowden, R. J., & Hammett, S. T. (1998). The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination. Vision Res, 38(13), 1935-1945.
Solomon, S. G., Lee, B. B. & Syn, H. (2006). suppressive surrounds and contrast gain in magnocellular-pathway retinal gangion cells of macaque. Journal of neuroscience, 26, 8715-8726.
Solomon, S. G., White, A. J. R., & Martin, P. R. (2002). Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus, Journal of neuroscience, 22, 338-349.
Sundberg, Mitchell; Reynolds (2009). "Spatial Attention Modulates Center-Surround Interactions in Macaque Visual Area V4". Neuron. 61 (6): 952-963.
Tibber, M. S., Anderson, E. J., Bobin, T., Antonova, E., Seabright, A., Wright, B., Carlin, P., Shergill, S. S., & Dakin, S. C. (2013). Visual surround suppression in schizophrenia. Frontiers in Psychology, 4. doi: 10.3389/fpsyg.2013.00088
Webb, B. S., Dhruv, N. T., Solomon, S. G., Tailby, C., & Lennie, P. (2005). Early and late mechanisms of surround suppression in striate cortex of macaque. J Neurosci, 25(50), 11666-11675. doi: 10.1523/jneurosci.3414-05.2005
Xing, J., & Heeger, D. J. (2000). Center-surround interactions in foveal and peripheral vision. Vision Res, 40(22), 3065-3072.
Xing, J., & Heeger, D. J. (2001). Measurement and modeling of center-surround suppression and enhancement. Vision Res, 41(5), 571-583.
Yang, E., Tadin, D., Glasser, D. M., Hong, S. W., Blake, R., & Park, S. (2013). Visual context processing in bipolar disorder: a comparison with schizophrenia. Frontiers in psychology, 4.
Yao, H., & Li, C. Y. (2002). Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex. Neuron, 35(3), 547-553.
Yu, C., Klein, S. A., & Levi, D. M. (2001). Surround modulation of perceived contrast and the role of brightness induction. J Vis, 1(1), 18-31. doi: 10.1167/1.1.3
Yu, C., Klein, S. A., & Levi, D. M. (2002). Facilitation of contrast detection by cross-oriented surround stimuli and its psychophysical mechanisms. J Vis, 2(3), 243-255. doi: 10.1167/2.3.4
Yu, C., Klein, S. A., & Levi, D. M. (2003). Cross- and iso- oriented surrounds modulate the contrast response function: the effect of surround contrast. J Vis, 3(8), 527-540. doi: 10.1167/3.8.1
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-01-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-01-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw