進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208202017383800
論文名稱(中文) 利用模擬退火法最佳化寬頻吸音結構設計
論文名稱(英文) The Optimized Design of Broadband Sound Absorption Structure using Simulated Annealing
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 葉梓頡
研究生(英文) Tzu-Chieh Yeh
學號 N16074530
學位類別 碩士
語文別 中文
論文頁數 124頁
口試委員 指導教授-張怡玲
口試委員-李永春
口試委員-孫嘉宏
中文關鍵字 寬頻吸音  模擬退火法  串聯管  微穿孔板  千層派結構  阻抗管 
英文關鍵字 broadband sound absorption  simulated annealing  serial connected tube  micro-perforated plate  pancake structure  impedance tube 
學科別分類
中文摘要 在噪音控制當中,傳統被動式吸音結構若要吸收低頻噪音通常結構較為厚重且吸音頻寬較小,因此本研究想改善傳統吸音結構的缺點,主要在設計厚度小、平均吸音率高且寬頻吸音的結構。針對人耳敏感的300~3000 Hz低頻區間,利用模擬退火法對結構進行吸音率的最佳尺寸設計。本研究提出了兩種寬頻吸音結構,第一種結構是由五根分頻率區段最佳化串聯直圓管與兩根四分之一波長管並聯,將圓形截面改成長方形截面並在空間中彎折堆疊而成以降低結構厚度;第二種結構則是由四個分段頻率吸音最佳化之四分之一圓微穿孔板並聯結合,並與兩組千層派結構複合而成。
以聲學理論結合模擬退火法設計各種吸音結構(四分之一波長管、串聯管、微穿孔板)之最佳化尺寸,並使用多重物理分析軟體(COMSOL Multiphysics) 進行最佳化結構於阻抗管中的吸音率計算,並和理論預測值進行比對。其中也探討截面形狀對串聯管和千層派結構吸音特性的影響。最後,架設聲學阻抗管量測系統並以雙麥克風法進行結構的吸音率實驗量測,兩種設計結構中,微穿孔板由鋁板雷射加工製作,其餘皆以3D列印組合而成,實驗量測皆與數值模擬結果比對驗證。由數值模擬與實驗量測結果發現,由微穿孔板與千層派組合而成的第二種結構在目標頻率區間吸音效果相當好,實驗之平均吸音率達0.82。在結構厚度僅有7.15 cm下能吸收波長約為1 m的低頻噪音,可廣泛使用在室內外建築吸音。
英文摘要 For traditional passive sound absorbing structure to absorb low frequency noise, the structure is usually thick and has a small sound absorption bandwidth. Therefore, this study intent to improve the shortcomings of the traditional sound absorbing structure. Mainly focuses on designing sound absorbing structures with small thickness, high average sound absorption and broadband sound absorption. Aiming at the low frequency range of 300~3000 Hz, which is sensitive to human ears. The simulated annealing method is used to optimize the size of the sound absorbing structure. Two broadband sound absorbing structures are proposed in this research. The first structure consists of five serial connected straight circular tubes with the optimized frequency division section and two quarter-wavelength tubes in parallel (SA_SPT). The circular section is changed to a rectangular section and folded in space to reduce structure thickness; The second structure is composed of four parallel quarter-circle micro-perforated plates optimized with segmented frequency, and combined with two pancake structures (SA_MPP-Pan).
We design the optimized size of various sound absorbing structures (quarter-wavelength tubes, serial connected tubes, micro-perforated plates) based on acoustic theory and simulated annealing method. And calculate the sound absorption coefficient of the optimized structures in the impedance tubes with COMSOL Multiphysics, and compare with the theoretical prediction value. The influence of cross-sectional shape on the sound absorption characteristics of serial connected tubes and pancake structures is also discussed. Finally, the acoustic impedance tube measurement system is set up and the sound absorption coefficient of the structure is measured by the two microphone method. For the two design structures, the micro-perforated plate is made of aluminum plate with laser processing, and the rest are manufactured by 3D printing. The measurements are verified by comparing with the numerical simulation results. From the results of numerical simulation and experimental measurement, it is found that the second structure composed of micro-perforated plates and pancake structures has a very good sound absorption effect in the target frequency range, and the average sound absorption coefficient in the experiment is 0.82. With a structure thickness of only 7.15 cm, it can absorb low frequency noise with a wavelength of about 1 m, and can be widely used in indoor and outdoor buildings.
論文目次 摘要 I
Extended Abstract II
誌謝 XXI
目錄 XXII
表目錄 XXVI
圖目錄 XXVII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 被動式共振型吸音結構 2
1.2.2 模擬退火法(Simulated Annealing) 4
1.3 動機與目的 5
1.4 本文架構 6
第二章 基本理論、實驗量測原理與架設 19
2.1 聲波波動方程式 19
2.1.1 連續方程式(Continuity equation) 19
2.1.2 動量方程式(Momentum equation) 19
2.1.3 狀態方程式(State equation) 20
2.1.4 聲波波動方程式 20
2.2 直圓管聲阻抗理論 21
2.2.1 黏滯效應與熱效應 21
2.2.2 等效界面聲阻抗與吸音率基本理論 23
2.2.3 共振吸音管吸音率計算 26
2.3 微穿孔板聲阻抗理論 27
2.3.1 微穿孔板聲阻抗計算 28
2.3.2 微穿孔板吸音率計算 31
2.4 千層派結構 31
2.4.1 千層派基本運作原理 32
2.4.2 集總參數模型(Lumped Parameter Model) 33
2.5 模擬退火法(Simulated Annealing) 36
2.5.1 模擬退火法基本介紹 36
2.5.2 模擬退火法流程 36
2.6 聲學阻抗管系統量測原理及量測流程 37
2.6.1 阻抗管量測原理 38
2.6.2 量測系統介紹與量測流程 39
第三章 以模擬退火法最佳化吸音結構及模擬與分析 50
3.1 聲學阻抗腔之空腔模擬分析 50
3.1.1 材料參數設定 50
3.1.2 阻抗管幾何與邊界設定 51
3.1.3 全波模擬 51
3.2 模擬退火法最佳化吸音結構 52
3.2.1 模擬退火法直圓管吸音率結構尺寸最佳化 52
3.2.2 模擬退火法串聯直圓管寬頻吸音率結構尺寸最佳化 54
3.2.3 模擬退火法並聯微穿孔板寬頻吸音率結構尺寸最佳化 55
3.3 串聯直圓管與方管之模擬與分析 56
3.3.1 串聯方形截面管模擬設定 57
3.3.2 改變串聯管之截面長寬比之結果分析 57
3.4 最佳化串聯長方形截面彎折管模擬吸音率分析 57
3.4.1 最佳化串聯長方形截面彎折管模擬設定 58
3.4.2 最佳化串聯長方形截面彎折管理論解與模擬比較 58
3.4.3 有無最佳化串並聯管吸音結構吸音率比較 59
3.5 最佳化並聯微穿孔板之吸音率模擬 60
3.5.1 微穿孔板模擬設定 60
3.5.2 微穿孔板理論解與模擬比較 60
3.5.3 最佳化並聯微穿孔板理論解與模擬比較 60
3.5.4 最佳化並聯微穿孔板與其他吸音結構吸音效率之比較 61
3.6 千層派結構吸音率模擬 61
3.6.1 千層派結構模擬設定 61
3.6.2 千層派結構參數分析 62
3.6.3 千層派結構理論解與模擬比較 62
3.7 最佳化並聯微穿孔板複合千層派結構理論解與模擬比較 62
第四章 各式吸音結構實驗量測 94
4.1 基本空腔實驗量測結果 94
4.2 量測吸音試件製作 94
4.2.1 一般吸音直管尺寸設計考量 95
4.2.2 寬頻化吸音界面設計考量 95
4.2.3 最佳化並聯微穿孔板複合千層派結構尺寸設計考量 95
4.3 最佳化共振型吸音管實驗量測結果與分析 96
4.3.1 最佳化吸音直管實驗量測結果與模擬比較 96
4.3.2 最佳化串聯長方形截面彎折管實驗量測結果與模擬比較 96
4.3.3 最佳化串並聯管結構實驗量測結果與模擬比較 97
4.4 最佳化並聯微穿孔板複合千層派結構實驗量測結果與分析 98
4.4.1 微穿孔板實驗量測結果 98
4.4.2 最佳化並聯微穿孔板實驗量測結果與模擬比較 98
4.4.3 千層派結構實驗量測結果與模擬比較 99
4.4.4 最佳化並聯微穿孔板復合千層派結構實驗量測結果與模擬比較 99
4.5 各式吸音結構實驗量測吸音效率比較 100
4.5.1 有無最佳化串並聯管與文獻吸音結構吸音率比較 100
4.5.2 最佳化並聯微穿孔板與其他吸音結構吸音率比較 101
4.5.3 最佳化並聯微穿孔板複合千層派結構與其他吸音結構吸音率比較 101
第五章 結論與未來展望 119
5.1 結論 119
5.2 未來展望 120
參考文獻 121
附錄 124
參考文獻 [1] M. R. Stinson, "The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape," The Journal of the Acoustical Society of America, vol. 89, pp. 550-558, 1991.
[2] X. Cai, Q. Guo, G. Hu, and J. Yang, "Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators," Applied Physics Letters, vol. 105, p. 121901, 2014.
[3] Y. Wang, H. Zhao , H. Yang, J. Zhong, D. Zhao, Z. Lu, and J. Wen, "A tunable sound-absorbing metamaterial based on coiled-up space," Journal of Applied Physics, vol. 123, p. 185109, 2018.
[4] C. Chen, Z. Du, G. Hu, and J. Yang, "A low-frequency sound absorbing material with subwavelength thickness," Applied Physics Letters, vol. 110, p. 221903, 2017.
[5] 廖翊涵, "四分之一波長共振腔之寬頻吸音薄板研究," 臺灣大學應用力學研究所學位論文, pp. 1-84, 2017.
[6] H. Zhao, Y. Wang, D. Yu, H. Yang, J. Zhong, F. Wu, J. Wen, "A double porosity material for low frequency sound absorption," Composite Structures, vol. 239, p. 111978, 2020.
[7] M. Yang, S. Chen, C. Fu, and P. Sheng, "Optimal sound-absorbing structures," Materials Horizons, vol. 4, pp. 673-680, 2017.
[8] D.-Y. Maa, "Potential of microperforated panel absorber," The Journal of the Acoustical Society of America, vol. 104, pp. 2861-2866, 1998.
[9] C. Wang and L. Huang, "On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths," The Journal of the Acoustical Society of America, vol. 130, pp. 208-218, 2011.
[10] M. Yairi, K. Sakagami, K. Takebayashi, and M. Morimoto, "Excess sound absorption at normal incidence by two microperforated panel absorbers with different impedance," Acoustical Science and Technology, vol. 32, pp. 194-200, 2011.
[11] H.-S. Kim, P.-S. Ma, B.-K. Kim, S.-R. Kim, and S.-H. Lee, "Low-frequency sound absorption of elastic micro-perforated plates in a parallel arrangement," Journal of Sound and Vibration, vol. 460, p. 114884, 2019.
[12] F. Bucciarelli, G. M. Fierro, and M. Meo, "A multilayer microperforated panel prototype for broadband sound absorption at low frequencies," Applied Acoustics, vol. 146, pp. 134-144, 2019.
[13] D. Li, D. Chang, and B. Liu, "Enhanced low-to mid-frequency sound absorption using parallel-arranged perforated plates with extended tubes and porous material," Applied Acoustics, vol. 127, pp. 316-323, 2017.
[14] Y. Tang, S. Ren, H. Meng, F. Xin, L. Huang, T. Chen,
C. Zhang, T. J. Lu, "Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound," Scientific Reports, vol. 7, p. 43340, 2017.
[15] X. Peng, J. Ji, and Y. Jing, "Composite honeycomb metasurface panel for broadband sound absorption," The Journal of the Acoustical Society of America, vol. 144, pp. EL255-EL261, 2018.
[16] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, pp. 671-680, 1983.
[17] D. Li, D. Chang, and B. Liu, "Enhancing the low frequency sound absorption of a perforated panel by parallel-arranged extended tubes," Applied Acoustics, vol. 102, pp. 126-132, 2016.
[18] Y. Tang, F. Li, F. Xin, and T. J. Lu, "Heterogeneously perforated honeycomb-corrugation hybrid sandwich panel as sound absorber," Materials & Design, vol. 134, pp. 502-512, 2017.
[19] 黃任廷, "寬頻化共振型吸音界面設計與分析," 2018.
[20] T. Dupont, P. Leclaire, R. Panneton, and O. Umnova, "A microstructure material design for low frequency sound absorption," Applied Acoustics, vol. 136, pp. 86-93, 2018.
[21] 白明憲, 工程聲學. 全華, 2008.
[22] J. Allard and N. Atalla, Propagation of sound in porous media: modelling sound absorbing materials : John Wiley & Sons, 2009.
[23] F. J. M. van der Eerden, Noise reduction with coupled prismatic tubes. Universiteit Twente, Enschede, The Netherlands, 2000.
[24] 馬大猷, "微穿孔板吸聲結構的理論和設計," 中國科學, vol. 1, pp. 38-50, 1975.
[25] P. Leclaire, O. Umnova, T. Dupont, and R. Panneton, "Acoustical properties of air-saturated porous material with periodically distributed dead-end pores," The Journal of the Acoustical Society of America, vol. 137, pp. 1772-1782, 2015.
[26] N. Dickey and A. Selamet, "Helmholtz resonators: one-dimensional limit for small cavity length-to-diameter ratios," Journal of Sound and Vibration, vol. 195, pp. 512-517, 1996.
[27] A. Standard, "Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system," ASTM Standard E, pp. 1050-98, 1990.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw