進階搜尋


 
系統識別號 U0026-2301201813055400
論文名稱(中文) 電荷守恆的泊松-玻茲曼方程在橢圓域下之快速算法
論文名稱(英文) The Fast Algorithm for the Charge Conserving Poisson-Boltzmann Equation in Elliptic Domain
校院名稱 成功大學
系所名稱(中) 數學系應用數學碩博士班
系所名稱(英) Department of Mathematics
學年度 106
學期 1
出版年 107
研究生(中文) 辛承威
研究生(英文) Cheng-Wei Xin
學號 l16031132
學位類別 碩士
語文別 中文
論文頁數 40頁
口試委員 指導教授-舒宇宸
口試委員-陳旻宏
口試委員-黃印良
中文關鍵字 電荷守恆的泊松-玻茲曼方程  橢圓域  有限差分法  快速傅立葉轉換 
英文關鍵字 Charge Conserving Poisson-Boltzmann equation  elliptic domain  finite difference method  fast Fourier transform 
學科別分類
中文摘要 在這一篇論文中使用快速傅立葉轉換(FFT)、固定點迭代和牛頓法,在橢圓域上數值求解電荷守恆的泊松-玻茲曼方程(CCPB),此方程包含線性算子與非線性函式。首先,我們使用有限差分法把已橢圓座標參數化的線性算子數值離散,並且使用快速傅立葉轉換得到線性部分的數值解,非線性的部分藉由固定點迭代與牛頓法求解。數值解是二階收斂的,除此之外,運算時間與未知總點數幾乎成正比。
英文摘要 In this thesis, we solve the Charge Conserving Poisson-Boltzmann equation(CCPB) numerically in elliptic domain by using fast Fourier transform(FFT), fixed point iterations and Newton method. The equation consists of a linear operator and a nonlinear function. First, we use the finite difference method to obtain the numerical discretization of the linear operator with elliptic coordinate parameterization and use fast Fourier transform to obtain the solution of the linear part. The non-linear part is solved by the fixed point iteration and Newton method. The convergence of the solution is second order. In addition, the computation time is almost proportional to the number of total unknowns.
論文目次 1 前言 --- 1
1.1 Poisson Equation --- 1
1.2 Boltzmann Equation --- 1
1.3 Poisson-Boltzmann Equation --- 2
1.4 研究目標 --- 2
2 問題描述 --- 3
2.1 CCPB Equation --- 3
2.2 目標問題 --- 4
3 數值方法 --- 5
3.1 橢圓座標系 --- 5
3.2 座標轉換 --- 9
3.3 離散化 --- 12
3.4 加速方法 --- 19
3.5 非線性的Poisson Equation求解 --- 25
4 數值結果 --- 28
4.1 數值測試前的設置 --- 28
4.2 真實解與數值解的誤差 --- 29
4.2.1 線性方程 --- 29
4.2.2 非線性方程 --- 30
4.3 運算時間 --- 33
4.4 迭代次數 --- 38
5 結論 --- 39
參考目錄 --- 40
參考文獻 [1] William E. Boyce and Richard C. DiPrima. Elementary Differential Equation and Boundary Value Problem. Wiley, 2009.
[2] Richard L. Burden and J. Douglas Faires. Numerical Analysis. Bob Pirtle, 2005.
[3] C. C. Lee, H. Lee, Y. Hyon, T. C. Lin, and C. Liu. New Poisson-Boltzmann type equations: one-dimensional solutions. Nonlinearity, 24:431-458, 2011.
[4] Chiun-Chang Lee. The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle. Journal of Mathematical Physics, 55, 051503, 2014.
[5] Chiun-Chang Lee, Hijin Lee, YunKyong Hyon, Tai-Chia Lin, and Chun Liu. Boundary layer solutions of Charge Conserving Poisson-Boltzmann equations: one-dimensional case. Communications in Mathematical Sciences, 14(4):911-940, 2016.
[6] K.R. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, 1990.
[7] Li Wan, Shixin Xu, Maijia Liao, Chun Liu, and Ping Sheng. Self-Consistent Approach to Global Charge Neutrality in Electrokinetics: A Surface Potential Trap Model. Phys. Rev. X, Volume 4, 011042, 2014.
[8] 林琦焜. 傅立葉【分析與應用】. 滄海書局, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-01-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-01-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw