進階搜尋


下載電子全文  
系統識別號 U0026-2301201714124700
論文名稱(中文) 以射頻磁控濺鍍製程製備金屬氧化物光電元件及應用
論文名稱(英文) Investigation of Metal Oxide Optoelectronics Device Fabricated by Radio-Frequency Magnetron Sputtering and Their Application
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 105
學期 1
出版年 106
研究生(中文) 李俊毅
研究生(英文) Jyun-Yi Li
學號 Q18011239
學位類別 博士
語文別 英文
論文頁數 115頁
口試委員 指導教授-張守進
口試委員-洪飛義
口試委員-閔庭輝
口試委員-許正良
口試委員-姬梁文
口試委員-林建德
口試委員-黃柏仁
口試委員-楊素華
口試委員-楊勝州
中文關鍵字 射頻磁控濺鍍  光電元件  金屬氧化物 
英文關鍵字 Radio-Frequency Magnetron Sputtering  Optoelectronics device  Metal oxide 
學科別分類
中文摘要 本篇論文主要為利用射頻磁控濺鍍法製備金屬氧化物薄膜,並研究其物理、光電特性及實際應用於光電元件之特性研究。其中可分為兩個部分 : 氧化鋅鎂(MgZnO)薄膜系列光電元件與二氧化鈦(TiO2)薄膜紫外光檢測器。
首先在MgZnO薄膜系列光電元件研究部分由於ZnO是一個容易產生氧空缺(Oxygen vacancies)及鋅間隙(Zinc interstitials)的材料,因此本篇論文我們將MgZnO應用於光檢測器(Photodetectors, PDs)及薄膜電晶體(Thin film Transistors, TFTs)討論MgZnO之中的鎂(Mg)含量如何降低氧空缺缺陷過多所引致載子濃度過高以及通氧分量修補與氧相關缺陷的問題,我們期望能夠透過鎂的摻雜以及氧分量的控制來抑制光檢測器暗電流及改善薄膜電晶體中的電流電壓轉換特性。
在實驗與特性分析討論的部分,首先我們以射頻磁控濺鍍(radio frequency - magnetron sputtering, RF - sputtering)的方式在不同製程條件下沉積MgZnO薄膜,並且針對四個面向討論分別是靶材鎂含量(%)、退火溫度(℃)、通氧分量(Oxygen ratio %)、以及薄膜厚度。在結構特性上,MgZnO薄膜以Wurzite結構結晶。而在光學特性的部分,實際發現薄膜在可見光範圍(400-600nm)有80%的穿透率,而且靶材鎂含量的多寡可以有效的改變材料光學能隙。此外,我們得到隨著MgZnO薄膜厚度增加在薄膜中的鎂含量會隨之增加的結論,這個結論會在之後會成為影響MgZnO TFTs特性的因素之一。
當我們將MgZnO應用於光檢測器取得最佳化參數的過程中,我們發現在靶材鎂含量較高的情況下,光檢測器的暗電流能有效的被抑制到10-13 安培,響應拒斥比可提升至105。此外,在鎂含量增加以及理想通氧分量的條件下,晶體中的鎂與氧的鍵結有效減少與氧有關的缺陷使得元件雜訊也能有效的被抑制,雜訊等效功率可以降低至10-15,同時,歸一化檢測度可達1014。
接著我們使用二氧化矽(SiO2)做為TFTs的閘極介電層,並且藉由薄膜厚度與通氧分量的控制突破薄膜中鎂含量太高無法產生電晶體特性的限制。在理想的厚度以及通氧分量下,MgZnO TFTs可以正常的操作在室溫下得到場效遷移率為5.65 (cm2/Vs),臨界電壓為3.1 (V),次臨界擺幅0.8 (V/dec.)。在MgZnO TFTs的實驗最後我們使用高介電常數的氧化鋁(Al2O3)取代SiO2做為閘極介電層,在室溫下得到場效遷移率為7.73 cm2/Vs,臨界電壓為4.2V,次臨界擺幅改善至0.29,電流開關比增加近兩個數量級。
同時我們也利用RF-sputtering製作TiO2光檢測器在研究的過程中,我們就退火環境來做討論,退火的環境分別為氬氣(Ar)、大氣(Air)、氧氣(O2)以及氮氣(N2),並透過在不同環境下退火的方式來改善光檢測器的特性,從實驗結果我們發現結晶的晶相不管在哪一種退火環境下退火溫度為700度時的TiO2薄膜都是Anatase結晶相。而最佳參數是在氮氣環境中退火的光檢測器會有最佳的特性。在我們的研究中,我們主張這種退火過程中氮摻入到TiO2結構是屬於間隙間的反應,而這種間隙間摻雜會因為TiO2晶格中添加氮形成TiO2Nx的關係提供載子增加電流,我們使用退火環境去改變薄膜特性的方式對於製程而言是最低成本的製作方式,並且幾乎在每一個實驗室都能做到可以說實用性非常的高!
英文摘要 In this thesis, the magnesium zinc oxide (MgZnO) is deposited by RF magnetron sputtering. Because of the zinc oxide (ZnO) is a material easy to produce oxygen vacancies and zinc interstitial defects, so the magnesium was doped in ZnO to reduce the vacancies which have caused the problem of exceed carrier concentration. As a result, we will use MgZnO on the device fabrication, the process devices include a photodetector and thin film transistor.
In the part of the experimental results and features discussion, first of all, we use the RF-sputtering method to deposit film at different conditions and the film properties are discussed for four orientations which are structural, optical and surface/depth element analysis. The structural characteristics shows that MgZnO crystalline in wurzite structure. In the portion of optical properties, the optical band gap of the film can be effectively changed by doping magnesium. In addition, it is found that with the increase of the film thickness, the content of magnesium in the films will increase, while the increase in the film thickness, magnesium and oxygen bonding ratio is increasing, this phenomenon is also affecting the characteristics of magnesium zinc oxide transistor. Under the different sputtering oxygen component, the behavior of oxygen in the film is also different.
In the second part of the experiment, we will use magnesium zinc oxide in optical detector and target utilized respectively 10% and 20% of the doped Mg amount in order to compare the differences in the characteristics. In the process of optimization, different parameters are changed. With the higher content of Mg doped and the dark current of the MgZnO PD can effectively be suppressed to 10-13 ampere, and therefore the response rejection ratio increased to 105. In addition, with magnesium content increased and the ideal oxygen flow rate, the oxygen defects reduce effectively and lead to device noise can also effectively inhibited, the noise equivalent power can be reduced to 10-15. At the same time, the normalized detectivity can up to 1014.
In the third part, we use silicon dioxide for magnesium zinc oxide thin film transistor gate dielectric layer, and by controlling the thickness of the film and the thin film Mg content, we break through the restrain of high magnesium content cannot produce transistor characteristics. Thus, under the ideal thickness, magnesium zinc oxide thin film transistor can be normal operation. In addition, we use a high dielectric constant of alumina replace silica as a gate dielectric and at the transfer characteristics at room temperature show field effect mobility with 7.73 cm2 / Vs, the threshold voltage to 4.2V, subthreshold swing improved to 0.29, current switch ratio increased by nearly two orders of magnitude. Finally, we also do study on the reliability of dielectric layer, and extend the application to the phototransistor which actually improve the photon response and on/off current ratio.
TiO2 films were prepared to fabricate the MSM structure UV detectors on quartz substrates. Furthermore, the optimized growth and annealing conditions were investigated. The XRD spectrum reveals that the films have an anatase structure with (101) at 2θ = 25.3° preferred orientation. The effects of annealing under different ambient gases on detector characteristics were analyzed and discussed; Furthermore, all detectors exhibited low dark current around 10-10 A. We observed that under an N2 ambient, we acquire the best parameters for annealing TiO2 UV PDs with a maximum responsivity of 1.73 × 10-2 A/W, and the highest rejection ratio of 2.07 × 105. The on-current increased from 9.16 pA to 4.89 μA within 22 s, while the off-current decreased from 4.8 μA to 9.8 pA within 6 s. The high performance TiO2 films of the detectors can be attributed to the fills of defects through nitrogen. We believe that this method can be used to develop a TiO2-based device that has the advantages of low-cost and ease of fabrication.
論文目次 Contents
摘要.......................................................I
Abstract..................................................IV
誌謝.....................................................VII
Table Captions...........................................XII
Figure Captions.........................................XIII
Chapter....................................................1 Introduction...............................................1
1-1 Background and Motivation..............................1
1-2 Background of MgZnO Material and Devices...............2
1-3 Background of TiO2 Material and Devices................3
1-4 Overviews of high-k material...........................4
1-5 Overviews of Ultraviolet phototransistors..............5
1-6 Organization of Dissertation...........................7
Reference..................................................9
Chapter 2 Relevant Theory and Experimental Equipment......13
2-1 Theory of Photodetector...............................13
2-2 Responsivity of the Photodetector.....................14
2-3 Low Frequency Noise...................................14
2-4 Theory of Thin Film Transistor........................17
2-5 Important Parameters..................................18
2-5-1 Field-Effect Mobility...............................18
2-5-2 Threshold Voltage (VT)..............................19
2-5-3 On/off current Ratio (Ion/off)......................19
2-5-4 Subthreshold Swing (S.S)............................19
2-6 Experimental Equipment................................20
2-6-1 RF Sputtering System................................20
2-6-2 X-ray Diffraction Analysis..........................22
2-6-3 Atomic Force Microscopes............................23
2-6-4 Energy-dispersive X-ray spectroscopy (EDS)..........24
2-6-5 Secondary ion mass spectrometry.....................25
2-6-6 X-ray photoelectron spectroscopy....................25
2-6-7 Measurement Systems.................................26
Reference.................................................32

Chapter 3 Investigation of MgZnO Optoelectronics device prepared by RF Magnetron Sputter..........................33
3-1 Characteristics of MgZnO Thin Films...................33
3-1-1 Fabrication of MgZnO Thin Film Sample...............33
3-1-2 Structural Characteristics..........................34
XRD Analysis..............................................34
AFM and SEM Analysis......................................35
Optical Characteristics...................................36
3-1-3 Elemental Analysis..................................37
SIMS and EDS Analysis.....................................37
XPS Analysis..............................................38
Reference.................................................50
3-2 The Fabrication and Characteristics of MgZnO MSM Photodetector.............................................51
Introduction..............................................51
3-2-1 Fabrication of MgZnO MSM photodetector..............52
3-2-2 Characteristics of Target Mg content 10% MgZnO MSM photodetector.............................................53
3-2-3 Characteristics of Target Mg content 20% MgZnO MSM photodetector.............................................55
3-2-4 The Summary of MgZnO MSM Photodetector..............57
Reference.................................................63
3-3 The Fabrication and Characteristics of MgZnO Bottom Gate Thin Film Transistor......................................65
Introduction..............................................65
3-3-1 Fabrication and Measurement of MgZnO TFTs...........66
3-3-2 The Electrical Properties of the MgZnO TFTs.........68
3-4 Characteristics of the MgZnO TFT with Al2O3 gate dielectric layer..........................................70
Overview of the Al2O3 Dielectric Application..............70
3-4-1 Fabrication of MgZnO Thin Film Transistor with Al2O3 Gate Dielectric Layer.....................................70
3-4-2 The Electrical Properties of MgZnO TFT with Al¬2O3 Gate Dielectric Layer.....................................71
3-5 Application of MgZnO Thin Film Transistors with various gate dielectric layers....................................73
3-5-1 The hysteresis phenomenon of MgZnO TFT with various gate dielectric layers....................................73
3-5-2 The Electrical Properties of the MgZnO Phototransistor ...74
3-6 The Summary of MgZnO TFTs and Phototransistor.........76
Reference.................................................88
Chapter 4 Investigation of TiO2 photodetectors by Radio-Frequency Magnetron Sputter...............................90
4-1 Characteristics of TiO2 thin film.....................90
4-1-1 Fabrication of TiO2 Thin Film Sample................90
4-1-2 Structural Characteristics..........................91
XRD Analysis..............................................92
AFM and SEM Analysis......................................92
4-2 The Fabrication and Characteristics of TiO2 MSM Photodetector.............................................93
Introduction..............................................93
4-2-1 Fabrication of TiO2 MSM photodetector...............94
4-2-2 Characteristics of TiO2 MSM photodetector...........95
4-2-3 The Summary of TiO2 MSM Photodetector...............98
Reference................................................109
Chapter 5 Conclusion and future work.....................112
5.1 Conclusion...........................................112
5.2 Future work..........................................114
參考文獻 Chapter 1
[1] Oh, B. Y., Kim, Y. H., Lee, H. J., Kim, B. Y., Park, H. G., Han, J. W., ... & Seo, D. S. (2011). High-performance ZnO thin-film transistor fabricated by atomic layer deposition. Semiconductor Science and Technology, 26(8), 085007.
[2] Lim, J. H., Kang, C. K., Kim, K. K., Park, I. K., Hwang, D. K., & Park, S. J. (2006). UV electroluminescence emission from ZnO light‐emitting diodes grown by high‐temperature radiofrequency sputtering. Advanced Materials, 18(20), 2720-2724.
[3] Batista, P. D., & Mulato, M. (2005). ZnO extended-gate field-effect transistors as pH sensors. Applied Physics Letters, 87(14), 143508-143900.
[4] Carcia, P. F., McLean, R. S., Reilly, M. H., & Nunes Jr, G. (2003). Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, 82(7), 1117-1119.
[5] Kawamura, Y., Hattori, N., Miyatake, N., & Uraoka, Y. (2013). Comparison between ZnO films grown by plasma-assisted atomic layer deposition using H2O plasma and O2 plasma as oxidant. Journal of Vacuum Science & Technology A, 31(1), 01A142.
[6] Lee, H. Y., Xia, S. D., Zhang, W. P., Lou, L. R., Yan, J. T., & Lee, C. T. (2010). Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique. Journal of Applied Physics, 108(7), 073119.
[7] Gong, S. C., Choi, Y. J., Kim, H., Park, C. S., Park, H. H., Jang, J. G., ... & Yeom, G. Y. (2013). Aluminum-doped zinc oxide formed by atomic layer deposition for use as anodes in organic light emitting diodes. Journal of Vacuum Science & Technology A, 31(1), 01A101.
[8] Tanaka, H., Ihara, K., Miyata, T., Sato, H., & Minami, T. (2004). Low resistivity polycrystalline ZnO: Al thin films prepared by pulsed laser deposition. Journal of Vacuum Science & Technology A, 22(4), 1757-1762.
[9] Lee, J. H., Lee, S. Y., & Park, B. O. (2006). Fabrication and characteristics of transparent conducting In2O3–ZnO thin films by ultrasonic spray pyrolysis. Materials Science and Engineering: B, 127(2), 267-271.
[10] Al Asmar, R., Juillaguet, S., Ramonda, M., Giani, A., Combette, P., Khoury, A., & Foucaran, A. (2005). Fabrication and characterization of high quality undoped and Ga 2O3-doped ZnO thin films by reactive electron beam co-evaporation technique. Journal of Crystal Growth, 275(3), 512-520.
[11] Zhang, Y., He, J., Ye, Z., Zou, L., Huang, J., Zhu, L., & Zhao, B. (2004). Structural and photoluminescence properties of Zn0.8Mg0.2O thin films grown on Si substrate by pulsed laser deposition. Thin Solid Films, 458(1), 161-164.
[12] Tsay, C. Y., Cheng, H. C., Tung, Y. T., Tuan, W. H., & Lin, C. K. (2008). Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method. Thin Solid Films, 517(3), 1032-1036.
[13] Ohtomo, A., Tamura, K., Kawasaki, M., Makino, T., Segawa, Y., Tang, Z. K., ... & Koinuma, H. (2000). Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn) O superlattices. Applied Physics Letters, 77(14), 2204-2206.
[14] Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., ... & Segawa, Y. (1998). MgxZn1-xO as a II-VI widegap semiconductor alloy. Applied Physics Letters, 72(19), 2466-2468.
[15] Choopun, S., Vispute, R. D., Yang, W., Sharma, R. P., Venkatesan, T., & Shen, H. (2002). Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films. Applied Physics Letters, 80, 1529.
[16] Minemoto, T., Negami, T., Nishiwaki, S., Takakura, H., & Hamakawa, Y. (2000). Preparation of Zn1− xMgxO films by radio frequency magnetron sputtering. Thin Solid Films, 372(1), 173-176.
[17] Kohan, A. F., Ceder, G., Morgan, D., & Van de Walle, C. G. (2000). First-principles study of native point defects in ZnO. Physical Review B, 61(22), 15019.
[18] Johnson, P. D. (1954). Some optical properties of MgO in the vacuum ultraviolet. Physical Review, 94(4), 845.
[19] Roessler, D. M., & Walker, W. C. (1967). Electronic spectrum and ultraviolet optical properties of crystalline MgO. Physical Review, 159(3), 733.
[20] Segnit, E. R., & Holland, A. E. (1965). The System MgO‐ZnO‐SiO2. Journal of the American Ceramic Society, 48(8), 409-413.
[21] Onodera, A., Tamaki, N., Jin, K., & Yamashita, H. (1997). Ferroelectric Properties in Piezoelectric Semiconductor Zn1-xMxO (M= Li, Mg). Japanese journal of applied physics, 36(9S), 6008.
[22] Ogawa, Y., & Fujihara, S. (2005). Band‐gap modification and tunable blue luminescence of wurtzite MgxZn1–xO thin films. physica status solidi (a), 202(9), 1825-1828.
[23] Dittrich, T., Zinchuk, V., Skryshevskyy, V., Urban, I., & Hilt, O. (2005). Electrical transport in passivated Pt∕ TiO2∕ Ti Schottky diodes. Journal of applied physics, 98(10), 104501.
[24] Xue, H., Kong, X., Liu, Z., Liu, C., Zhou, J., Chen, W., ... & Xu, Q. (2007). TiO2 based metal-semiconductor-metal ultraviolet photodetectors. Applied physics letters, 90(20), 1118.
[25] Kong, X., Liu, C., Dong, W., Zhang, X., Tao, C., Shen, L., ... & Ruan, S. (2009). Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes. Applied Physics Letters, 94(12), 123502.
[26] Tang, H., Prasad, K., Sanjines, R., Schmid, P. E., & Levy, F. (1994). Electrical and optical properties of TiO2 anatase thin films. Journal of applied physics, 75(4), 2042-2047.
[27] Heo, C. H., Lee, S. B., & Boo, J. H. (2005). Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics. Thin Solid Films, 475(1), 183-188.
[28] Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582.
[29] Wilk, G. D., Wallace, R. M., & Anthony, J. M. (2001). High-κ gate dielectrics: Current status and materials properties considerations. Journal of applied physics, 89(10), 5243-5275.
[30] Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898.
[31] Kang, L., Lee, B. H., Qi, W. J., Jeon, Y., Nieh, R., Gopalan, S., ... & Lee, J. C. (2000). Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric. IEEE Electron Device Letters, 21(4), 181-183.
[32] Lee, B. H., Kang, L., Nieh, R., Qi, W. J., & Lee, J. C. (2000). Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Applied Physics Letters, 76(14), 1926-1928.
[33] Babiarczuk, B., Szczurek, A., Donesz-Sikorska, A., Rutkowska, I., & Krzak, J. (2016). The influence of an acid catalyst on the morphology, wettabillity, adhesion and chemical structure properties of TiO2 and ZrO2 sol–gel thin films. Surface and Coatings Technology, 285, 134-145.
[34] Zhang, H. H., Ma, C. Y., & Zhang, Q. Y. (2009). Scaling behavior and structure transition of ZrO2 films deposited by RF magnetron sputtering. Vacuum, 83(11), 1311-1316.
[35] Carcia, P. F., McLean, R. S., & Reilly, M. H. (2006). High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Applied physics letters, 88(12), 3509.
[36] Chiu, C. J., Chang, S. P., & Chang, S. J. (2010). High-Performance a-IGZO Thin-Film Transistor Using Gate Dielectric. IEEE Electron Device Letters, 31(11), 1245-1247.
[37] Razeghi, M., & Rogalski, A. (1996). Semiconductor ultraviolet detectors. Journal of Applied Physics, 79(10), 7433-7473.
[38] Star, A., Lu, Y., Bradley, K., & Grüner, G. (2004). Nanotube optoelectronic memory devices. Nano Letters, 4(9), 1587-1591.
[39] Chaji, G., Nathan, A., & Pankhurst, Q. (2008). Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging. Applied Physics Letters, 93(20), 203504.
[40] Johnson, N. M., & Chiang, A. (1984). Highly photosensitive transistors in single‐crystal silicon thin films on fused silica. Applied Physics Letters, 45(10), 1102-1104.
[41] Kaneko, Y., Koike, N., Tsutsui, K., & Tsukada, T. (1990). Amorphous silicon phototransistors. Applied physics letters, 56(7), 650-652.
[42] Carruthers, G. R. (2000). Ultraviolet and X-ray detectors. Electro-Optics Handbook.
Chapter 2
[1] Streetman, B. G., & Banerjee, S. (2000). Solid state electronic devices (Vol. 4). New Jersey: Prentice Hall.
[2] Reynolds, D. C., Look, D. C., Jogai, B., Litton, C. W., Collins, T. C., Harsch, W., & Cantwell, G. (1998). Neutral-donor–bound-exciton complexes in ZnO crystals. Physical Review B, 57(19), 12151.
[3] Monroy, E., Calle, F., Munoz, E., Omnes, F., Gibart, P., & Munoz, J. A. (1998). AlxGa1-xN: Si Schottky barrier photodiodes with fast response and high detectivity. Appl. Phys. Lett, 73(15), 2146-2148.
[4] Sze, S. M., & Ng, K. K. (2006). Physics of semiconductor devices. John wiley & sons.
[5] Kern, W. (2012). Thin film processes II (Vol. 2). Academic press.
[6] Chang, C. Y. (1996). ULSI technology. McGraw-Hill.
[7] Jacobi, K. (2001). of Book: Handbook of Thin Film Process Technology. Institute of Physics Publishing.
[8] Cullity, B. D. (2001). Elements of X-ray Diffraction.
[9] Lawes, G. (1987). Scanning electron microscopy and X-ray microanalysis.
Chapter 3-1
[1] Tsay, C. Y., Cheng, H. C., Wang, M. C., Lee, P. Y., Chen, C. F., & Lin, C. K. (2007). Performance of sol–gel deposited Zn1− xMgxO films used as active channel layer for thin-film transistors. Surface and Coatings Technology, 202(4), 1323-1328.
[2] Ohtomo, A., Takagi, S., Tamura, K., Makino, T., Segawa, Y., Koinuma, H., & Kawasaki, M. (2006). Photo-irresponsive thin-film transistor with MgxZn1-xO channel. Japanese journal of applied physics, 45(7L), L694.
[3] Tian, C., Jiang, D., Tan, Z., Duan, Q., Liu, R., Sun, L., ... & Zhao, J. (2014). Effects of thermal treatment on the MgxZn1− xO films and fabrication of visible-blind and solar-blind ultraviolet photodetectors. Materials Research Bulletin, 60, 46-50.
Chapter 3-2

[1] Tsay, C. Y., Cheng, H. C., Wang, M. C., Lee, P. Y., Chen, C. F., & Lin, C. K. (2007). Performance of sol–gel deposited Zn1− xMgxO films used as active channel layer for thin-film transistors. Surface and Coatings Technology, 202(4), 1323-1328.
[2] Ohtomo, A., Takagi, S., Tamura, K., Makino, T., Segawa, Y., Koinuma, H., & Kawasaki, M. (2006). Photo-irresponsive thin-film transistor with MgxZn1-xO channel. Japanese journal of applied physics, 45(7L), L694.
[3] Tian, C., Jiang, D., Tan, Z., Duan, Q., Liu, R., Sun, L., ... & Zhao, J. (2014). Effects of thermal treatment on the MgxZn1− xO films and fabrication of visible-blind and solar-blind ultraviolet photodetectors. Materials Research Bulletin, 60, 46-50.

[1] Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., ... & Segawa, Y. (1998). MgxZn1-xO as a II-VI widegap semiconductor alloy. Applied Physics Letters, 72(19), 2466-2468.
[2] Makino, T., Tuan, N. T., Sun, H. D., Chia, C. H., Segawa, Y., Kawasaki, M., ... & Baba, M. (2001). Temperature dependence of near ultraviolet photoluminescence in ZnO/(Mg,Zn) O multiple quantum wells. Applied Physics Letters, 78(14), 1979-1981.
[3] Vashaei, Z., Minegishi, T., Suzuki, H., Hanada, T., Cho, M. W., Yao, T., & Setiawan, A. (2005). Structural variation of cubic and hexagonal MgxZn1−xO layers grown on MgO (111)∕c-sapphire. Journal of applied physics, 98(5), 054911.
[4] Sharma, A. K., Narayan, J., Muth, J. F., Teng, C. W., Jin, C., Kvit, A., ... & Holland, O. W. (1999). Optical and structural properties of epitaxial MgxZn1−xO alloys. Applied physics letters, 75(21), 3327-3329.
[5] Park, W. I., Yi, G. C., & Jang, H. M. (2001). Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1−xMgxO (0⩽ x⩽ 0.49) thin films. Applied Physics Letters, 79(13), 2022-2024.
[6] Tanaka, H., Fujita, S., & Fujita, S. (2005). Fabrication of wide-band-gap MgxZn1-xO quasi-ternary alloys by molecular-beam epitaxy. Applied Physics Letters, 86(19).
[7] Shukla, G. (2009). ZnMgO Homojunction-Based Ultraviolet Photodetector. IEEE Photonics Technology Letters, 21(13), 887-889.
[8] Xie, X. H., Zhang, Z. Z., Shan, C. X., Chen, H. Y., & Shen, D. Z. (2012). Dual-color ultraviolet photodetector based on mixed-phase-MgZnO/i-MgO/p-Si double heterojunction. Applied Physics Letters, 101(8), 081104.
[9] Wang, L. K., Ju, Z. G., Shan, C. X., Zheng, J., Shen, D. Z., Yao, B., ... & Zhang, J. Y. (2009). MgZnO metal–semiconductor–metal structured solar-blind photodetector with fast response. Solid State Communications, 149(45), 2021-2023.
[10] Bendersky, L. A., Takeuchi, I., Chang, K. S., Yang, W., Hullavarad, S., & Vispute, R. D. (2005). Microstructural study of epitaxial Zn1−xMgxO composition spreads. Journal of applied physics, 98(8), 083526.
[11] Fujita, M., Sasajima, M., Deesirapipat, Y., & Horikoshi, Y. (2005). Molecular beam epitaxial growth of hexagonal ZnMgO films on Si (111) substrates using thin MgO buffer layer. Journal of crystal growth, 278(1), 293-298.
[12] Saraf, G., Chen, Y., Siegrist, T., Wielunski, L. S., & Lu, Y. (2006). Hybrid deposition of piezoelectric MgxZn1−xO (0≤ x≤ 0.3) on R-sapphire substrates using RF sputtering and MOCVDR-sapphire substrates using RF sputtering and MOCVD. Journal of electronic materials, 35(6), 1306-1310.
[13] Li, C. H., Tsai, Y. S., & Chen, J. Z. (2011). Negative bias temperature instability of Rf-sputtered Mg0.05Zn0.95O thin film transistors with MgO gate dielectrics. Semiconductor Science and Technology, 26(10), 105007.
Chapter 3-3
[1] Kumomi, H., Nomura, K., Kamiya, T., & Hosono, H. (2008). Amorphous oxide channel TFTs. Thin Solid Films, 516(7), 1516-1522.
[2] Park, K. B., Seon, J. B., Kim, G. H., Yang, M., Koo, B., Kim, H. J., ... & Lee, S. Y. (2010). High electrical performance of wet-processed indium zinc oxide thin-film transistors. IEEE Electron Device Letters, 31(4), 311-313.
[3] Grover, M. S., Hersh, P. A., Chiang, H. Q., Kettenring, E. S., Wager, J. F., & Keszler, D. A. (2007). Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer. Journal of Physics D: Applied Physics, 40(5), 1335.
[4] Zhang, S. B., Wei, S. H., & Zunger, A. (2001). Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physical Review B, 63(7), 075205.
[5] Furuta, M., Kamada, Y., Kimura, M., Hiramatsu, T., Matsuda, T., Furuta, H., ... & Hirao, T. (2010). Analysis of hump characteristics in thin-film transistors with ZnO channels deposited by sputtering at various oxygen partial pressures. IEEE Electron Device Letters, 31(11), 1257-1259.
[6] Kimura, M., Nakanishi, T., Nomura, K., Kamiya, T., & Hosono, H. (2008). Trap densities in amorphous-InGaZnO4 thin-film transistors. Applied Physics Letters, 92(13), 133512-133512.
[7] Su, L. Y., Lin, H. Y., Wang, S. L., Yeh, Y. H., Cheng, C. C., Peng, L. H., & Huang, J. J. (2010). Effects of gate‐bias stress on ZnO thin‐film transistors. Journal of the Society for Information Display, 18(10), 802-806.
[8] Chin, H. A., Cheng, I. C., Huang, C. I., Wu, Y. R., Lu, W. S., Lee, W. L., ... & Lin, T. S. (2010). Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process. Journal of Applied Physics, 108(5), 054503.
[9] Kwon, Y., Li, Y., Heo, Y. W., Jones, M., Holloway, P. H., Norton, D. P., ... & Li, S. (2004). Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn, Mg) O channel. Applied physics letters, 84(14), 2685-2687.
[10] Li, C. H., Tsai, Y. S., & Chen, J. Z. (2011). Negative bias temperature instability of Rf-sputtered Mg0.05Zn0.95O thin film transistors with MgO gate dielectrics. Semiconductor Science and Technology, 26(10), 105007.
[11] Wu, H., Liang, J., Jin, G., Lao, Y., & Xu, T. (2007). Transparent thin-film transistors using ZnMgO as dielectrics and channel. IEEE Transactions on Electron Devices, 54(11), 2856-2859.
[12] Wrench, J. S., Brunell, I. F., Chalker, P. R., Jin, J. D., Shaw, A., Mitrovic, I. Z., & Hall, S. (2014). Compositional tuning of atomic layer deposited MgZnO for thin film transistors. Applied Physics Letters, 105(20), 202109.
[13] Zhang, X. H., Domercq, B., Wang, X., Yoo, S., Kondo, T., Wang, Z. L., & Kippelen, B. (2007). High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD). Organic Electronics, 8(6), 718-726.
[14] Cheng, C. C., Chien, C. H., Luo, G. L., Liu, J. C., Kei, C. C., Liu, D. R., ... & Chang, C. Y. (2008). Characteristics of atomic-layer-deposited Al2O3 high-k dielectric films grown on Ge substrates. Journal of The Electrochemical Society, 155(10), G203-G208.
[15] Suh, D. C., Cho, Y. D., Kim, S. W., Ko, D. H., Lee, Y., Cho, M. H., & Oh, J. (2010). Improved thermal stability of Al2O3/HfO2/Al2O3 high-k gate dielectric stack on GaAs. Applied Physics Letters, 96(14), 2112.
[16] Hwang, D. K., Lee, K., Kim, J. H., Im, S., Park, J. H., & Kim, E. (2006). Comparative studies on the stability of polymer versus SiO2 gate dielectrics for pentacene thin-film transistors. Applied physics letters, 89(9), 93507-93507.
[17] Hamilton, M. C., & Kanicki, J. (2004). Organic polymer thin-film transistor photosensors. IEEE Journal of selected topics in quantum electronics, 10(4), 840-848.
[18] Hamilton, M. C., Martin, S., & Kanicki, J. (2004). Thin-film organic polymer phototransistors. IEEE Transactions on Electron Devices, 51(6), 877-885.
[19] Bae, H. S., Yoon, M. H., Kim, J. H., & Im, S. (2003). Photodetecting properties of ZnO-based thin-film transistors. Applied Physics Letters, 83(25), 5313-5315.
[20] Hong, W. K., Kim, B. J., Kim, T. W., Jo, G., Song, S., Kwon, S. S., ... & Lee, T. (2008). Electrical properties of ZnO nanowire field effect transistors by surface passivation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313, 378-382.
Chapter 4
[1] Razeghi, M., & Rogalski, A. (1996). Semiconductor ultraviolet detectors. Journal of Applied Physics, 79(10), 7433-7473.
[2] Liao, M., & Koide, Y. (2006). High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film. Applied physics letters, 89(11), 3509.
[3] Goldberg, Y. A. (1999). Semiconductor near-ultraviolet photoelectronics. Semiconductor science and technology, 14(7), R41.
[4] Ohta, H., & Hosono, H. (2004). Transparent oxide optoelectronics. Materials Today, 7(6), 42-51.
[5] Moon, T. H., Jeong, M. C., Lee, W., & Myoung, J. M. (2005). The fabrication and characterization of ZnO UV detector. Applied Surface Science, 240(1), 280-285.
[6] Lien, W. C., Tsai, D. S., Lien, D. H., Senesky, D. G., He, J. H., & Pisano, A. P. (2012). 4H–SiC Metal–Semiconductor–Metal Ultraviolet Photodetectors in Operation of 450. IEEE Electron Device Letters, 33(11), 1586-1588.
[7] Hou, J. L., Chang, S. J., Chen, M. C., Liu, C. H., Hsueh, T. J., Sheu, J. K., & Li, S. (2013). GaN-based planar pin photodetectors with the Be-implanted isolation ring. IEEE Transactions on Electron Devices, 60(3), 1178-1182.
[8] Gimenez, A. J., Yáñez-Limón, J. M., & Seminario, J. M. (2010). ZnO−Paper Based Photoconductive UV Sensor. The Journal of Physical Chemistry C, 115(1), 282-287.
[9] Pan, L., Huang, H., Lim, C. K., Hong, Q. Y., Tse, M. S., & Tan, O. K. (2013). TiO2 rutile–anatase core–shell nanorod and nanotube arrays for photocatalytic applications. RSC Advances, 3(11), 3566-3571.
[10] Kim, I. D., Rothschild, A., Lee, B. H., Kim, D. Y., Jo, S. M., & Tuller, H. L. (2006). Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Letters, 6(9), 2009-2013.
[11] Desai, U. V., Xu, C., Wu, J., & Gao, D. (2013). Hybrid TiO2–SnO2 nanotube arrays for dye-sensitized solar cells. The Journal of Physical Chemistry C, 117(7), 3232-3239.
[12] Zou, J., Zhang, Q., Huang, K., & Marzari, N. (2010). Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. The Journal of Physical Chemistry C, 114(24), 10725-10729.
[13] Shih, W. S., Young, S. J., Ji, L. W., Water, W., Meen, T. H., & Shiu, H. W. (2011). Effect of Oxygen Plasma Treatment on Characteristics of TiO Photodetectors. IEEE Sensors Journal, 11(11), 3031-3035.
[14] Cao, C., Hu, C., Wang, X., Wang, S., Tian, Y., & Zhang, H. (2011). UV sensor based on TiO2 nanorod arrays on FTO thin film. Sensors and Actuators B: Chemical, 156(1), 114-119.
[15] Tsai, T. Y., Chang, S. J., Weng, W. Y., Wang, S. H., Chiu, C. J., Hsu, C. L., & Hsueh, T. J. (2012). Nanowires UV Photodetectors With Ir Schottky Contacts. IEEE Photonics Technology Letters, 24(18), 1584-1586.
[16] Zhang, H., Ruan, S., Li, H., Zhang, M., Lv, K., Feng, C., & Chen, W. (2012). Schottky diode ultraviolet detector based on nanowire array. IEEE Electron Device Letters, 33(1), 83-85.
[17] Liu, G., Hoivik, N., Wang, X., Lu, S., Wang, K., & Jakobsen, H. (2013). Photoconductive, free-standing crystallized TiO2 nanotube membranes. Electrochimica Acta, 93, 80-86.
[18] Xue, H., Kong, X., Liu, Z., Liu, C., Zhou, J., Chen, W., ... & Xu, Q. (2007). TiO2 based metal-semiconductor-metal ultraviolet photodetectors. Applied physics letters, 90(20), 1118.
[19] Kong, X., Liu, C., Dong, W., Zhang, X., Tao, C., Shen, L., ... & Ruan, S. (2009). Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes. Applied Physics Letters, 94(12), 123502.
[20] Huang, H., Yang, W., Xie, Y., Chen, X., & Wu, Z. (2010). Metal–Semiconductor–Metal Ultraviolet Photodetectors Based on Films Deposited by Radio-Frequency Magnetron Sputtering. IEEE Electron Device Letters, 31(6), 588-590.
[21] Colgan, M. J., Djurfors, B., Ivey, D. G., & Brett, M. J. (2004). Effects of annealing on titanium dioxide structured films. Thin Solid Films, 466(1), 92-96.
[22] Li, G., Li, L., Boerio-Goates, J., & Woodfield, B. F. (2005). High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. Journal of the American Chemical Society, 127(24), 8659-8666.
[23] Sivalingam, G., Nagaveni, K., Hegde, M. S., & Madras, G. (2003). Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Applied Catalysis B: Environmental, 45(1), 23-38.
[24] Fujishima, A. (1972). Electrochemical photolysis of water at a semiconductor electrode. nature, 238, 37-38.
[25] Reddy, K. M., Reddy, C. G., & Manorama, S. V. (2001). Preparation, characterization, and spectral studies on nanocrystalline anatase TiO2. Journal of Solid State Chemistry, 158(2), 180-186.
[26] Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO2 photocatalysis: a historical overview and future prospects. Japanese journal of applied physics, 44(12R), 8269.
[27] Wang, J., Zhu, W., Zhang, Y., & Liu, S. (2007). An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: visible-light-induced photodecomposition of methylene blue. The Journal of Physical Chemistry C, 111(2), 1010-1014.
[28] Jiang, Y. F., Chen, Y. Y., Zhang, B., & Feng, Y. Q. (2016). N, La Co-Doped TiO2 for Use in Low-Temperature-Based Dye-Sensitized Solar Cells. Journal of The Electrochemical Society, 163(10), F1133-F1138.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw