進階搜尋


下載電子全文  
系統識別號 U0026-2301201711553900
論文名稱(中文) 氧原子為淘氣精靈、夜間D層電子濃度遽增及OH* Meinel波段大氣輝光發生高度之關鍵因素
論文名稱(英文) The leading role of atomic oxygen in the height of the elves, the D-region ledge in nighttime electron density and the OH* Meinel band nightglow layer
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 105
學期 1
出版年 105
研究生(中文) 吳彥蓉
研究生(英文) Yen-Jung Wu
學號 L28991055
學位類別 博士
語文別 英文
論文頁數 163頁
口試委員 召集委員-朱延祥
共同指導教授-俄爾 威廉斯
指導教授-許瑞榮
口試委員-蘇漢宗
口試委員-陳炳志
口試委員-郭政靈
中文關鍵字 淘氣精靈  OH*夜間輝光  D層電離層  電子濃度  氧原子 
英文關鍵字 Elves  OH* nightglow  D-region ionosphere  electron density  atomic oxygen 
學科別分類
中文摘要 福爾摩沙衛星二號(FOMOSAT 2)之科學酬載高空閃電影像儀(The Imager of Sprite and Upper Atmospheric Lightning, ISUAL)是全球第一個持續提供淘氣精靈與大氣輝光同時觀測的太空儀器,根據先前個別獨立觀測的結果,淘氣精靈與大氣輝光(OH*輝光)發生高度皆位於85公里至90公里之間。淘氣精靈為閃電產生之電磁脈衝加熱電離層底部而成,但大氣輝光則是延續日間光化學反應至夜晚能階躍遷的結果,兩者大相逕庭的發生機制提供我們研究難以直接量測的中氣層另一方向觀點。
進行高度觀測之前,ISUAL的指向精確度先經過約1200幅拍攝畫面的星場校正,自2005年到2011年年底,視野中心指向精確度可達0.05°,等同於 2.8公里於距離衛星3300公里的地球臨邊上。統計發生在臨邊上的淘氣精靈,93% 的事件會出現在距離OH*輝光+/- 4公里以內,這個結果是第一次以同時間的觀測資料證明淘氣精靈與OH*輝光發光高度相同。除此之外,如同OH*輝光在低緯度常見的半年週期,淘氣精靈也有類似的高度變化: 春秋兩季較低,冬夏兩季較高。此現象與氧原子垂直傳輸效率隨季節差異有關。
淘氣精靈與OH*輝光等高現象引導出幾個尚未有明確解答的問題,於本論文中逐一討論:1.氧原子與淘氣精靈的關係:我們利用NRLMSIS-00大氣模型得到的中性氣體垂直分佈加上紫外線游離效率推導出該環境下的電子濃度,並導入Kuo et al.[2007] 發展的淘氣精靈模型,得到氧原子層上升(下降)五公里約造成淘氣精靈上升(下降)兩公里。將中性氣體垂直分佈帶入與現有的OH*輝光模型[Xu et al, 2012]也得到相同的變化,因此確定氧原子為控制淘氣精靈與OH*輝光高度的關鍵因素。2. OH*輝光與電子濃度劇增層(VLF波段傳播的上界)的關係:由於淘氣精靈發光需要電場加速周圍的電子撞擊氮氣,因此淘氣精靈與發生的高度即是VLF波段傳播的上界。此外,VLF反射高度的半年週期與OH*輝光的半年週期一致,則反應電子濃度與OH*輝光皆受到中氣層垂直風場的影響。
檢視D層電子濃度劇增層的成因,由於氧原子的存在,給予數量相對少卻有極強電子親和力的流星粉塵 (meteoric smoke particles, MSPs) 有機會與電子緊密結合而形成電子濃度遽增層(electron density ledge, ED ledge)[Plane et al., 2012]。根據102筆火箭量測的電子濃度垂直分布(於南北緯40° 以內),ED ledge平均高度為87公里且scale height約0.7 公里。利用古典流星爆裂模型(classic meteor ablation model)推算,最大量的流星是半徑〖10〗^(-4) m 且飛行速度(進入地球大氣前)15 km/s,會在85公里高到達熔點爆裂融熔,略低於ED ledge的高度。考慮質量通量守恆以及由流星爆裂之後凝結的二次奈米流星,於87公里高得到MSPs數量密度與電子濃度皆為〖10〗^3/cm^3,有能力可以造成顯著的電子濃度變化。然而這些飛行速度約10 km/s的微小流星是否存在至今仍有很多討論,原因在不易被游離產生電漿而被流星雷達紀錄。我們利用高功率Jicamara 雷達的流星資料反推考慮過游離機率(ionization probability)的速度分布,明顯於接近脫離速度(11 km/s)時有最大值,支持這些微小且慢速流星的存在且有能力87公里高左右造成電子濃度遽增層。
氧原子是決定OH*輝光與淘氣精靈高度的關鍵因素,且因為氧原子的存在使得流星粉塵有機會攫取電子造成電子濃度遽增層。OH*輝光與淘氣精靈等高現象提供更多面向討論中氣層特性,福衛二號於2016年6月終止觀測,未來值得繼續發展多光譜衛星儀器來探索中氣層,也值得建構更完備的模型來呈現理論。
英文摘要 The Imager of Sprite and Upper Atmospheric Lightning, the scientific nighttime payload onboard the Taiwanese FORMOSAT 2 satellite, provides observations of TLEs and OH* Meinel nightglow simultaneously in limb view from 2004 to 2016, within the +/-60 degree latitude range of the satellite orbit. The physical connection between two optical phenomena occurring at a similar altitude in limb viewing opens another window to study the structure of this critical altitude range that has long been lacking in in situ measurements. The ISUAL positioning has now been calibrated by the precise location of stars, and the pointing accuracy of ISUAL from 2005 to the end of 2011 is estimated to be 0.05° when viewing the limb region from the satellite.
ISUAL is the only space-borne instrument equipped for simultaneous observation of elves and OH* nightglow. For the limb elves, 91% of the 291 events are located within +/- 4 km of the altitude of brightest OH* nightglow emission. The Semiannual Oscillation (SAO) at low latitude is a significant feature of the OH* nightglow because of the resulting vertical transport of atomic oxygen affected by tidal motions and migration in the mesosphere. The elve heights show the same variation: higher in the solstice seasons and lower in the equinox seasons.
Based on the observational truth of this collocation, the processes and mechanisms which have been questioned, or which have not been previously declared, are shown and discussed in this thesis: (1) The relation between elves and atomic oxygen: The environment-based electron density profile is adapted as the input to the conventional elve model [Kuo et al. [2007] to ascertain the brightest height of elve emission. Along with the OH*model from SABER analysis [Xu et al., 2012; Smith et al., 2012], the model results show clearly that both the height of elves and OH* nightglow are higher when the ledge of the atomic oxygen profile is higher, and vice versa. (2) The relation between the OH* nightglow and the electron density ledge: The semiannual oscillation driven by the vertical transport of atomic oxygen is primary evidence linking the altitudes of elves, OH* nightglow and the VLF waveguide boundary near 87 km [Toledo-Redondo et al., 2012].
The third question addressed in this work concerns the role of meteoric smoke particles in the electron density ledge when atomic oxygen serves to free the electrons from negative ions: Two measureables of the ED ledge are the height and the scale height, and are examined with 102 rocket soundings. One third of the soundings show a maximum frequency at 87 km and a mean scale height of 1.2 km. The size range for micrometeoroids estimated by the classical model for ablation onset overlaps remarkably well with the fixed height portions of the curves for meteor speeds of 10-20 km/s in the height range 80 to 90 km where the ED ledge, elve and OH* nightglow are all located. The concentration of MSPs, capable of reducing the electron density by scavenging, is estimated based on mass conservation. This estimate is of the same order as the measured electron density at 86 km, so that electron scavenging is plausible. Furthermore, the meteor velocity observations from the Jicamarca HPLA meteor radar have been used to show a gradual increase in counts (after correction of the velocity distribution according to the ionization probability β(V)) down to the terrestrial escape velocity of 11 km/s, where the laboratory measurements of β(V) lack access. In short, at the altitude where atomic oxygen is present, MSPs are required to make the electron density ledge.
The leading role for atomic oxygen in determining the altitude of elves, OH* nightglow and the electron density profile along with MSPs has been verified by both observation and theoretical model. The observational truth of the collocation offers a new perspective on the composition, the photochemistry and the dynamics of the mesosphere where the transition region between the ionosphere and the neutral atmosphere is difficult to monitor and where new discoveries lie around the corner.

Key words: Elves, OH* nightglow, D-region ionosphere, electron density, atomic oxygen
論文目次 Chapter 1 Introduction 1
1.1 The D-region ledge in the nighttime electron density 1
1.1.1 Effect of X-radiation 2
1.1.2 Effect of molecular oxygen O2 3
1.1.3 Effect of hydrate cluster ions 4
1.1.4 Noctilucent clouds 5
1.1.5 Effects of atomic oxygen 6
1.1.6 Depletion of electrons by smoke from meteor ablation 7
1.2 Transient luminous events 8
1.2.1 Sprite 9
1.2.2 Halo 12
1.2.3 Elves and their global distribution 13
1.2.4 Gigantic jets and blue jets 16
1.3 OH Meinel Band nightglow and the motivation for this study 17
1.4 “Big Picture” of this Thesis 19
Chapter 2 ISUAL onboard FORMOSAT 2 and the Star Calibration for ISUAL Positioning 21
2.1 Imager of Sprite and Upper Atmospheric Lightning (ISUAL) 21
2.1.1 The ISUAL Imager 23
2.1.2 Spectrophotometer 25
2.1.3 Array Photometer 27
2.2 The Star Calibration for ISUAL Positioning 29
2.2.1 Motivation 29
2.2.2 Estimation of the Accuracy of ISUAL Positioning (Height and Azimuth) Based on Star Calibration 31
2.2.3 The Precessional Motion of the Earth 39
2.2.4 The Radius of the Oblate Spheroidal Earth 43
2.2.5 Results 45
Chapter 3 Atomic Oxygen as a Controlling Factor in the Collocation of Hydroxyl Nightglow and Elves 47
3.1 Overview 47
3.2 Limb-view Observation 52
3.3 The Altitude Collocation of Elves and the OH* Nightglow 56
3.4 Verification of the Collocation of OH* Nightglow and Elves during the Semiannual Variation 59
3.5 The influence of Atomic Oxygen on the Environment-based and Sounding-verified Electron Density Profile 63
3.6 Altitude profile of elves’ emission 73
3.7 The Validation of the OH* Nightglow by the Fact of elve-OH* Nightglow Collocation 79
3.8 Discussion of the Upper Boundary for the VLF Waveguide 85
3.9 Summary 92
Chapter 4 Ablation of Sub-Visual Meteors as the Origin for the D-region Ledge in Electron Density 95
4.1 Overview 95
4.2 The Rocket-borne Observation of the Electron Density Ledge 98
4.3 Classic Model for Ablation Onset 101
4.4 Nano-Particle Concentration Based on Mass Conservation: Meteoroids to Nanoparticles 109
4.5 The Detection Limit for Small Meteors 115
4.6 The Head Echo Observations by the Jicamarca Radar 116
4.7 The Importance of Ionization Probability for the Radar Assessment of Incoming Meteor Speeds 119
4.8 The Corrected Speed Distribution of Meteors 126
4.9 Summary 130
Chapter 5 Summary and the future works 134
5.1 Summary 134
5.2 Future works 139
Appendix: The Comparison of the Detection Rate of Elve Parent Lightning Flashes by Different Lightning Networks 140
A-1 Introduction 140
A-2 Methodology 141
A-3 Result and discussion 142
References 149
Publications co-authored by Yen-Jung Wu 163

參考文獻 References
Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr. (2010), An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth, J. Geophys. Res., 115, D18206, doi:10.1029/2009JD013411.

Adler-Golden, S. (1997), Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements, J. Geophys. Res., 102(A9), 19,969–19,976, doi:10.1029/97JA01622

Aikin, A. C.R. A. Goldberg, W. Jones (1977), J. A. Kane, Observations of mid-latitude lower ionosphere in winter, J. Geophys. Res., 82, 1869–1875.

Armstrong, R. A. and Lyons, W. A. (2000). Satellite and ground-based data
exploitation for NUDET discrimination, characterizing atmospheric electrodynamic emissions from lightning, sprites, jets and elves. Final Report, DOE Contract #DE-AC04-98AL79469, 213 pp.

Baker, D. J. and A.T. Stair Jr. (1988), Rocket measurements of the altitude distribution of the hydroxyl airglow, Phys. Scripta, 37, 611–622.

Barabash, V., A. Osepian and P. Dalin (2014), Influence of water vapor on the height distribution of positive ions, effective recombination coefficient and ionization balance in the quiet lower ionosphere, Ann. Geophys., 32, 207-222.

Barrington-Leigh, C. P., U. S. Inan, and M. Stanley (2001), Identification of sprites and elves with intensified video and broadband array photometry,J. Geophys. Res., 106, 1741– 1750.

Bering, E. A. III, Benbrook, J. R., Bhusal, L., Garrett, J. A., Paredes, A. M., Wescott, E. M., Moudry, D. R., Sentman, D. D., Stenbaek-Nielsen, H. C., and Lyons, W. A. (2004). Observations of transient luminous events (TLEs) associated with negative cloud-to-ground (-CG) lightning strikes. Geophys. Res. Lett., 31:doi:10.1029/2003GL018659.

Boeck, W. L., O. H. Vaughan Jr., R. Blakeslee, B. Vonnegut, and M. Brook (1992), Lightning induced brightening in the airglow layer, Geophys. Res. Lett., 19, 99– 102.

Brasseur, G. and S. Solomon (2005), Aeronomy of the Middle Atmosphere, 3rd ed., Springer. ISBN-13 978-1-4020-3824-1

Carrillo-Sánchez, J.D., J.M.C. Plane, W. Feng, D. Nesvornỳ and D. Janches (2015), On the size and velocity distribution of cosmic dust particles entering the atmosphere, Geophys. Res. Lett., 42, 6518-6525, doi:10.1002/2015GL065149.

Chang, S.-C., C. L. Kuo, L.-J. Lee, A. B. Chen, H.-T. Su, R.-R. Hsu, H. U. Frey, S. Mende, Y. Takahashi, and L.-C. Lee (2010), ISUAL far-ultraviolet events, elves, and lightning current, J. Geophys. Res., 115, A00E46, doi:10.1029/2009JA014861.

Chang, S.-C., R.-R. Hsu, S.-M. Huang, H.-T. Su, C.-L. Kuo, J.-K. Chou, L.-J. Lee,Y.-J. Wu, and A. B. Chen (2014),Characteristics of TLE-producing lightning in a coastal thunderstorm, J. Geophys. Res. Space Physics, 119, 9303–9320.

Chen, A. B., Kuo, C. L., Lee, Y. J. , Su, H. T., Hsu, R. R. , Chern, J. L., Frey, H. U., Mende, S. B., Takahashi, Y., Fukunishi, H. , Chang, Y. S., Liu, T. Y., Lee, L. C. (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113, A08306, doi:10.1029/2008JA013101.

Chen, A. B., et al. (2012), Sensitivity degradation of ISUAL instruments and its impact on observations, Terr. Atmos. Ocean. Sci., 23, 71–83, doi:10.3319/TAO.2011.06.20.01(AA).

Chen, A. B.-C., H.-T. Su, and R.-R. Hsu (2014), Energetics and geographic distribution of elve-producing discharges,J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019470.

Chou, J. K., et al. (2010), Gigantic jets with negative and positive polarity streamers, J. Geophys. Res., 115, A00E45, doi:10.1029/2009JA014831.

Christian, H. J. et al. (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108, No. D1, 4005.

Close, S., P. Brown, M. Campbell-Brown, M. Oppenheim and P. Colestock (2007), Meteor head echo radar data: Mass-velocity selection effects, Icarus, 186, 547-556.

Croskey, C.L., L.C Hale and J.D. Mitchell (1990), Electrical stratification in the middle atmosphere, Adv. Space Res., 10, 10[49]-10[52].

Cummer, S. A. and Inan, U. S. (2000). Modeling ELF radio atmospheric propagation and extracting lightning currents from ELF observations. Radio Science, 5:385–394.

Cummer, S. A. (2003), Current moment in sprite-producing lightning, J. Atmos. Sol. Terr. Phys. 65, 499–508, doi:10.1016/S1364-6826(02)00318-8

Cummins, K. L., and M. J. Murphy (2009), An overview of lightning location systems: History, techniques, and data uses, with and in-depth look at the U.S. NLDN, IEEE Trans. Electromagn. Compat., 51(3), 499–518, doi:10.1109/TEMC.2009.2023450.

Demetriades, N. W. S., M. J. Mu rphy, and J. A. Cramer (2010), Validation of Vaisala’s Global Lightning Dataset (GLD360) over the continen talUnited States, paper presented at 21st Internationa l Lightning Detection Conference, Vaisala, Orlando, Fla.

Donahue, T.M., B. Guenther and J.E. Blamont (1972), Noctilucent clouds in daytime: circumpolar particulate layers near the summer mesopause, J. Atmos. Sci., 29, 1205.

Florescu-Mitchell, A.I.,Mitchell,J.B.A.(2006),Dissociative recombination, Phys.R ep. 430 (5–6), 277–374.

Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons (1996), Elves: Lightning‐induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23(16), 2157–2160, doi:10.1029/96GL01979

Franz, R. C., R. J. Nemzek, and J. R. Winckler, (1990): Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System, Science, 249, 48-51, doi: 10.1126/science.249.4964.48.

Frey, H. U., S. B. Mende, S. A. Cummer, A. B. Chen, R.-R. Hsu, H.-T. Su, Y.-S. Chang, T. Adachi, H. Fukunishi, and Y. Takahashi (2005), Beta type stepped leader of elve-producing lightning Geophys. Res. Lett., 32, L13824, doi:10.1029/2005GL023080.

Frey, H. U., et al. (2016), The Imager forSprites and Upper AtmosphericLightning (ISUAL), J. Geophys. Res. SpacePhysics, 121, doi:10.1002/ 2016JA022616.

Friedrich, M., J. Gumbel and R. Pilgram (1999), Atomic oxygen in the mesosphere and its relevance for the ionosphere: a summary of empirical evidence, ESA SP-437:287-290..

Friedrich, M. and Torkar, K.M. (1988), Empirical transition heights of cluster ions, Adv. Space Res., 8, 235-238.

Friedrich, M. and K. M. Torkar (2001), FIRI: A semi-empirical model of the lower ionosphere, J. Geophys. Res., 106, 21,409-21,418.

Friedrich, M. and M. Rapp (2009), News from the lower ionosphere: A review of recent developments, Surv. Geophys., 30, 525-539.

Gadsden, M. (1998), The North-West Europe data on noctilucent clouds: a survey, J. Atmos. Sol. Terr. Phys., 60, 1163-1174.

Gao, H., J. Xu, and Q. Wu (2010), Seasonal and QBO variations in the OH nightglow emission observed by TIMED/SABER, J. Geophys. Res., 115, A06313, doi:10.1029/2009JA014641.

Gumbel, J. (1997), Rocket-borne optical measurements of minor constituents in the middle atmosphere, Doctoral thesis, Department of Meteorology, Stockholm University, Stockholm.

Gumbel, J., D.E. Siskind, G. Witt, K.M. Torkar and M. Friedrich (2003), Influences of ice particles on the ion chemistry of the polar summer mesosphere, J. Geophys. Res., 108,D8, 8346, doi.10.1029/2002JD002413.

Gupta, S.P. (1998), Diurnal and seasonal variation of D-region electron density at low latitude, Adv. Space Res., 21, 875-881.

Grygalashvyly, M., G. R. Sonnemann, F.-J. Lübken, P. Hartogh, and U. Berger (2014), Hydroxyl layer: Mean state and trends at midlatitudes, J. Geophys. Res. Atmos., 119, 12,391–12,419, doi:10.1002/2014JD022094.

Han, F and S.A. Cummer (2010), Mid-latitude nighttime D region ionosphere variability on hourly to monthly time scales, J. Geophys. Res. 115, A09323,doi:10.1029/2010JA015437.

Hamden, A. and R. Kaitchuck, Astronomical Photometry (1991), ISBN-13: 978-0943396255

Hedin, A. E. (1991), Extension of the MSIS thermospheric model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172,doi:10.1029/90JA02125

H¨oller H, Betz H-D, Schmidt K, Calheiros RV, May P, Houngni-nou E, Scialom G. (2009), Lightning characteristics observed bya VLF/LF lightning detection network (LINET) in Brazil, Aus-tralia, Africa and Germany. Atmospheric Chemistry and Physics 9:7795–7824.

Huang, E., Williams, E., Boldi, R., Heckman, S., Lyons, W., Taylor, M., Nelson, T., and Wong, C. (1999). Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res., 104:16943–16964.

Huang et al., (2010), Further investigations of lightning‐induced transient emissions in the OH airglow layer ,J. Geophys. Res, VOL. 115, A10326, doi:10.1029/2010JA015558.

Hunt, S.M., M. Oppenheim, S. Close, P.G. Brown, F. McKeen and M. Minardi (2004), Determination of the meteoroid velocity distribution at the Earth using high-gain radar, Icarus, 168,1, 34–42.

Hunten, D. M., R. P. Turco, O. B. Toon (1980), Smoke and dust particles of meteoric origin in the mesopause and stratosphere, J. Atmos. Sci., 37, 1342.

Hutchins, M. L., R. H. Holzworth, C. J. Rodger, and J. B. Brundell (2012), Far-field power of lightning strokes as measured by the World Wide Lightning Location Network, J. Atmos. Oceanic Technol., 29, 1102–1110.

Inan, U. S., T. F. Bell, and J. V. Rodriguez (1991), Heating and ionization of the lower ionosphere by lightning, Geophys. Res. Lett., 18, 705– 708.

Inan, U., Sampson, W. (1996), Space-time structure of optical flashes and ionization changes produced by lighting-EMP, Geophys. Res. Lett., VOL. 23, NO. 2, PAGES 133-136,

Inan, U. S., Barrington-Leigh, C., Hansen, S., Glukhov, V. S., Bell, T., and Rairden, R. (1997). Rapid lateral expansion of optical luminosity in lightning-induced ionospheric flashes referred to as ‘elves’. Geophys. Res. Lett., 24(5):583–586.

Israelevich, P. L., Y. Yair, A. D. Devir, J. H. Joseph, Z. Levin, I. Mayo, M. Moalem, C. Price, B. Ziv, and A. Sternlieb (2004), Transient airglow enhancements observed from the space shuttle Columbia during the MEIDEX sprite campaign, Geophys. Res. Lett., 31, L06124, doi:10.1029/2003GL019110.

Janches, D., L.P. Dyrud, S.L. Bradley and J.M.C. Plane (2009), First observation of micrometeoroid differential ablation in the atmosphere, Geophys. Res. Lett., 36, L06101, doi:10.1029/2009GL037389, 2009.

Janches, D., Plane ,J. M. C.,Nesvornỳ, D. , Feng, W., Vokrouhlickỳ, D., and Nicolls M. J.(2014), Radar detectability studies of slow and small zodiacal dust cloud particles. I. The case of Arecibo 430 MHz meteor head echo observations, Astrophys. J., 796:41 [20pp]

Jensen, E.J. and Thomas,G.E. (1991).Charging of mesospheric particles—implications for electron-density and particle coagulation, J. Geophys. Res. 96(D10), 18603–18615.

Jensen, E.J. and G.E. Thomas (1989), On the diurnal variation of noctilucent clouds, J. Geophys. Res., vol. 94, No. D12, 14693-14702.

Jones, W. (1997), Theoretical and observational determinations of the ionization coefficient of meteors, Mon. Not. R. Astron. Soc., 288, 995-1003.

Kascheev et al. (1967), Meteoric Phenomena in the Earth’s Atmosphere, Nauka, Moscow.

Khomich, V. Y., A. I.Semenov, and N. N.Shefov (2008), Airglow as an indicator of upper atmospheric structure and dynamics, Springer, Berlin.

Kuo, C.-L. et al. (2007), Modeling elves observed by FORMOSAT-2 satellite, J. Geophys. Res. (Space Physics), 112, 11312.

Klaus, D.E. and L.G. Smith (1978). Rocket Observations of Electron-Density Irregularities in the Equatorial Ionosphere Below 200 km, Aeronomy Report No. 80, University of Illinois, Urbana.

Krehbiel, P. R., J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A. Stanley, and H. E. Edens (2008), Upward electrical discharges from thunderstorms, Nature Geosci., 1(4), 233.

Krankowsky, D., F. Arnold, H. Wider, J. Kissel, J. Zahringer (1972), Positive-ion chemistry in the lower ionosphere, Radio Sci., 7, 93–98.

Lide, D.R., (2006).Handbook of Physics and Chemistry, CRC Press, Boca Raton.

Liu, G. and Shepherd , G., (2006), An empirical model for the altitude of the OH nightglow emission, Geophys. Res. Lett., 33, L09805, doi:10.1029/2005GL025297.

Liu, G., Shepherd, G., and Roble, G., (2008), Seasonal variations of the nighttime O(1S) and OH airglow emission rates at mid‐to‐high- latitudes in the context of the large‐scale circulation, J. Geophys. Res., 113,A06302, doi:10.1029/2007JA012854.

Long, S. A. T. (1974), Derivation of transformation formulas between geocentric and geodetic coordinates for nonzero altitudes, NASA-TN-D-7522, L-9245

Love, S.G. and D.E. Brownlee (1993), A direct measurement of the terrestrial mass accretion rate of cosmic dust, Science, 262, 550-553.

Lyons, W. A. (1994), Characteristics of luminous structures in the stratosphere above thunderstorms imaged by low-light video, Geophys. Res. Lett., 21, 875–876, doi:10.1029/94GL00560

Lyons, W. A. and Armstrong, R. A. (2004). A review of electrical and turbulence
effects of convective storms on the overlying stratosphere and mesosphere. In AM Symposium on Space Weather - Annual Meeting, Boston. American Meteorological Society.

MacKenzie, T. and H. Toynbee (1886), Meteorological phenomena, Nature, 33, 26.

Malan, D. (1937), Sur les decharges orageuses dans la haut atmosphere. In Academie des Sciences. Third session.

Marshall, R. A., U. S. Inan, and V. S. Glukhov (2010), Elves and associated electron density changes due to cloud‐to-ground and in‐cloud lightning discharges, J. Geophys. Res., 115, A00E17, doi:10.1029/2009JA014469.

Massey, H.S., Sida, D.W. (1955), Collision processes in meteor trails. Phil. Mag. 46, 190–198

McBride, N., S.F. Green and J.A.M. McDonnell (1999), Meteoroids and small sized debris in low Earth orbit: Results of recent modelling, Adv. Space Res., 43(6), 757-764.

Mende, S., H. Frey, R. R. Hsu, H. T. Su, A. Chen, L. C. Lee, H. Fukunishi, and Y. Takahashi (2004), Sprite imaging results from the ROCSAT-2 ISUAL instrument, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract AE51A-02.

Mende, S. B., H. U. Frey, R. R. Hsu, H. T. Su, A. B. Chen, L. C. Lee, D. D. Sentman, Y. Takahashi, and H. Fukunishi (2005), D region ionization by lightning-induced electromagnetic pulses, J. Geophys. Res., 110, A11312, doi:10.1029/2005JA011064.

Meinel, A. B, (1950), OH Emission Bands in the Spectrum of the Night Sky. II, Astroph. J., 112, p. 120, doi:10.1086/145321.

Mlynczak, M. G., et al. (2013), Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty, J. Geophys. Res. Atmos., 118, 5724–5735,doi:10.1002/jgrd.50401.

McBride, N., S.F. Green and J.A.M. McDonnell (1999), Meteoroids and small sized debris in low Earth orbit: Results of recent modelling, Adv. Space Res., 43(6), 757-764.

Morgan, W. L., and B. M. Penetrante (1990), ELENDIF: A time-dependent Boltzmann solver for partially ionized plasmas, Comput. Phys. Commun.,58, 127–152.

Nag, A., V.A. Rakov, and J.A. Cramer (2011), Remote measurements of currents in cloud lightning discharges, IEEE Transactions on EMC, 53, No. 2.

Nag , A., Murphy, M. J., Cummins, K.L., Pifer, A. E., Cramer, J.A (2014), Recent evolution of the U.S. National Lightning Detection Network, in Proc. 23rd International Lightning Detection Conference & 5th International Lightning Meteorology Conference, ISBN 978-0-9894826-1-5, Tucson,Arizona, March, 2014

Natanson, G.L. (1960), On the theory of the charging of microscopic aerosol particles as a result of capture of gas ions, Sov.Phys.Techn.Phys.5(5),538–551.

Nesvorny, D., D. Janches, D. Vokrouhlicky, P. Pokorny, W. F. Bottke, and P. Jenniskens (2011), Dynamical model for the zodiacal cloud and sporadic meteors, Astrophys. J., 743, 129, doi:10.1088/0004-637X/743/2/129.

Nicolet, M., (1959), The constitution and composition of the upper atmosphere, Proc. IRE, 47, 142, 1.

Nicolet, M. and A.C. Aiken (1960), The formation of the D-region of the ionosphere, J. Geophys. Res., 65, 1469-1483.

Öpik, E.J. (1958), Physics of Meteor Flight in the Atmosphere, Interscience Publishers, New York , 174 pp.

Pasko, V. P., Inan, U. S., and Taranenko, Y. N. (1997). Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. Journal of Geophysical Research, 102(3):p. 4529.

Pasko, V. P. (2010), Recent advances in theory of transient luminous events, J. Geophys. Res., 115, A00E35.

Plane, J.M.C. (2012).Cosmic dust in the earth's atmosphere, Chem. Soc. Rev. ,41(19), 6507–6518.

Plane, J. M., Saunders, R. W., Hedin, J., Stegman, J., Khaplanov, M., Gumbel, J., Lynch, K. A., Bracikowski, P. J., Gelinas, L. J., Friedrich, M., Blindheim, S., Gausa, M., and Williams, B. P. (2014): A combined rocket-borne and ground-based study of the sodium layer and charged dust in the upper mesosphere, J. Atmos. Sol.-Terr. Phy., 118, 151–160, doi:10.1016/j.jastp.2013.11.008.

Plane, J.M.C., W. Feng and E.C.M. Dawkins, The mesosphere and metals: Chemistry and changes (2015), Chem. Rev. 2015, 115, 4497−4541, DOI: 10.1021/cr500501m.

Poelman, D. R., W. Schulz, and C. Vergeiner (2013), Performance characteristics of distinct lightning detection networks covering Belgium, J. Atmos. Oceanic Technol., 30, 942–951, doi:http://dx.doi.org/10.1175/JTECH-D-12-00162.1

Qin, J., S. Celestin, and V. P. Pasko (2011), On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity, J. Geophys. Res., 116, A06305.

Rapp, M. and F.-J. Lűbken (2001), Modelling of particle charging in the polar summer mesosphere, 1, General results, J. Atmos. Sol. Terr. Phys., 63, 759-770.

Rapp, M. and F.-J. Lűbken (2004), Polar mesosphere summer echoes [PMSE]: Review of observations and current understanding, Atmos. Chem. Phys. 4, 2601-2633.

Reid, G.C. (1970), Production and loss of electrons in the quiet daytime D-region of the ionosphere, J. Geophys. Res., 75, 2551.

Reid, G.C. (1977), The production of water-cluster positive ions in the quiet daytime D-region, Planet. Space Sci., 25, 275-290.

Rodger, C. J., J. B. Brundell, and R. L. Dowden (2005), Location accuracy of VLF Worldwide Lightning Location (WWLLN) network: Post‐algorithm upgrade, Ann. Geophys., 23, 277–290.

Russell, J. P., W. E. Ward, R. P. Lowe, R. G. Roble, G. G. Shepherd, and B. Solheim (2005), Atomic oxygen profiles (80 to 115 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl and greenline airglow: Local time–latitude dependence, J. Geophys. Res., 110, D15305, doi:10.1029/2004JD005570.

Said, R. K., M. B. Cohen, and U. S. Inan (2013), Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations, J. Geophys. Res. Atmos., 118, 6905–6915, doi:10.1002/jgrd.50508.

Said, R. K., and M. Murphy (2016), GLD360 upgrade: Performance analysis and applications. paper presented at 24th International Lightning Detection Conference Proceedings.

Schulz, W., G. Diendorfer, S. Pedeboy, and D. R. Poelman (2016), The European lightning location system EUCLID—Part 1: Performanceanalysis and validation, Nat. Hazards Earth Syst. Sci., 16 , 595–605, doi:10.5194/nhess-16-595-2016.

Sechrist, C.F. (1970), Interpretation of D-region electron densities, Radio Science, 5, 663-671.

Sentman, D. D., and E. M. Wescott (1993), Observations of upper atmospheric optical flashes recorded from an aircraft, Geophys. Res. Lett.,20, 2857–2860, doi:10.1029/93GL02998

Sentman, D. D.,Wescott, E. M., Osborne, D. L., Hampton, D. L., and Heavner, M. J. (1995). Preliminary results from the sprites 94 aircraft campaign 1. Red sprites. Geophys. Res. Lett., 22:1205–1208.

Sida, D.W. (1969), The production of ions and electrons by meteoric processes, Mon. Not. R. Astr. Soc., 143, 37-47.

Silber, I. , Price, C., and Rodger, C., (2016),Semi-annual oscillation (SAO) of the nighttime ionospheric D region as detected through ground-based VLF receivers,Atmos. Chem. Phys., 16, 3279–3288.

Sipler, D. P., and M. A. Biondi (1972), Measurements of O(1D) quenching rates in the F region, J. Geophys. Res., 77, 6202– 6212.

Sheese, P. E., E. J. Llewellyn, R. L. Gattinger, and K. Strong (2014), OH Meinel band nightglow profiles from OSIRIS observations, J. Geophys. Res. Atmos., 119, 11,417–11,428, doi:10.1002/2014JD021617.

Shepherd, G. G. et al, WINDII, The Wind Imaging Interferometer on the Upper Atmosphere Research Satellite (1993), J. Geophys. Res , Vol. 98, No. D6, pp. 10,725-10,750

Shepherd, M. G., G. Liu, and G. G. Shepherd (2006), Mesospheric semi-annual oscillation in temperature and nightglow emission. J. Atmos. Sol.‐Terr. Phys., 68(3–5), 379–389.

Smirnova, N.V.,Ogloblina,O.F.,Vlaskov,V.A. (1988), Modeling of the lower ionosphere, Pure Appl.Geophys.127(2-3),353–379.

Smith, D.A., M.J. Heavner, A.R. Jacobson, X.M. Shao, R.S. Massey, R.J. Sheldon and K.C. Wiens (2004), A method for determining intracloud lightning and ionospheric heights from VLF/ELF records, Radio Sci. , 39, RS1010, doi:10.1029/2002RS002790.

Smith, A. K., D. R. Marsh, M. G. Mlynczak, and J. C. Mast (2010), Temporal variations of atomic oxygen in the upper mesosphere from SABER, J. Geophys. Res., 115, D18309, doi:10.1029/2009JD013434.

Southworth, R.B. and Z. Sekanina (1973), Physical and dynamical studies of meteors, NASA Contractor Report, NASA CR-2316, Prepared for Smithsonian Institution Astrophysical Observatory, Washington, D.C. October..

Stanley, M., Krehbiel, P., Brook, M., Moore, C., and Rison, W. (1999). High speed video of initial sprite development. Geophys. Res. Lett., 26:3201– 3204.

Stenbaek-Nielsen, H. C., Moudry, D. R., Wescott, E. M., Sentman, D. D., and Sabbas, F. T. Sao (2000). Sprites and possible mesospheric effects. Geophys. Res. Lett., 27:3829–3832.

Su, H. T., R. R. Hsu, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi (2003), Gigantic jets between a thundercloud and the ionosphere, Nature, 423(6943), 974–976, doi:10.1038/nature01759.

Subbaraya, B.H., S. Prakash and S. P. Gupta (1985), Structure of the equatorial lower ionosphere from the Thumba Langmuir probe experiments, Adv. Space Res., 5, 35-38.

Summers,M.E., R.R.Conway, C.R.Englert, D.E.Siskind, M.H.Stevens, J. M. Russell III, and L. L. Gordley (2001), Discovery of a water vapor layer in the Arctic summer mesosphere : Implications for polar meso-spheric clouds, Geophys. Res. Lett., 28, 3601 –3604.

Taubenheim, J. and B.S.N. Prasad (1985), A simplified D-region ion chemistry scheme and it possible use for IRI lower ionosphere modelling, Adv. Space Res, 5, 107-110.

Taylor, A.D. (1995), The Harvard Radio Meteor Project meteor velocity distribution reappraised, Icarus, 116, 154-158.

Taylor, M.J., M. Gadsden, R.P. Lowe, M.S. Zalcik and J. Brausch (2002), Mesospheric cloud observations at unusually low latitudes, J. Atmos. Sol. Terr. Phys., 64, 991-999.

Takahashi, H., B. R. Clemesha, and P. P. Batista (1995), Predominant semi-annual oscillation of the upper mesospheric airglow intensities and temperatures in the equatorial region, J. Atmos. Terr. Phys., 57, 407–414.

Thomas, E., M. Haranyi, D. Janches, T. Munsat, J. Simolka and Z. Sternovsky (2016), Measurements of the ionization coefficient of simulated iron micrometeoroids, Geophys. Res. Lett., 43, 3645-3652, doi:10.1002/2016GL068854

Thomas, R.J. and R.A. Young (1981), Measurement of atomic oxygen and related airglows in the lower thermosphere, J. Geophys. Res., 86, 7389-7393.

Toledo-Redondo et al. (2012), Variation of the first cut-off frequency of the Earth-ionosphere waveguide observed by DEMETER, J. Geophys. Res., 117, A04321, doi:10.1029/2011JA017400.

van der Velde, O. A., and J. Montanyà (2016), Statistics and variability of the altitude of elves, Geophys. Res. Lett., 43,5467–5474, doi:10.1002/2016GL068719.

Verniani, F. and G.S. Hawkins (1964), On the ionizing efficiency of meteors, Astrophysical Journal, 1590-1600.

von Savigny, C., I. C. McDade, K.-U. Eichmann, and J. P. Burrows (2012), On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model results, Atmos. Chem. Phys., 12, 8813–8828.

von Savigny, C., and O. Lednyts’kyy (2013), On the relationship between atomic oxygen and vertical shifts between OH Meinel bandsoriginating from different vibrational levels, Geophys. Res. Lett., 40, 5821–5825, doi:10.1002/2013GL058017.

von Zahn, U. and U. Berger (2003), Persistent ice cloud in the midsummer upper mesosphere at high latitudes: Three-dimensional modeling and cloud interactions with ambient water vapor, J. Geophys. Res., 108[D8], 8451, doi:10.1029/2002JD002409.

Vondrak, T., J.N.C. Plane, S. Broadley and D. Janches (2008), A chemical model of meteoric ablation, Atmos. Chem. Phys. 8, 7015-7031.

Vonnegut, B. (1980). Cloud-to-stratosphere lightning. Weather, 35:59–60.

Wait, J.R. and K.P. Spies (1964), Characteristics of the Earth-ionosphere waveguide for VLF radio waves, National Bureau of Standards, Technical Note 300, December 30.

Williams, E., Stanfill, S. (2002), The physical origin of the land–ocean contrast in lightning activity. C. R. - Acad.Sci., Phys. 3, 1277–1292

Williams, E.R. (2005), Lightning and climate: A review, Atmospheric Research ,76 ,272–287

Williams, E., E. Downes, R. Boldi, W. Lyons, and S. Heckman (2007), Polarity asymmetry of sprite-producing lightning: A paradox?, Radio Sci., 42, RS2S17, doi:10.1029/2006RS003488.

Williams, E., et al. (2012), Resolution of the sprite polarity paradox: The role of halos, Radio Sci., 47, RS2002, doi:10.1029/2011RS004794.

Williams, E., Wu, Y, , Chau, J. and Hsu, R. (2016), Intercomparison of radar meteor velocity corrections using different ionization coefficients, Submitted: 2016GL070890

Wu, Y. J., et al. (2012), Occurrence of elves and lightning during El Niño and La Niña, Geophys. Res. Lett., 39, L03106, doi:10.1029/2011GL049831.

Wu, Y. J. , Hsu, R. R., Chen, A. B. , Su, H. T. , Chang, S. C. , Chou, J. K., Lee, Y. J., Peng, K. M.(2016),Revisiting oceanic elves and lightning occurrence rate during El Niño and La Nina episodes in a 10-year time frame, Terr. Atmos. Ocean. Sci., Accepted in July 28, 2016.

Wu, Y. J., Williams, E. R., Friedrich, M., Chang, S. C., Chou,J. K., Chen, A. B.,Su, H. T. ,Hsu, R. R. ,Frey, H. U., Takahashi ,Y. and Lee. L. ( 2015 ).Atomic Oxygen as the controlling factor in collocation of Elves and OH* Meinel band nightglow, American Geophysical Union, Fall Meeting 2015, San Francisco, USA. AE33B-0491

Xu, J., A. K. Smith, G. Jiang, H. Gao, Y. Wei, M. G. Mlynczak, and J. M. Russell III (2010), Strong longitudinal variations in the OH nightglow, Geophys. Res. Lett., 37, L21801, doi:10.1029/2010GL043972.

Xu, J., H. Gao, A. K. Smith, and Y. Zhu (2012), Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region, J. Geophys. Res., 117, D02301, doi:10.1029/ 2011JD016342.

Yee, J., G. Crowley, R. G. Roble, W. R. Skinner, M. D. Burrage, and P. B. Hays (1997), Global simulations and observation of O(1S), O2 (1S) and OH mesospheric nightglow emissions, J. Geophys. Res., 102, 19,949–19,968, doi:10.1029/96JA01833.

Zaragoza, G., F. W. Taylor, and M. López Puertas (2001), Latitudinal and longitudinal behavior of the mesospheric OH nightglow layer as observed by the Improved Stratospheric a nd Mesospheric Sounder on UARS, J. Geophys. Res., 106(D8), 8027–8033.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw