進階搜尋


下載電子全文  
系統識別號 U0026-2210201218014200
論文名稱(中文) 多環芳香烴與寡聚烯的合成、結構分析及物性探討
論文名稱(英文) Syntheses, Structural Analyses, and Physical Properties of Polycyclic Aromatic Hydrocarbons and Oligoenes
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 101
學期 1
出版年 101
研究生(中文) 吳遵承
研究生(英文) Tsun-Cheng Wu
學號 l38981028
學位類別 博士
語文別 中文
論文頁數 204頁
口試委員 指導教授-吳耀庭
口試委員-陳昭岑
口試委員-汪根欉
口試委員-吳培琳
口試委員-鄭彥如
口試委員-郭明裕
中文關鍵字 金屬催化  芳香性    腈類  多環芳香烴      碳-碳耦合  聚集效應  8,8a-二氫環戊[a]茚  線型辛四烯  二苯駢[de,mn]稠四苯  吡咯芳香烴  分子碗  POAV角度   
英文關鍵字 Metal-Catalyzed  Aromaticity  Alkynes  Nitriles  PAHs  Palladium  Nickel  C-C coupling  aggregation  8,8a-Dihydrocyclopenta[a]indenes  Linear octatetraenes  Dibenzo[de,mn]naphthacenes (zethrenes)  Pyrroloarenes  Buckybowls  POAV angle  Naphthalenes 
學科別分類
中文摘要 炔類是合成反應中相當重要的結構與起始物,用於製備各種實用且具高價值性的有機化合物。透過過渡金屬催化炔類進行耦合反應,可以提供一個快速且有效地製備方式得到各式多環芳香烴。本實驗研究中,我們成功在鈀或鎳的催化條件下,開發製備8,8a-二氫環戊[a]茚(8,8a-dihydrocyclopenta[a]indenes, 26)、線型辛四烯(linear octatetraenes, 27)、二苯駢[de,mn]稠四苯{dibenzo[de,mn]naphthacenes (zethrenes), 28}、吡咯芳香烴(pyrroloarenes, 29)與數種分子碗(buckybowls, 30-32),並且探討它們的結構特性與物理化學性質。
不同於過去利用鈀催化炔類進行[2+2+2]環三聚合反應得到苯衍生物的研究結果,本實驗中同樣以二芳香基炔類在鈀的催化系統下,反應卻得到[5.5.6]環結構的8,8a-二氫環戊[a]茚衍生物26。大多數的炔類起始物在實驗中皆能反應得到相對應的三聚合產物,但當炔類的芳香環取代基上含兩個或三個拉電子官能基時,反應卻傾向得到二聚合的萘衍生物43。8,8a-二氫環戊[a]茚衍生物26具有有趣的螢光放光特性,當樣品溶於二氯甲烷或四氫呋喃溶液中時不具螢光特性,但在晶體或固態狀態下卻表現出強烈螢光放光。
在NiBr2(dppe)/Zn的催化系統下,炔類於反應中會進行四聚合而得到高產率的線型辛四烯衍生物27。不同於其它二芳香基炔類,噻吩基取代的炔類11bv在相同條件下卻反應得到四聚合化合物53v{tricyclo[3.2.1.02,7]-oct-3-ene}。此非預期產物推測是經由線型辛四烯衍生物結構重排而產生。未來,我們將繼續對於此類線型辛四烯衍生物的結構特性與合成上的應用做更深入地研究探討。
二苯駢[de,mn]稠四苯28為重要的多環芳香烴,其化合物結構具有有趣的芳香化特性。從克古列結構(Kekulé structure)觀點而言,二苯駢[de,mn]稠四苯結構中心的兩個六員環為缺少芳香性的結構。在本實驗中,我們成功地利用鈀催化乙炔萘82進行二聚合反應得到二苯駢[de,mn]稠四苯衍生物28,並且對於此類化合物性質進行分析。依據二苯駢[de,mn]稠四苯28晶體結構分析結果,由結構的鍵長與交互鍵長差(0.070-0.116 Å)足以證明化合物中心的兩個六員環為“缺少芳香性”的結構,且無論二苯駢[de,mn]稠四苯結構主體為平面或呈扭曲狀態,並不影響其結構組成。
當乙炔萘82與腈類在NiBr2(dppe)/Zn的催化反應下,可以得到不錯產率的吡咯芳香烴29。在此催化系統中,腈類的碳-氮三鍵(C≡N鍵)進行了兩次活化,產生五個新的鍵結而得到吡咯環與兩個六員環結構。乙炔萘上取代基的電子效應與立體障礙效應影響著此反應的進行,造成吡咯芳香烴29產率變化。相較於電荷密度高的芳香環取代,電荷密度較低的芳香環乙炔萘82反應性明顯較差,同時二苯駢[de,mn]稠四苯28副產物也相對增加。而受到立體障礙較大的影響,萘環取代的乙炔萘82x的反應產率相對較低,即使在提高溫度的狀態下反應性亦沒有明顯改善。
最後,本研究中我們成功經由液相金屬催化的方式,以有機平面前驅物合成出非平面的分子碗30、31與32,並且利用X-ray單晶繞射技術分析化合物結構。由實驗結果發現,分子碗30與31的POAVMax.三角錐角度皆高達12.8º。據我們所知,目前文獻上極少有分子碗結構具有如此大的POAV三角錐角度。
總結而論,我們成功地開發多種多環芳香烴的製備方式,藉由過渡金屬催化炔類反應的合成途徑。這些新穎且具潛力的分子結構,預期將具有特殊的材料及物理特性,可以應用於未來有機材料的物質研究上。
英文摘要 Alkyne is an important building block and synthon for constructions of valuable and useful intermediates and products. Cascade reactions provide rapid and efficient access to complex organic molecules. In light of these knowledge, we recently has been successfully developed several synthetic methods for preparing numerous interesting carbocycles, such as 8,8a-dihydrocyclopenta[a]indenes, linear octatetraenes, dibenzo[de,mn]naphthacenes (zethrenes), pyrroloarenes and buckybowls.
Unlike the conventionally formal [2+2+2] cycloaddition, 8,8a-dihydrocyclopenta [a]indenes 26 were obtained by Pd-catalyzed trimerization of alkynes 11. Electron- deficient diarylacetylenes 11, which contain two or three strong electron-withdrawing groups in an aryl substituent, showed different chemoselectivity under these conditions, and they predominantly formed naphthalenes 43 by undergoing new cycloisomerization reactions. A solution of 8,8a-dihydrocyclopenta[a]indenes 26 in dichloromethane or THF is practically nonfluorescent, but it becomes highly luminescent in the crystal (or solid).
In the presence of a catalytic system comprised of NiBr2(dppe) and Zn, arylacetylenes undergo tetramerization to form linear octatetraenes, generally in good to excellent yields. Unlike other examples, di(2-thiophenyl)ethyne produced tricyclo[3.2.1.02,7]oct-3-ene (53v). This undesired product should be produced from a octatetraene derivative. Further studies of the physical properties of these molecules and their use in synthesizing new polycyclic aromatic hydrocarbons are currently underway.
Dibenzo[de,mn]naphthacene (zethrene, 28a, R = H) has an interesting structure with respect to the formal definitions of aromaticity. The central two six-membered rings in zethrene cannot present aromaticity associated with the Kekulé structure. Zethrenes were synthesized by Pd-catalyzed cyclodimerization of 1-ethynyl-8-iodonaphthalenes 82. Based on X-ray crystal analysis, the bond lengths and bond alternation (0.070-0.116 Å) reveal that the central two six-membered rings of 28 lack aromaticity.
Reaction of 1-ethynyl-8-halonaphthalenes 82 with nitrile in the presence of the catalytic system [NiBr2(dppe)/Zn] produced unusual pyrroloarenes 29. The carbon-nitrogen triple bond in nitrile is activated twice. In this cascade reaction, five new bonds are formed in a one-pot transformation, causing a pyrrole and two six-membered rings to be generated simultaneously. The steric congestion and the electronic properties of the substituents R strongly influence the yield. In comparison to electron-rich moieties, the electron-deficient aryl substituent R reduced the reaction efficiency.
Buckybowls 30、31 and 32 are prepared in solution phase. The structure of p-bowls are analyzed by X-ray crystallography. The POAV angle of 30 and 31 are observed up to 12.8º. The bowl-to-bowl inversion barrier of 30 should be larger than that of 31, but the value of the latter is so high that can not be determined by variable-temperature NMR experiments.
In summary, we have developed several new synthetic methods for generating numerous carbocycles. These compounds provide not only interesting structures, but also their special physical properties, which can be potentially applied in organic materials.
論文目次 畢業審查證明----------II
博士班畢業發表成果----------III
謝誌----------IV
中文摘要----------V
英文摘要(Abstract)----------VIII
目錄----------XI
文字縮寫對照表----------XIX
溶劑及藥品名縮寫對照表----------XX
第一章:緒論----------1
第二章:炔類三聚合反應—合成8,8a-二氫環戊[a]茚----------10
第三章:炔類四聚合反應—合成線型辛四烯----------29
第四章:乙炔萘環化二聚合反應—合成二苯駢[de,mn]稠四苯----------42
第五章:乙炔萘與腈類環化加成反應—合成吡咯芳香烴 ----------72
第六章:合成碗形多環芳香烴----------91
第七章:總結----------122
實驗儀器----------123
實驗操作----------125
X-ray單晶結構繞射資料----------137
化合物光譜及性質----------140
參考文獻----------183
附錄:
中英對照表----------198
化學式與化學名對照表----------202
參考文獻 1. (a) 莊萬發“有機金屬之化學”復漢出版社,1989。 (b) 洪豐裕“有機金屬化學簡介” http://www.nchu.edu.tw/~infochem/.
2. Astruc, D. New J. Chem. 2005, 29, 42.
3. (a) 廖釗鋙、吳耀庭“鈀催化交叉耦合反應”科學發展,2011,462期,p60。 (b) 蔡蘊明“2010年諾貝爾獎簡介”http://www.ch.ntu.edu.tw/nobel/nobel99.htm..
4. (a) The Story of Taxol: Nature and Politics in the Pursuit of an Anti-Cancer Drug. (Ed.: Goodman, J.; Walsh, V.), Cambridge University Press, 2001, p81. ISBN0-521-56123 -X. (b) Peltier, S.; Oger, J. M.; Lagarce, F.; Couet, W.; Benoit, J. P. Pharmaceutical Research 2006, 23, 1243.
5. Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.; Claiborne, C. F.; Renaud, J. Nature 1994, 367, 630.
6. Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Grandi, M. J. D. J. Am. Chem. Soc. 1996, 118, 2843.
7. (a) Morihira, K.; Hara, R.; Kawahara, S.; Nishimori, T.; Nakamura, N.; Kusama, H.; Kuwajima, I. J. Am. Chem. Soc. 1998, 120, 12980. (b) Kusama, H.; Hara, R.; Kawahara, S.; Nishimori, T.; Kashima, H.; Nakamura, N.; Kuwajima, I. J. Am. Chem. Soc. 2000, 122, 3811. (c) Seto, M.; Morihira, K.; Horiguchi, Y.; Kuwajima, I. J. Org. Chem. 1994, 59, 3165.
8. (a) Smith, A. B., III; Freeze, B. S. Tetrahedron 2008, 64, 261. (b) Roche, C.; Roux, R. L.; Haddad, M.; Phansavath, P.; Genet, J. P. Synlett 2009, 4, 573. (c) Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P. Angew. Chem. Int. Ed. Engl. 2000, 39, 377. (d) Smith, A. B.; Beauchamp, T. J.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 2000, 122, 8654.
9. Boger, D. L.; Miyazaki, S.; Kim, S. H.; Wu, J. H.; Castal, S. L.; Loiseleur, O.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 10004.
10. Levine, D. Clin Infect Dis 2006, 42, S5.
11. (a) Chen, S. Y.; Maksimchuk, A.; Umstadter, D. Nature 1998, 17, 653. (b) Nonlinear optics, 3nd ed.; (Ed.: Boyd, R. W.), Academic Press, Amsterdam, 2008. (c)The Principles of Nonlinear Optics. (Ed.: Shen, Y. R.), Wiley-Interscience, 2002.
12. (a) Peumans, P.; Uchida, S.; Forrest, S. P. Nature 2003, 425, 158. (b) Mayer, A. C.; Scully, A. R.; Hardin, B. E.; Rowell, M. W.; McGehee, M. D. Materialstoday 2007, 10, 28.
13. (a) Anthony, J. E. Chem. Rev. 2006, 106, 5028. (b) Watson, M. D.; Fechtenkötter, A.; Müllen, K. Chem. Rev. 2001, 101, 1267. (c) Berresheim, A. J.; Müller, M.; Müllen, K. Chem. Rev. 1999, 99, 1747. (d) Müller, M.; Kübel, C.; Müllen, K. Chem. Eur. J. 1998, 4, 2099. (e) Urbano, A. Angew. Chem. Int. Ed. 2003, 42, 3986. (f) Stary, I.; Stara, I. G.; Alexandrova, Z. Sehnal, P.; Teply, F.; Saman, D.; Rulisek, L. Pure Appl. Chem. 2006, 78, 495. (g) Tahara, K.; Tobe, Y. Chem. Rev. 2006, 106, 5274. (h) Morohashi, N.; Narumi, F.; Iki, N.; Hattori, T.; Miyano, S. Chem. Rev. 2006, 106, 5291. (i) Thilgen, C.; Diederich, F. Chem. Rev. 2006, 106, 5049. (j) Vostrowsky, O.; Hirsch, A. Chem. Rev. 2006, 106, 5191.
14. Hu, Y.; Boursalian, G. B.; Gandon,V.; Padilla, R.; Shen, H.; Timofeeva, T. V.; Tongwa, P.; Vollhardt, K. P. C.; Yakovenko, A. A. Angew. Chem. 2011, 123, 958; Angew. Chem. Int. Ed. 2011, 50, 9413.
15. Korotvička, A.; Císařová, I.; Roithová, J.; Kotora, M. Chem. Eur. J. 2012, 18, 4200.
16. Mitsuhashi, R.; Suzuki, Y; Yamanari, Y.; Mitamura, H.; Kambe, T.; Ikeda, N.; Okamoto, H.; Fujiwara, A.; Yamaji, M.; Kawasaki, N.; Maniwa, Y.; Kubozono, Y. Nature 2010, 464, 76.
17. Huang, W.; Zhou, X.; Kanno, K. I.; Takahashi, T. Org. Lett. 2004, 6, 2429.
18. Hsieh, J. C.; Cheng, C. H. Chem. Commun. 2008, 2992.
19. Wu, Y. T.; Lin, W. C.; Liu, C. J.; Wu, C. I. Adv. Synth. Catal. 2008, 350, 1841.
20. Wu, Y. T.; Huang, K. H.; Shin, C. C.; Wu, T. C. Chem. Eur. J. 2008, 14, 669.
21. Hsu, S. F.; Ko, C. W.; Wu, Y. T. Adv. Synth. Catal. 2011, 353, 1756.
22. (a) Wu, T. C.; Tai, C. C.; Tiao, H. C.; Chang, Y. T.; Liu, C. C.; Li, C. H.; Huang, C. H.; Kuo, M. Y.; Wu, Y. T. Chem.Eur. J. 2011, 17, 7220. (b) Wu, Y. T.; Kuo, M. Y.; Chang, Y. T.; Shin, C. C.; Wu, T. C.; Tai, C. C.; Cheng, T. H.; Liu, W. S. Angew.Chem., Int. Ed. 2008, 47, 9891.
23. (a) Acetylene Chemistry: Chemistry, Biology, and Material Science (Eds.: Stang, P. J.; Tykwinski, R. R.; Diederich, F.), Wiley-VCH, Weinheim, 2005. (b) Carbon-Rich Compounds: From Molecules to Materials (Eds.: Haley, M. M.; Tykwinski, R. R.), Wiley-VCH, Weinheim, 2006.
24. (a) de Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Wiley-VCH, Weinheim, 2004. (b) Beller, M.; Bolm, C. TransitionMetals For Organic Synthesis, 2nd ed.; Wiley-VCH, Weinheim, 2004. (c) Negishi, E.; de Meijere, A. Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley, New York, 2002.
25. (a) Fujiwara, M.; Ojima, I. Modern Rhodium-Catalyzed Organic Reactions (Ed.: Evans, P. A.), Wiley-VCH, Weinheim, 2005, p129. (b) Bcnnemann, H.; Brijoux, W. Transition Metals for Organic Synthesis, Vol. 1, 2nd ed. (Eds.: Beller, M.; Bolm, C.), Wiley-VCH, Weinheim, 2004, p171. (c) Modern Organonickel Chemistry (Ed.: Tamaru, Y.), Wiley-VCH, Weinheim, 2005. (d) Takahashi, T.; Li, Y. Titaniumand Zirconium in Organic Synthesis (Ed.: Marek, I.), Wiley-VCH, Weinheim, 2002, p50.
26. (a) Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T. Justus Liebigs Ann. Chem. 1948, 560, 1. (b) Reppe, W.; Schweckendiek, W. J. Justus Liebigs Ann. Chem.1948, 560, 104.
27. (a) Takahashi, T.; Xi, Z.; Yamazaki, A.; Liu, Y.; Nakajima, K.;Kotora, M. J. Am. Chem. Soc. 1998, 120, 1672. (b) Takahashi, T.; Kotora, M.; Xi, Z. J. Chem. Soc., Chem. Commun. 1995, 361. (c) Takahashi, T.; Tsai, F. Y.; Liu, Y.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 1999, 121, 11093. (d) Takahashi, T.; Ishikawa, M.; Huo, S. J. Am. Chem. Soc. 2002, 124, 388.
28. (a) Eickmeier, C.; Holmes, D.; Junga, H.; Matzger, A. J.; Scherhag, F.; Shim, M.; Vollhardt, K. P. C. Angew. Chem. Int. Ed. Engl. 1999, 38, 800. (b) Agenet, N.; Gandon, V.; Vollhardt, K. P. C.; Malacria, M.; Aubert. J. Am.Chem. Soc. 2007, 129, 8860 (c) Dosa, P. I.; Whitener, G. D.; Vollhardt, K. P. C. Org. Lett. 2002, 4, 2075.
29. (a) Peńa, D.; Escudero, S.; Pérez, D.; Guitián, E.; Castedo, L. Angew. Chem. Int. Ed. Engl. 1998, 37, 2659. (b) Peńa, D.; Pérez, D.; Guitián, E.; Castedo, L. Org. Lett. 1999, 1, 1555.
30. 國立成功大學化學所張猷定碩士論文 (民國96年)。
31. (a) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307. (b) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741. (c) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901. (d) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
32. (a) Chen, J.; Reibenspies, J.; Derecskei-Kovacs, A.; Burgess, K. Chem. Commun. 1999, 2501. (b) Nishide, K.; Hagimoto, Y.; Hasegawa, H.; Shiro, M.; Node, M. Chem. Commun. 2001, 2394.
33. Sakabe, K.; Tsurugi, H.; Hirano, K.; Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 445.
34. (a) Fu,Y. S.; Yu, S. J. Angew. Chem. 2001, 113, 451. (b) Jhingan, A. K.; Maier, W. F. J. Org. Chem. 1987, 52, 1161. (c) Ogura, K.; Aizawa, T.; Uchiyama, K.; Iida, H. Bull. Chem. Soc. Jpn. 1983, 56, 953. (d) Yokota, T.; Sakurai, Y.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 1997, 38, 3923.
35. Amatore, C.; Carre, E.; Jutand, A.; M’Barki, M. A. Organometallics 1995, 14, 1818.
36. (a) Ohno, H.; Takeoka, Y.; Miyamura, K.; Kadoh, Y.; Tanaka, T. Org. Lett. 2003, 5, 4763. (b) Monteiro, N.; Balme, G. J. Org. Chem. 2000, 65, 3223. (c) Reiser, O. Handbook of Organopalladium Chemistry for OrganicSynthesis (Eds.: Negishi, E.; de Meijere, A.), Wiley, New York, 2002, p1561.
37. Tsuji, J. Handbook of Organopalladium Chemistryfor Organic Synthesis(Eds.: Negishi,E.; de Meijere, A.), Wiley, NewYork, 2002, p1669.
38. (a) Tani, M.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2004, 69, 1221. (b) Jia, C.; Lu, W.; Kitamura, T.; Fujiwara, Y. Org. Lett. 1999, 1, 2097. (c) Fujiwara, Y.; Moritani, I.; Danno, S.; Asano, R.; Teranishi, S. J. Am.Chem. Soc. 1969, 91, 7166. (d) Fujiwara, Y.; Moritani, I.; Matsuda, M. Tetrahedron 1968, 24, 4819. (e) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 8, 1119. (f) Handbook of CH Transformations (Ed.: Dyker, G.), Wiley-VCH, Weinheim, 2005.
39. Grennberg, H.; Gogoll, A.; Bäckvall, J. E. Organometallics 1993, 12, 1790.
40. (a) Spangler, C. W. Chem. Rev. 1976, 76, 187. (b) Wu, Y. T.; Flynn, B.; Schirmer, H.; Funke, F.; Müller, S.; Labahn, T.; Nötzel, M.; de Meijere, A. Eur. J. Org.Chem. 2004, 724. (c) Zeya, M.; Childs, R. F. J. Am. Chem. Soc. 1972, 94, 289.
41. (a) Desiraju, G. R.; Gavezzotti, A. J. Chem. Soc. Chem. Commun. 1989, 621. (b) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525. (c) Miller, L. L.; Mann, K. R. Acc. Chem. Res. 1996, 29, 417.
42. Bondi, A. J. Phys. Chem. 1964, 68, 441.
43. Förster, T.; Kasper, K. Z. Phys. Chem. (Munich), 1954, 1, 275.
44. (a) Photophysics of Aromatic Molecules (Ed.: Birks, J. B.), Wiley, London, 1970. (b) Photophysical and Photochemical Properties of Aromatic Compounds (Ed.: Malkin, J.), CRC, Boca Raton, 1992. (c) Modern Molecular Photochemistry (Ed.: Turro, N. J.), University Science Books, MillValley, 1991.
45. Thomas III, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.
46. (a) Liu, S.; Li, F.; Diao, Q.; Ma, Y. Org. Electron. 2010, 11, 613. (b) Wang, W.; Lin, T.; Wang, M.; Liu, T. X.; Ren, L.; Chen, D.; Huang, S. J. Phys. Chem. B 2010, 144, 5983. (c) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332.
47. (a) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539. (b) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556. (c) D’Andrade, B. W.; Forrest, S. R. Adv. Mater. 2004, 16, 1585.
48. (a) Domaille, D. W.; Que, E. L.; Chang, C. J. Nat. Chem. Biol. 2008, 4, 168. (b) Lim, M. H.; Lippard, S. J. Acc. Chem. Res. 2007, 40, 41. (c) Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien,R. Y. Science 2006, 312, 217. (d) Jares-Erijman, E. A.; Jovin, T. M. Nat. Biotechnol. 2003, 21, 1387.
49. Wu, T. C.; Chen, J. J.; Wu, Y. T. Org. Lett. 2011, 13, 4794.
50. Mashima, K.; Nakayama, Y.; Nakamura, A. Catalyst & Catalysis 1997, 39, 645.
51. (a) Eisch, J. J.; Adeosun, A. A.; Birmingham, J. M. Eur. J. Inorg. Chem. 2007, 39. (b) Jaroschik, F.; Nief, F.; Le Goff, X. F.; Ricard, L. Organometallics 2007, 26, 1123. (c) Wolf, R.; Schnoeckelborg, E. M. Chem. Commun. 2010, 2832. (d) Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Rühter, G. J. Am. Chem. Soc. 1997, 119, 698.
52. Tanaka, K. Chem. Asian J. 2009, 4, 508.
53. (a) Wender, P. A.; Christy, J. P.; Lesser, A. B.; Gieseler, M. T. Angew. Chem., Int. Ed. 2009, 48, 7687. (b) Goswami, A.; Ito, T.; Saino, N.; Kase, K.; Matsunoa, Okamoto, S. Chem. Commun. 2009, 439. (c) Saito, S. Modern Organonickel Chemistry (Ed.: Tamaru, Y.), Wiley-VCH: Weinheim, 2005, p171. (d)Yamamoto, Y.; Ohno, T.; Itoh, K. Chem. Eur. J. 2002, 8, 4734. (e) Takahashi, T.; Sun, W.; Nakajima, K. Chem. Commun. 1999, 1595. (f) Takahashi, T.; Li, Y. Titanium and Zirconium in Organic Synthesis (Ed.: Marek, I.), Wiley-VCH: Weinheim, 2002, p50.
54. Ito, T.; Shirakawa, H.; Ikeda, S. J. Polym. Sci., Polym. Chem. Ed. 1974, 12, 11.
55. (a) Wender, P. A.; Christy, J. P.; Lesser, A. B.; Gieseler, M. T. Angew. Chem. 2009, 121, 7823; Angew. Chem. Int. Ed. 2009, 48, 7689. (b) Galan, B. R.; Rovis, T. Angew. Chem. 2009, 121, 2870; Angew. Chem. Int. Ed. 2009, 48, 2830.
56. (a) Ramamurthy, V.; Liu, R. S. H. J. Am. Chem. Soc. 1976, 98, 2935. (b) Englert, G.; Weber, E. S.; Klans, M. Helv. Chim. Acta 1978, 61, 2697. (c) Ramamurthy, V.; Denny, M.; Liu, R. S. H. Tetrahedron Lett. 1981, 22, 2463. (d) Alami, M.; Crousse, B.; Linstrumelle, G.; Manbu, L.; Larcheveque, M. Synlett 1993, 217. (e) Aurell, M. J.; Ceita, L.; Mestres, R.; Parra, M.; Tortajada, A. Tetrahedron 1995, 51, 3915. (f) Irene, I.; Salvatore. D. C.; Francesco, D. R.; Aldo, S. Tetrahedron Lett. 2000, 41, 3975. (g) Eisenbarth, S.; Steffan, B. Tetrahedron 2000, 56, 363.
57. Martin, R. E.; Diederich, F Angew. Chem., Int. Ed. 1999, 38, 1350.
58. Zechmeister, L.; Pinckard, J. H. J. Am. Chem. Soc. 1954, 76, 4144.
59. (a) Cao, X. P. Tetrahedron 2002, 58, 1301. (b) Chan, T. L.; Fong, S.; Li, Y.; Man, T. O.; Boon, C. D. J. Chem. Soc., Chem.Commun. 1994, 15, 1771.
60. (a) Boland, W.; Schroer, N.; Sieler, C. Helv. Chim. Acta 1987, 70, 1025. (b) Akhtar. M.; Richards, T. A.; Weedon, B. C. L. J. Chem. Soc. 1959, 81, 933. (c) Soullez, D.; Ple, G.; Duhamel, L. J. Chem. Soc., Perkin Trans. 1 1997, 11, 1639. (d) Crousse, B.; Alami, M.; Linstrumelle, G. Tetrahedron Lett. 1995, 36, 4245.
61. Babudri, F.; Cicciomessere, A. R.; Farinola, G. M.; Fiandanese, V.; Marchese, G.; Musio, R.; Naso, F.; Sciacovelli, O. J. Org. Chem. 1997, 62, 3291.
62. Takahashi, T.; Liu, Y.; Iesato, A.; Chaki, S.; Nakajima, K.; Kanno, K.-i. J. Am. Chem. Soc. 2005, 127, 11928.
63. (a) Dalton, L. R.; Sullivan, P. A.; Bale, D. H. Chem. Rev. 2010, 110, 25. (b) Meier, H. Angew. Chem., Int. Ed. 2005, 44, 2482. (c) Schwab, P. F. H.; Smith, J. R.; Michl, J. Chem. Rev. 2005, 105, 1197. (d) Electronic Materials: The Oligomer Approach (Eds.: Müllen, K., Wegner, G.), Wiley-VCH: Weinheim, 1998.
64. (a) Hsieh, J. C.; Cheng, C. H. Chem.Commun. 2005, 2459. (b) Jeevanandam, A.; Korivi, R. P.; Huang, I. W.; Cheng, C. H. Org. Lett. 2002, 4, 807.
65. (a) Wu, Y. T.; Linden, A.; Siegel, J. S. Org. Lett. 2005, 7, 4353. (b) Wu, Y. T.; Hayama, T.; Baldridge, K. K.; Linden, A.; Siegel, J. S. J. Am. Chem. Soc. 2006, 128, 6870.
66. (a) 國立成功大學化學所龔雲華碩士論文 (民國97年)。(b) 國立成功大學化學所鄭育松碩士論文 (民國96年)。
67. Zhang, Y.; Li, C. J. J. Am. Chem. Soc. 2006, 128, 4242.
68. (a) Eisch, J. J.; Piotrowski, A. M.; Han, K. I.; Krüger, C.; Tsay, Y. H. Organometallics 1985, 4, 224. (b) Ramakrishna., T. V. V.; Sharp, P. R. Organometallics 2004, 23, 3079.
69. (a) Wilke, G. Pure Appl. Chem. 1978, 50, 677. (b) Lawrie, C. J.; Gable, K. P.; Carpenter, B. K. Organometallics 1989, 8, 2274.
70. Skropetaa, D.; Rickards, R. W. Tetrahedron Lett. 2007, 48, 3281.
71. Marvell, E. N.; Seubert, J.; Vogt, G.; Zimmer, G.; Moy, G.; Siegmann, J. R. Tetrahedron 1978, 34, 1323.
72. (a) Heimbach, P.; Ploner, K. J.; Thornel, F. Angew. Chem., Int. Ed. Engl. 1971, 10, 276. (b) Ng, S. M.; Beaudry, C. M.; Trauner, D. Org. Lett. 2003, 5, 1701. (c) Giomi, D.; Nesi, R.; Turchi, S.; Mura, E. J. Org.Chem. 2000, 65, 360.
73. Wu, T. C.; Chen, C. H.; Hibi, D.; Shimizu, A.; Tobe, Y.; Wu, Y. T. Angew. Chem. Int. Ed. 2010, 49, 7059.
74. Hasegawa, T.; Takeya, J. Sci. Technol. Adv. Mater. 2009, 10, 024314.
75. (a) Umeda, R.; Hibi, D.; Miki,K.; Tobe,Y. Pure Appl. Chem. 2010, 82, 871. (b) Harvey, R. G. Polycyclic Aromatic Hydrocarbons, Wiley-VCH, Weinheim, 1997.
76. (a) Clar, E. The Aromatic Sextet, Wiley, New York, 1972. (b) Clar, E. Polycyclic Hydrocarbons, Vol. 1 and Vol. 2, Academic Press, London, 1964.
77. Dewar, M. J. S.; Dougherty, R. C. The PMO Theory of OrganicChemistry, Plenum Press, New York, 1975.
78. (a) Morikawa, T.; Narita, S.; Klein, D. J. J. Chem. Inf. Comput. Sci. 2004, 44, 1891. (b) Randic’, M. Tetrahedron 1975, 31, 1477. (c) Randić, M. Chem. Rev. 2003, 103, 3449.
79. (a) Haigh, C. W.; Mallion, R. B. Mol. Phys. 1970, 18, 767. (b) Mallion, R. B. Proc. R. Soc. London Ser. A 1975, 341, 429. (c) Aihara, J.-i. J. Phys. Chem. A 2003, 107, 11553. (d) Mallion, R. B. Croa. Chem. Acta 2008, 81, 227.
80. (a) Sotoyama, W.; Sato, H.; Matuura, A. PCT Int. Appl. 2003, 33. (b) Jarikov, V. V. U. S. Pat. Appl. Publ. 2004, p108.
81. Smith, T. P.; Pellerite, M. J.; Kelley, T. W.; Muyres, D. V.; Vogel, D. E.; Vogel, K. M.; Boardman, L. D.; Dunbar, T. D. U. S. Pat. Appl. Publ. 2003, p13.
82. Désilets, D.; Kazmaier, P. M.; Burt, R. A. Can. J. Chem. 1995, 73, 319.
83. (a) Würthner, F. Chem. Commun. 2004, 40, 1564. (b) Bhosale, S. H.; Jani, C. H.; Langford, S. J. Chem. Soc. Rev. 2008, 37, 331. (c) Sakai, N.; Mareda, J.; Vauthey, E.; Matile, S. Chem. Commun. 2010, 46, 4225.
84. (a) Knezević, A.; Maksić, Z. B. New J. Chem. 2006, 30, 215. (b) Nakano, M.; Kishi, R. Takebe, A.; Nate, M.; Takahashi, H.; Kubo, T.; Kamada, K.; Ohta, K.; Champagne, B.; Botek, E. Comput. Lett. 2007, 3, 333.
85. Clar, E.; Lang, K.; Schulz-Kiesow, H. Chem. Ber. 1955, 88, 1520.
86. (a) Staab, H. A.; Nissen, A.; Ipaktschi, J. Angew. Chem. 1968, 80, 241; Angew. Chem. Int. Ed. Engl. 1968, 7, 226. (b) Mitchell, R. H.; Sondheimer, F. Tetrahedron 1970, 26, 2141. (c) Staab, H. A.; Ipaktschi, J.; Nissen, A. Chem. Ber. 1971, 104, 1182.
87. Umeda, R.; Hibi, D.; Miki, K.; Tobe, Y. Org. Lett. 2009, 11, 4104.
88. (a) Mitchell, R. H.; Sondheimer, F. J. Am. Chem. Soc. 1968, 90, 530. (b) Meinwald, J.; Young, J. W. J. Am. Chem. Soc. 1971, 93, 725.
89. (a) Kemp, W.; Storie, I. T.; Tulloch, C. D. J. Chem. Soc. Perkin Trans. 1 1980, 2812. (b) Gleiter, R.; Schaff, H. P.; Rodewald, H.; Jahn, R.; Irngartinger, H. Helv. Chim. Acta 1987, 70, 480.
90. (a) Huang, W.; Zhou, X.; Kanno, K.-i.; Takahashi, T. Org. Lett. 2004, 6, 2429. (b) Dyker, G. J. Org. Chem. 1993, 58, 234. (c) Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2003, 68, 6836. (d) Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. 1997, 62, 7536. (e) Hsieh, J. C.; Cheng, C. H. Chem. Commun. 2008, 26, 2992. (h) Larock, R. C. Acetylene Chemistry: Chemistry, Biology, and Material Science (Eds.: Stang, P. J.; Tykwinski, R. R.; Diederich, F.), Wiley-VCH, Weinheim, 2005, p51. (i) Larock, R. C. Top. Organomet. Chem. 2005, 14, 147. (j) Tsuji, J. Palladium Reagents and Catalysts, 2nd ed., Wiely, New York, 2004, p231.
91. Saito, M. Symmetry 2010, 2, 950.
92. (a) Hellwinkel, D.; Hasselbach, H-J.; Lämmerzahl, F. Angew. Chem. Int. Ed. Engl. 1984, 23, 705. (b) Babu, G.; Orita, A.; Otera, J. Chem. Lett. 2008, 37, 1296.
93. Chakrabirty, M.; Tessier, C. A.; Youngs, W. J. J. Org. Chem. 1999, 64, 2947.
94. Kawase, T.; Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kubo, T. Chem. Eur. J. 2009, 15, 2653.
95. Wang, L.; Lu, W. Org. Lett. 2009, 11, 1079.
96. (a) Wu, Y. T.; Huang, K. H.; Shin, C. C.; Wu, T. C. Chem. Eur. J. 2008, 14, 6697. (b) Watson, M. D.; Fechtenkötter, A.; Müllen, K. Chem. Rev. 2001, 101, 1267. (c) Wu, J.; Pisula, W.; Müllen, K. Chem. Rev. 2007, 107, 718.
97. Kung, Y. H.; Cheng, Y. S.; Tai, C. C.; Liu, W. S.; Shin, C. C.; Ma, C. C.; Tsai, Y. C.; Wu, T. C.; Kuo, M. Y.; Wu, Y. T. Chem. Eur. J. 2010, 16, 5909.
98. Eberson, L.; Gomez-Gonzales, L. J. Chem. Soc. D 1971, 263.
99. (a) Kay, M. I.; Okaya, Y.; Cox, D. E. Acta Crystallogr. Sect. B 1971, 27, 26. (b) Cosmo, R.; Hambley, T. W.; Sternhell, S. J. Org. Chem. 1987, 52, 3119. (c) Imashiro, F.; Saika, A.; Taira, Z. J. Org. Chem. 1987, 52, 5727. (d) Armstrong, R. N.; Ammon, H. L.; Darnow, J. N. J. Am. Chem. Soc. 1987, 109, 2077. (e) Duong, H. M.; Bendikov, M.; Steiger, D.; Zhang, Q.; Sonmez, G.; Yamada, J.; Wudl, F. Org. Lett. 2003, 5, 4433. (f) Pascal, R. A.; Jr., Chem. Rev. 2006, 106, 4809.
100. Ruiz-Morales, Y. J. Phys. Chem. A 2002, 106, 11283.
101. (a) Baughman, R. H.; Kohler,B. E.; Levy, I. J.; Spangler, C. Synth. Metals 1985, 11, 37. (b) Botoshansky, M.; Herbstein, F. H.; Kapon, M. Helv. Chim. Acta 2003, 86, 1113.
102. (a) Frank, N. L.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1995, 117, 2102. (b) Bürgi, H. B.; Baldridge, K. K.; Hardcastle, K.; Frank, N. L.; Gantzel, P.; Siegel, J. S.; Ziller, J. Angew. Chem. 1995, 107, 1575; Angew. Chem. Int. Ed. Engl. 1995, 34, 1454. (c) Matsuura, A.; Komatsu, K. J. Am. Chem. Soc. 2001, 123, 1768.
103. (a) Bloembergen, N. Nonlinear Optics, World Scientific, Singapore, 1996. (b) Butcher, P. N.; Cotter, D. The Elements of Nonlinear Optics, Cambridge Univ. Press, Cambridge, 1990.
104. Goepper-Mayer, M. Annalen der Physik 1931, 9, 273.
105. Kaiser, W.; Garrett, C. G. B. Physical Review Letters 1961, 7, 229.
106. Denk, W.; Stricker, J. H; Webb, W. W. Science 1990, 248, 73.
107. (a) Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I. Y. S.; McCord-Maughon, D.; Qin, J.; Roeckel, H.; Rumi, M.; Wu, X. L.; Marder, S. R.; Perry, J. W. Nature 1999, 398, 51. (b) Strickler, J. H.; Webb, W. W. Opt. Lett. 1991, 16, 1780. (c) Partheno poulos, D. A.; Rentzepis, P. M. Science 1989, 245, 843.
108. (a) Taton, T. A.; Norris, D. J. Nature, 2002, 416, 685. (b) Lee, W.; Pruzinsky, S. A.; Braun, P. V. Adv. Materials 2002, 14, 271. (c) Sun, H. B.; Matsuo, S.; Misawa, H. Applied Physics Letters 1999, 74, 786. (d) Sun, H. B.; Mizeikis, V.; Xu, Y.; Juodkazis, S.; Ye, J. Y.; Matsuo, S.; Misawa, H. Applied Physics Letters 2001, 79, 1. (e) Sun, H. B.; Xu, X.; Juodkazis, S.; Sun, K.; Watanabe, M.; Matsuo, S.; Misawa, H.; Nishii, J. Opt. Lett. 2001, 26, 325. (f) Straub, M; Gu, M. Opt. Lett. 2002, 27, 1824.
109. (a) Maruo, S.; Nakamura, O.; Kawata, S. Opt. Lett. 1997, 22, 132. (b) Miwa, M.; Juodkazis, S.; Kawakami, T.; Matsuo, S.; Misawa, H. Applied Physics A 2001, 73, 561. (c) Zhor, W.; Kuebler, S. M.; Braun, K. L.; Yu, T.; Cammack, J. K.; Ober, C. K.; Perry, J. W.; Marder S. R. Science 2003, 296, 1106. (d) Maruo, S.; Kawata, S. Journal of Microelectromechanical systems 1998, 7, 411. (e) Kawata, S.; Sun, H. B.; Tanaka, T.; Takada, K. Nature 2001, 412, 697. (f) Sun, H. B.; Kawakami, T.; Xu, Y.; Ye, J. Y.; Matuso, S.; Misawa, H.; Miwa, M.; Kaneko, R. Opt. Lett. 2000, 25, 1110. (g) Borisov, R. A.; Dorojkina, G. N.; Koroteev, N. I.; Kozenkov, V. M.; Magnitskii, S. A.; Malakhov, D. V.; Tarasishin, A. V. Applied Physics B 1998, 67, 165.
110. Bhawalkar, J. D.; Kumar, N. D.; Zhao, C. F.; Prasad, P. N. J. Clin. Laser Med. Surg. 1997, 15, 201.
111. Kim, K. S.; Wang, X. Advances in Polymer Science Vol.161, Springer.
112. Boyd, R. W. Nonlinear Optics, San Diego, Academic Press, 1992, p16.
113. Kuzyk, M. J. Chem. Phys. 2003, 119, 8327.
114. (a) Albota, M.; Beljonne, D.; Brédas, J. L.; Ehrlich, J. E.; Fu, J. Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder,S. R.; McCord-Maughon, D.; Perry, J. W.; RIckel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X. L.; Xu, C. Science 1998, 281, 1653. (b) Ventelon, L.; Charier, S.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M. Angew. Chem. 2001, 113, 2156; Angew. Chem.Int. Ed. 2001, 40, 2098. (c) Reinhardt, B . A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N. Chem. Mater. 1998, 10, 1863.
115. (a) Iwase, Y.; Kondo, K.; Kamada, K.; Ohta, K. J. Mater. Chem. 2003, 13, 1575. (b) Antonov, L.; Kamada, K.; Ohta, K.; Kamounah, F. S. Phys. Chem. 2003, 5, 1193. (c) Mongin, O.; Porrès, L.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M. Org. Lett. 2002, 4, 719.
116. (a) Drobizhev, M.; Karotki, A.; Rebane, A.; Spangler, C. W. Opt. Lett. 2001, 26, 1081. (b) Terenziani, F.; Morone, M.; Gmouh, S.; Blanchard-Desce, M. Chem. Phys. Chem. 2006, 7, 685.
117. (a) Nakano, M.; Kishi, R.; Nitta, T.; Kubo, T.; Nakasuji, K.; Kamada, K.; Ohta, K.; Champagne, B.; Botek, E.; Yamaguchi, K. J. Phys. Chem. A 2005, 109, 885. (b) Nakano, M.; Kubo, T.; Kamada, K.; Ohta, K.; Kishi, R.; Ohta, S.; Nakagawa, N.; Takahashi, H.; Furukawa, S.; Morita, Y.; Nakasuji, K. Chem. Phys. Lett. 2006, 418, 142. (c) Nakano, M.; Kishi, R.; Nakagawa, N.; Ohta, S.; Takahashi, H.; Furukawa, S.; Kamada, K.; Ohta, K.; Champagne, B.; Botek, E.; Yamada, S.; Yamaguchi, K. J. Phys. Chem. A 2006, 110, 4238. (d) Ohta, S.; Nakano, M.; Kubo, T.; Kamada, K.; Ohta, K.; Kishi, R.; Nakagawa, N.; Champagne, B.; Botek, E.; Umezaki, S.-y.; Takeba, A.; Takahashi, H.; Furukawa, S.; Morita, Y.; Nakasuji, K.; Yamaguchi, K. Chem. Phys. Lett. 2006, 420, 432.
118. Kamada, K.;Ohta, K.; Kubo, T.; Shimizu, A.; Morita, Y.; Nakasuji, K.; Kishi, R.; Ohta, S.; Furukawa, S.-i.; Takahashi, H.; Nakano, M. Angew. Chem. Int. Ed. 2007, 46, 3544.
119. (a) Anderson, R. J. M.; Holtom, G. R.; Mc Clain, W. M. J. Chem.Phys. 1979, 70, 4310. (b) Overway, K. S.; Lytle, F. E. Appl. Spectrosc. 1998, 52, 298.
120. Islam, M. M.; Valiyev, F.; Lu, H. F.; Kuo, M. Y.; Chao, I.; Tao, Y. T. Chem. Commun. 2011, 47, 2008.
121. (a) Li, Y.; Heng, W. K.; Lee, S. S.; Aratani, N.; Zafra, J. L.; Bao, N.; Lee, R.; Sung, Y. M.; Sun, Z.; Huang, K. W.; Webster, R. D.; Navarrete, J. T. L.; Kim, D.; Osuka, A.; Casado, J.; Ding, J.; Wu, J. J. Am. Chem. Soc. 2012, 134, 14913. (b) Sun, Z.; Huang, K. W.; Wu, J. J. Am. Chem. Soc. 2011, 133 11896. (c) Sun, Z.; Huang, K. W.; Wu, J. Org. Lett. 2010, 12, 4690.
122. Shimizu, A.; Kubo, T.; Uruichi, M.; Yakushi, K.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Morita, Y.; Nakasuji, K. J. Am. Chem. Soc. 2010, 132, 14421.
123. Wu, T. C.; Tai, C. C.; Taio, H. C.; Kuo, M. Y.; Wu, Y. T. Chem. Eur. J. 2011, 17, 1930.
124. (a) Michelin, R. A.; Mozzon, M.; Bertani, R. Coord. Chem. Rev. 1996, 147, 299.
125. (a) Bailly, C. Curr. Med. Chem. Anti-Cancer Agents 2004, 4, 363. (b) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J. F. Chem. Rev. 2008, 108, 264.
126. (a) Hill, M. D. Chem. Eur. J. 2010, 16, 12052. (b) Komine, Y.; Kamisawa, A.; Tanaka, K. Org. Lett. 2009, 11, 2361. (c) McCormick, M. M.; Duong, H. A.; Zuo, G.; Louie, J. J. Am. Chem. Soc. 2005, 127, 5030. (d) Heller, B.; Hapke, M. Chem. Soc. Rev. 2007, 36, 1085. (e) Tanaka, K. Synlett 2007, 1977. (f) Varela, J.; Saá, A. C. Synlett 2008, 2571. (g) Barluenga, J.; Fernández-Rodrĭguez, M. Á.; Garcĭa-Garcĭa,P.; Aguilar, E. J. Am. Chem. Soc. 2008, 130, 2764.
127. Ohashi, M.; Takeda, I.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 18018.
128. Kulinkovich, O. G.; Sviridov, S. V.; Vasilevskii, D. A.; Pritytskaya, T. S. Zh. Org. Khim.1989, 25, 2244.
129. (a) Chaplinski, V.; de Meijere, A. Angew. Chem., Int. Ed. Engl. 1996, 35, 413. (b) Lee, J.; Cha, J. K. J. Org. Chem. 1997, 62, 1584. (c) Masalov, N.; Feng, W.; Cha, J. K. Org. Lett. 2004, 6, 2365. (d) Lee, J.; Kim, Y. G.; Bae, J. G.; Cha, J. K. J. Org. Chem. 1996, 61, 4878. (e) Bertus, P.; Szymoniak, J. Chem. Commun. 2001, 1792. (f) Bertus, P.; Szymoniak, J. J. Org. Chem. 2002, 67, 3965. (g) Laroche, C.; Bertus, P.; Szymoniak, J. Tetrahedron Lett. 2003, 44, 2485. (h) Bertus, P.; Szymoniak, J. Synlett 2007, 1346. (i) Joosten, A.; Vasse, J. L.; Bertus, P.; Szymoniak, J. Synlett 2008, 2455. (j) Bertus, P.; Menant, C.; Tanguy, C.; Szymoniak, J. Org. Lett. 2008, 10, 777.
130. Tian, Q.; Pletnev, A. A.; Larock, R. C. J. Org. Chem. 2003, 68, 339.
131. Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972.
132. (a) Schiffer, M.; Scheer, M. Angew. Chem., Int. Ed. 2001, 40, 3413. (b) Ugolotti, J.; Kehr, G.; Frölich, R.; Grimme, S.; Erker, G. Chem. Commun. 2009, 6572. (c) Temprado, M.; McDonough, J. E.; Mendiratta, A.; Tsai, Y. C.; Fortman, G. C.; Cummins, C. C.; Rybak-Akimova, E. V.; Hoff, C. D. Inorg. Chem. 2008, 47, 9380. (d) Zhou, C.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 2302. (e) Zhou, C.; Larock, R. C. J. Org. Chem. 2006, 71, 3551. (f) Zhao, B.; Lu, X. Tetrahedron Lett. 2006, 47, 6765. (g) Zhao, B.; Lu, X. Org. Lett. 2006, 8, 5987. (h) Ueura, K.; Miyamura, S.; Satoh, T.; Miura, M. J. Organomet. Chem. 2006, 691, 2821. (i) Shimizu, H.; Murakami, M. Chem. Commun. 2007, 2855. (j) Wong, Y. C.; Parthasarathy, K.; Cheng, C. H. Org. Lett. 2010, 12, 1736.
133. Hsieh, J. C.; Chen, Y. C.; Cheng, A. Y.; Tseng, H. C. Org. Lett. 2012, 14, 1282.
134. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, Wiley, New York, 1994, p329.
135. (a) Tobisu, M.; Chatani, N. Chem. Soc. Rev. 2008, 37, 300. (b) Nakao,Y.; Hiyama, T. Pure Appl. Chem. 2008, 80, 1097.
136. (a) Chaumonnot, A.; Lamy, F.; Sabo-Etienne, S.; Donnadieu, B.;Chaudret, B.; Barthelat, J. C.; Galland, J. C. Organometallics 2004, 23, 3363. (b) Wilting, J.; Müller, C.; Hewat, A. C.; Ellis, D. D.; Tooke, D. M.; Spek, A. L.; Vogt, D. Organometallics 2005, 24, 13. (c) vander Vlugt, J. I.; Hewat, A. C.; Neto, S.; Sablong, R.; Mills, A. M.; Lutz, M.; Spek, A. L.; Müller, C.; Vogt, D. Adv. Synth. Catal. 2004, 346, 993. (d) Acosta-Ramírez, A.; Flores-Gaspar, A.; Muńoz- Hernández, M.; Are´valo, A.; Jones, W. D.; Garcáa, J. J. Organometallics 2007, 26, 1712. (e) Acosta-Ramı´rez, A.; Muńoz-Herna´ndez, M.; Jones,W. D.; García, J. J. Organometallics 2007, 26, 5766. (f) Acosta-Ramírez, A.; Flores-A lamo, M.; Jones, W. D.; García, J. J. Organometallics 2008, 27, 1834. (g) Swartz, B. D.; Reinartz, N. M.;Brennessel, W. W.; García, J. J.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 8548.
137. (a) Miller, J. A. Tetrahedron Lett. 2001, 42, 6991. (b) Miller, J. A.; Dankwardt, J. W. Tetrahedron Lett. 2003, 44, 1907. (c) Miller, J. A.; Dankwardt, J. W.; Penney, J. M. Synthesis 2003, 1643.
138. (a) Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904. (b) Nakao, Y.; Oda, S.; Yada, A.; Hiyama, T. Tetrahedron 2006, 62, 7567. (c) Nakao, Y.; Yukawa, T.; Hirata, Y.; Oda, S.; Satoh, J.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7116. (d) Nakao, Y.; Yada, A.; Satoh, J.; Ebata, S.; Oda, S.; Hiyama, T. Chem. Lett. 2006, 35, 790. (e) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428. (f) Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47, 385. (g) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874. (h) Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594.
139. Luo, F. H.; Chu, C. I.; Cheng, C. H. Organometallics 1998, 17, 1025.
140. Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2010, 132, 10070.
141. Tobisu, M.; Kinuta, H.; Kita, Y.; Rémond, E.; Chatani, N. J. Am. Chem. Soc. 2012, 134, 115.
142. Modern OrganonickelChemistry (Ed.: Tamaru, Y.), Wiley-VCH, Weinheim, 2005.
143. Chatani, N.; Hanafusa, T. Tetrahedral Lett. 1986, 27, 4201.
144. Eisch, J. J.; Ma, X.; Han, K. I.; Gitua, J. N.; Krüger, C. Eur. J. Inorg. Chem. 2001, 77.
145. Gust, D. J. Am. Chem. Soc. 1977, 99, 6980.
146. Lai, Y. H. J. Chem. Soc. Perkin Trans. 2 1986, 1667.
147. (a) Pauling, L. The Nature of the Chemical Bond, 3nd ed., Cornell University Press, Ithaca, 1960. (b) Zefirov,Y. V. Crystallogr. Rep. 1997, 42, 111.
148. Levi, Z. U.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 2796.
149. (a) Lendvai, T.; Friedl, T.; Butenschcn, H.; Clark, T.; de Meijere, A. Angew. Chem. 1986, 98, 734; Angew. Chem. Int. Ed. Engl. 1986, 25, 719. (b) Haag, R.; Schüngel, F. M.; Ohlhorst, B.; Lendvai, T.; Butenschcn, H.; Clark, T.; Noltemeyer, M.; Haumann, T.; Boese, R.; de Meijere, A. Chem. Eur. J. 1998, 4, 1192. (c) Butenschcn, H.; de Meijere, A. Chem. Ber. 1985, 118, 2757.
150. (a) Maeda, H.; Maeda, T.; Mizuno, K.; Fujimoto, K.; Shimizu, H.; Inouye, M. Chem. Eur. J. 2006, 12, 824. (b) Venkataramana, G.; Sankararaman, S. Eur. J. Org. Chem. 2005, 4162.
151. (a) Palma, C. A.; Samori, P. Nat. Chem. 2011, 3, 431. (b) Avouris, P.; Chen, Z.; Perebeinos, V. Nat. Nanotechnol. 2007, 2, 605. (c) Hersam, M. C. Nat. Nanotechnol. 2008, 3, 387. (d) Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Jasek, O.; Adam, V.; Kizek, R. J. Mater. Chem. 2011, 21, 15872.
152. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
153. Iijima, S. Nature 1991, 354, 56.
154. Dresselhaus, M. D.; Avouris, P. Carbon Nanotubes: Synthesis, Structure Properties and Application (Ed.: Dresselhaus, M. D.; Dresselhaus, R. S.; Avouris, P.), Springer, Heidelberg, 2001.
155. (a) Fort, E. H.; Donovan, P. M.; Scott, L. T. J. Am. Chem. Soc. 2009, 131, 16006. (b) Fort, E. H.; Scott, L. T. Tetrahedron Lett. 2011, 52, 2051. (c) Fort, E. H.; Scott, L. T. J. Mater. Chem. 2011, 21, 1373. (d) Fort, E. H.; Scott, L. T. Angew. Chem. 2010, 122, 6776; Angew. Chem. Int. Ed. 2010, 49, 6626.
156. (a) Schrettl, S.; Frauenrath, H. Angew.Chem., Int. Ed. 2012, 51, 6569. (b) Bunz, U. H. F; Menning, S.; Martín, N. Angew.Chem., Int. Ed. 2012, 51, 7094.
157. Beck, A.; Bleicher, M. N.; Crowe, D. W. Excursions into Mathematics;Worth, New York, 1969.
158. (a) Sygula, A. Eur. J. Org. Chem. 2011, 1611. (b) Tsefrikas, V. M.; Scott, L. T. Chem. Rev. 2006, 106, 4868. (c) Wu, Y. T.; Siegel, J. S. Chem. Rev 2006, 106, 4843. (d) Sygula, A.; Rabideau, P. W. Carbon-Rich Compounds: From Molecules to Materials (Eds.: Haley, M.; Tykwinski, R.), Willey-VCH, Weinheim, 2006, p529.
159. (a) Barth, W. E. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1966. (b) Barth, W. E.; Lawton, R. G. J. Am. Chem. Soc. 1966, 88, 380. (c) Barth, W. E.; Lawton, R. G. J. Am. Chem. Soc. 1971, 93, 1730.
160. (a) Scott, L. T.; Hashemi, M. M.; Meyer, D. T.; Warren, H. B. J. Am. Chem. Soc. 1991, 113, 7082. (b) Knölker, H. J.; Braier, A.; Bröcher, D. J.; Jones, P. G.; Piotrowski, H. Tetrahedron Lett. 1999, 40, 8075. (c) Liu, C. Z.; Rabideau, P. W. Tetrahedron Lett. 1996, 37, 3437. (d) Cheng, P. C. M.S. Thesis, University of Nevada, Reno, NV, 1992. (e) Scott, L. T.; Cheng, P. C.; Hashemi, M. M.; Bratcher,M. S.; Meyer, D. T.; Warren, H. B. J. Am. Chem. Soc. 1997, 119, 10963. (f) Borchardt, A.; Fuchicello, A.; Kilway, K. V.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1992, 114, 1921.
161. Reisch, H. A.; Bratcher, M. S.; Scott, L. T. Org. Lett. 2000, 2, 1427.
162. Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; de Meijere, A. Science 2002, 295, 1500.
163. (a) Seiders, T. J.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1996, 118, 2754. (b) Sygula, A.; Rabideau, P. W. J. Am. Chem. Soc. 1999, 121, 7800. (c) Seiders, T. J.; Elliott, E. L.; Grube, G. H.; Siegel, J. S. J. Am. Chem. Soc. 1999, 121, 7804. (d) Sygula, A.; Rabideau, P. W. J. Am. Chem. Soc. 2000, 122, 6323. (e) Xu, G.; Sygula, A.; Marcinow, Z.; Rabideau, P. W. TetrahedronLett. 2000, 41, 9931. (f) Sygula, A.; Xu, G.; Marcinow, Z.; Rabideau, P. W. Tetrahedron 2001, 57, 3637. (g) Maag, R. Diplomarbeit, University of Zurich, Zurich, 2006. (h) Olah, G. A.; Prakash, G. K. S. Synthesis 1976, 607. (i) Sygula, A.; Karlen, S. D.; Sygula, R.; Rabideau, P. W. Org. Lett. 2002, 4, 3135.
164. (a) Sakurai, H.; Daiko, T.; Hirao, T. Science 2003, 1878. (b) Higashibayashi, S.; Sakurai, H. Chem. Lett. 2011, 40, 122. (c) Amaya, T.; Hirao, T. Chem. Commun. 2011, 47, 10524.
165. Mehta, G.; Shah, S. R.; Ravikumar, K. J. Chem. Soc., Chem. Commun.1993, 1006.
166. (a) Sastry, G. N.; Jemmis, E. D.; Mehta , G.; Shah, S. R. J. Chem. Soc., Perkin Trans. 2, 1993, 1867. (b) Priyakumar, U. D.; Sastry, G. N. J. Phys. Chem. A, 2001, 105, 4488.
167. (a) Sakurai, H.; Daiko, T.; Sakane, H.; Amaya, T.; Hirao, T. J. Am. Chem. Soc. 2005, 127, 11580. (b) Amaya, T.; Hifumi, M.; Okada, M.; Shimizu, Y.; Moriuchi, T.; Segawa, K.; Ando, Y.; Hirao, T. J. Org. Chem. 2011, 76, 8049.
168. Marcinow, Z.; Grove, D. I.; Rabideau, P. W. J. Org. Chem. 2002, 67, 3537.
169. (a) Scott, L. T.; Bratcher, M. S.; Hagen, S. J. Am. Chem. Soc. 1996, 118, 8743. (b) Ansems, R. B. M.; Scott, L. T. J. Am. Chem. Soc. 2000, 122, 2719.
170. (a) Abdourazak, A. H.; Marcinow, Z.; Sygula, A.; Sygula, R.; Rabideau, P. W. J. Am. Chem. Soc. 1995, 117, 6410. (b) Hagen, S.; Bratcher, M. S.; Erickson, M. S.; Zimmermann, G.; Scott, L. T. Angew. Chem., Int. Ed. 1997, 36, 406.
171. Baldridge, K. K.; Siegel, J. S. Theoret. Chem. Acc. 1997, 97, 67.
172. (a) Haddon, R. C. Acc. Chem. Res. 1992, 25, 127. (b) Haddon, R. C. Science 1993, 261, 1545. (c) Haddon, R. C. J. Am. Chem. Soc. 1997, 119, 1797.
173. Seiders, T. J.; Baldridge, K. K.; Elliott, E. L.; Grube, G. H.; Siegel,J. S. J. Am. Chem. Soc. 1999, 121, 7439.
174. Seiders, T. J.; Baldridge, K. K.; Grube, G. H.; Siegel, J. S. J. Am. Chem. Soc. 2001, 123, 517.
175. (a) Haddon, R. C.; Scott, L. T. Pure Appl. Chem. 1986, 58, 137. (b) Haddon, R. C. Acc. Chem. Res. 1988, 21, 243. (c) Haddon, R. C. J. Am. Chem. Soc. 1990, 112, 3385.
176. Forkey, D. M.; Attar, S.; Noll, B. C.; Koerner, R.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 1997, 119, 5766.
177. Cozzi, F.; Siegel, J. S. Pure Appl. Chem. 1995, 67, 683.
178. (a) Wang, L.; Shevlin, P. B. Org. Lett. 2000, 2, 3703. (b) Marcinow, Z.; Sygula, A.; Ellern, A.; Rabideau, P. W. Org. Lett. 2001, 3, 3527. (d) Chang, H. I.; Huang, H. T.; Huang, C. H.; Kuo, M. Y.; Wu, Y. T. Chem. Commun. 2010, 46, 7241.
179. (a) Steinberg, B. D.; Jackson, E. A.; Filatov, A. S.; Wakamiya, A.; Petrukhina, M. A.; Scott, L. T. J. Am. Chem. Soc. 2009, 131, 10537. (b) Jackson, E. A.; Steinberg, B. D.; Bancu, M.; Wakamiya, A.; Scott, L. T. J. Am. Chem. Soc. 2007, 129, 484.
180. Scott, L. T.; Jackson, E. A.; Zhang, Q.; Steinberg, B. D.; Bancu, M.; Li, B. J. Am. Chem. Soc. 2012, 134, 107.
181. Amaya,T.; Nakata, T.; Hirao, T. J. Am. Chem. Soc. 2009, 131, 10810.
182. Clayton, M. D.; Rabideau, P. W. Tetrahedron Lett. 1997, 38, 741.
183. Shimizu, A.; Tobe, Y. Angew. Chem., Int. Ed. 2011, 50, 6906.
184. Hsiao, C. C.; Lin, Y. K.; Liu, C. J.; Wu, T. C.; Wu, Y. T. Adv. Synth. Catal. 2010, 352, 3267.
185. Amaya, T.; Sakane, H.; Muneishi, T.; Hirao, T. Chem. Commun. 2008, 765.
186. (a) Scott, L. T.; Hashemi, M. M.; Bratcher, M. S. J. Am. Chem. Soc.1992, 114, 1920. (b) Sygula, A.; Abdourazak, A. H.; Rabideau, P. W. J. Am. Chem. Soc. 1996, 118, 339.
187. Petrukhina, M. A.; Andreini, K. W.; Mack, J.; Scott, L. T. J. Org. Chem. 2005, 70, 5713.
188. Wegner, H. A.; Reisch, H.; Rauch, K.; Demeter, A.; Zachariasse, K. A.; de Meijere, A.; Scott, L. T. J. Org. Chem. 2006, 71, 9080.
189. Roth, G.; Adelmann, P. J. Phys. I 1992, 2, 1541.
190. Krygowski, T. M.; Cyranski, M.; Ciesielski, A.; Swirska, B.; Leszczynski, P. J. Chem. Inf. Comput. Sci. 1996, 36, 1135.
191. Filatov, A. S.; Scott, L. T.; Petrukhina, M. A. Cryst Growth Des 2010, 10, 4607.
192. Petrukhina, M. A.; Andreini, K. W.; Tsefrikas, V. M.; Scott, L. T. Organometallics 2005, 24, 1394.
193. (a) Nishio, M. CrystEngComm 2004, 6, 130. (b) Nishio, M.; Umezawa, Y. Top Stereochem. 2006, 25, 255.
194. (a) Takahashi, O.; Kohno, Y.; Iwasaki, S.; Saito, K.; Iwaoka, M.; Tomoda, S.; Umezawa, Y.; Tsuboyama, S.; Nishio, M. Bull. Chem. Soc. Jpn. 2001, 74, 2421. (b) Suezawa, H.; Yoshida, T.; Ishihara, S.; Umezawa, Y.; Nishio, M. CrystEngComm 2003, 5, 514. (c) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-10-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-10-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw