進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208202014205600
論文名稱(中文) 合成硫化銅-奈米金顆粒於氧化鋅奈米柱及奈米牆之複合結構以應用於全日活性催化降解有機染料之研究
論文名稱(英文) Study of CuS@Au nanoparticles on ZnO nanorods and nanowalls for all-day active degradation of organic dyes
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 李采靚
研究生(英文) Tsai-Ching Li
電子信箱 0121sara@gmail.com
學號 N56071580
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-陳嘉勻
口試委員-林家裕
口試委員-賴怡璇
口試委員-劉俊彥
中文關鍵字 硫化銅  複合結構  暗降解 
英文關鍵字 copper sulfide  dark catalyst  carrier utilization 
學科別分類
中文摘要 光催化降解染料為近年來熱門的研究主題之一,近年來透過研發新材料以及合成不同的複合結構來改善光生載子複合率高以及增強對於可見光波長光源的吸收率,而本研究除了改善材料對可見光波段光吸收外,另外也利用材料本身特性達到可進行暗降解反應;實驗合成之複合結構為將硫化銅合成於氧化鋅-奈米金之複合結構上;可知硫化銅本身為低能隙且本身可在不照光的情況下催化過氧化氫產生高能自由基在這裡稱其為暗降解,但由於單一材料容易有光生載子複合率高,或是合成時奈米顆粒容易團聚之現象,因此將硫化銅合成於氧化鋅-奈米金之複合結構上,且成長於基板之光觸媒也具有易回收之優勢。實驗之光觸媒主體氧化鋅以兩種不同材料為基板,成長結構為奈米牆與奈米柱;在經由硫化製程時間調整以及改變前驅物濃度後找到最佳硫化參數,由最佳參數之結果顯示複合結構後氧化鋅奈米牆之全日催化降解中之光降解反應速率常數k值由0.0027(min-1)提升至0.0081(min-1),而其暗降解k值則是由非常低的0.0008(min-1)提升至0.006(min-1);而氧化鋅奈米柱由全日催化降解中暗降解反應速率常數k值0.0013(min-1)提升至0.017(min-1);並且透過動力學將樣品之暗降解分析,可發現氧化鋅奈米牆在暗降解反應中幾乎無法作用且其降解結果代入動力模型之相關係數極低,也驗證了硫化銅的暗降解特性。
英文摘要 Metal oxide semiconductor nanomaterials have been extensively studied for photocatalytic water treatment. To enhance their photocatalytic performance, different synthetic methods of heterogeneous photocatalysts have been developed for improving energy harvesting of solar light and carrier utilization nowadays. In this study, we used different substrates to synthesize zinc oxide nanorods and nanowalls. Then, combing zinc oxide, gold nanoparticle, and copper sulfide nanomaterial by photochemical reduction and simple chemical reduction method. After that, adjusting two kinds of parameters with sulfidation time and the concentration of precursor solution, cupper (Ⅱ) sulfide, for modifying copper sulfide nanoparticles and enhancing the reaction rate of photodegradation. After increasing the concentration of precursor, cupper (Ⅱ) sulfate, the copper (Ⅱ) sulfide nanoparticles synthesized on ZnO-Au or ZnO would transform to copper (Ⅰ) sulfide nanoparticles which own suitable band alignment with ZnO-Au and ZnO and lead to decreasing the carrier recombination rate. Moreover, the dark catalytic experiments were implemented by adding hydrogen peroxide which would induce the formation of photocatalytic active hydroxyl radicals by copper sulfide without light irradiation. Pseudo-first-order kinetic model were employed to quantify the photocatalytic activity and the rate constant increased from 0.0027 (min-1) to 0.0081 (min-1) in the photodegradation experiment, and 0.0008 (min-1) to 0.006 (min-1) in the dark degradation experiment of zinc oxide nanowalls and ZnO-Au@CuXS. The results also proved that the decoration of copper sulfide nanoparticles can modify zinc oxide effectively on both photocatalytic and dark catalytic reactions that could be applied for all-day active catalyst.
論文目次 摘要 I
Extended Abstract II
誌謝 IX
目錄 X
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
第二章 理論基礎與文獻回顧 3
2.1 光催化反應理論 3
2.1.1 光催化原理 3
2.1.2 異相光催化降解反應機制 5
2.1.3 影響光催化反應之參數 6
2.1.4 光催化降解反應動力學 7
2.2 光觸媒材料 8
2.2.1 半導體光觸媒材料 8
2.2.2 氧化鋅簡介 9
2.2.3 硫化銅簡介 10
第三章 儀器設備與實驗方法 11
3.1 研究流程圖 11
3.2 實驗藥品與材料 12
3.3 實驗儀器 13
3.3.1 精密天秤 (Precision Balances) 13
3.3.2 數位型電磁加熱攪拌機 (Heating Panel) 13
3.3.3 電子束蒸鍍機 (Electron Beam Evaporation) 13
3.3.4 超音波震盪機 (Ultrasonic Cleaner) 13
3.4 實驗步驟與量測方法 14
3.4.1 氧化鋅奈米結構製備:水熱法 14
3.4.2 製備氧化鋅奈米柱 14
3.4.3 製備氧化鋅奈米牆 15
3.4.4 氧化鋅-奈米金複合結構:光化學還原法 15
3.4.5 氧化鋅-奈米金-硫化銅複合結構:化學還原法 15
3.4.6 有機染料降解測試 16
3.4.7 光催化機制探討實驗 16
3.5 材料分析儀器 17
3.5.1 高解析掃描式電子顯微鏡 ( Ultrahigh Resolution Scanning Electron Microscope, HR-SEM ) 17
3.5.2 軟物質穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 18
3.5.3 低略角X光繞射分析儀(Grazing Incidence Angle X-Ray Diffractometer, GIAXRD) 18
3.5.4 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis, ESCA) 19
3.5.5 傅立葉轉換紅外光譜儀(Fourier-Transform Infrared Spectroscopy, FTIR) 20
3.5.6 螢光光譜儀(Photoluminescence, PL) 20
3.5.7 紫外-可見分光光譜儀 ( UV-visible spectrometer ) 20
第四章 結果與討論 22
4.1 氧化鋅奈米柱及其複合結構材料分析 22
4.1.1 形貌分析: SEM & EDS 22
4.1.2 形貌分析: TEM 26
4.1.3 結構分析: GIAXRD 27
4.1.4 光學分析: 吸收光譜 28
4.1.5 光學分析: 螢光光譜 29
4.1.6 光催化降解 30
4.1.7 全日催化降解 32
4.2 氧化鋅奈米牆及其複合結構材料分析 34
4.2.1 形貌分析: SEM 34
4.2.2 材料結晶相分析: GIAXRD 41
4.2.3 表面鍵結分析: XPS 44
4.2.4 分子鍵結分析: FTIR 48
4.2.5 光學分析: 吸收與反射光譜 49
4.2.6 光學分析: 螢光光譜圖 51
4.3 有機染料降解測試 53
4.3.1 檢量線 53
4.3.2 光催化降解 54
4.3.3 光催化機制探討實驗 60
4.3.4 全日催化降解 62
第五章 結論 67
參考文獻 68

參考文獻 [1] 司洪濤,呂冠霖,黃香玫, "高級氧化技術在高濃度COD廢水處理之應用.pdf,"
[2] T. Bak, J. Nowotny, M. Rekas, and C. J. I. j. o. h. e. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," vol. 27, no. 10, pp. 991-1022, 2002.
[3] 曾心如, "以水熱法在異質基板上成長氧化鋅之研究," 43, Environ. Sci. Technol., 2009.
[4] A. Kudo and Y. J. C. S. R. Miseki, "Heterogeneous photocatalyst materials for water splitting," vol. 38, no. 1, pp. 253-278, 2009.
[5] S. Y. Lee, S. J. Park, and E. Chemistry, "TiO2 photocatalyst for water treatment applications," vol. 19, no. 6, pp. 1761-1769, 2013.
[6] M. Y. Kuo et al., "Au@ Cu2O core@ shell nanocrystals as dual-functional catalysts for sustainable environmental applications," vol. 242, pp. 499-506, 2019.
[7] M. N. Chong, B. Jin, C. W. Chow, and C. J. W. r. Saint, "Recent developments in photocatalytic water treatment technology: a review," vol. 44, no. 10, pp. 2997-3027, 2010.
[8] H. L. Tan, R. Amal, and Y. H. J. J. o. M. C. A. Ng, "Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO 4: a review," vol. 5, no. 32, pp. 16498-16521, 2017.
[9] A. Fujishima and K. J. n. Honda, "Electrochemical photolysis of water at a semiconductor electrode," vol. 238, no. 5358, pp. 37-38, 1972.
[10] H. Ahmad, S. Kamarudin, L. Minggu, M. J. R. Kassim, and S. E. Reviews, "Hydrogen from photo-catalytic water splitting process: A review," vol. 43, pp. 599-610, 2015.
[11] K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. J. W. r. Juan, "Recent developments of zinc oxide based photocatalyst in water treatment technology: a review," vol. 88, pp. 428-448, 2016.
[12] X. Li et al., "Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism," vol. 46, no. 10, pp. 5528-5534, 2012.
[13] S. B. A. Hamid, S. J. Teh, and C. W. J. C. Lai, "Photocatalytic water oxidation on ZnO: a review," vol. 7, no. 3, p. 93, 2017.
[14] A. J. Nozik and R. J. T. J. o. P. C. Memming, "Physical chemistry of semiconductor− liquid interfaces," vol. 100, no. 31, pp. 13061-13078, 1996.
[15] M. G. Walter et al., "Solar water splitting cells," vol. 110, no. 11, pp. 6446-6473, 2010.
[16] C. Y. Chu and M. H. J. J. o. m. c. A. Huang, "Facet-dependent photocatalytic properties of Cu 2 O crystals probed by using electron, hole and radical scavengers," vol. 5, no. 29, pp. 15116-15123, 2017.
[17] 張逸群, "PdO/TiO2 半導體氧化物異質接合結構之有機分子光催化分解研究 .pdf," 2000.
[18] J. L. G. Fierro, Metal oxides: chemistry and applications. CRC press, 2005.
[19] A. Moezzi, A. M. McDonagh, and M. B. Cortie, "Zinc oxide particles: Synthesis, properties and applications," Chem. Eng. J., vol. 185–186, p. 1, 2012.
[20] Y. B. Hahn, "Zinc oxide nanostructures and their applications," Korean Journal of Chemical Engineering, vol. 28, no. 9, p. 1797, 2011/09/03 2011.
[21] K. Tam et al., "Defects in ZnO nanorods prepared by a hydrothermal method," vol. 110, no. 42, pp. 20865-20871, 2006.
[22] T. Liu, W. Chen, Y. Hua, and X. Liu, "Au/ZnO nanoarchitectures with Au as both supporter and antenna of visible-light," Applied Surface Science, vol. 392, pp. 616-623, 2017/01/15/ 2017.
[23] N. Modirshahla, A. Hassani, M. A. Behnajady, and R. Rahbarfam, "Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts," Desalination, vol. 271, p. 187, 2011.
[24] P. She, K. Xu, S. Zeng, Q. He, H. Sun, and Z. Liu, "Investigating the size effect of Au nanospheres on the photocatalytic activity of Au-modified ZnO nanorods," Journal of Colloid and Interface Science, vol. 499, pp. 76-82, 2017/08/01/ 2017.
[25] B. Subash, B. Krishnakumar, M. Swaminathan, and M. Shanthi, "Enhanced photocatalytic performance of WO3 loaded Ag–ZnO for Acid Black 1 degradation by UV-A light," J. Mol. Catal. A: Chem., vol. 366, p. 54, 2013.
[26] S. Sun, S. Wang, D. Deng, and Z. J. N. J. o. C. Yang, "Formation of hierarchically polyhedral Cu 7 S 4 cages from Cu 2 O templates and their structure-dependent photocatalytic performances," vol. 37, no. 11, pp. 3679-3684, 2013.
[27] L. Isac, C. Cazan, E. Alexandru, and L. J. F. i. c. Andronic, "Copper sulfide based heterojunctions as photocatalysts for dyes photodegradation," vol. 7, p. 694, 2019.
[28] S. Riyaz, A. Parveen, and A. J. P. i. S. Azam, "Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route," vol. 8, pp. 632-635, 2016.
[29] S. Jiao, L. Xu, K. Jiang, and D. J. A. M. Xu, "Well‐defined non‐spherical copper sulfide mesocages with single‐crystalline shells by shape‐controlled Cu2O crystal templating," vol. 18, no. 9, pp. 1174-1177, 2006.
[30] A. Tang et al., "One-pot synthesis and self-assembly of colloidal copper (I) sulfide nanocrystals," vol. 21, no. 28, p. 285602, 2010.
[31] S. Sun, D. Deng, X. Song, and Z. J. P. C. C. P. Yang, "Elucidating a twin-dependent chemical activity of hierarchical copper sulfide nanocages," vol. 15, no. 38, pp. 15964-15970, 2013.
[32] S. Yamabi and H. J. J. o. m. c. Imai, "Growth conditions for wurtzite zinc oxide films in aqueous solutions," vol. 12, no. 12, pp. 3773-3778, 2002.
[33] Y. H. Chiu and Y.-J. J. N. E. Hsu, "Au@ Cu7S4 yolk@ shell nanocrystal-decorated TiO2 nanowires as an all-day-active photocatalyst for environmental purification," vol. 31, pp. 286-295, 2017.
[34] Y. K. Lin, Y. J. Chiang, Y. J. J. S. Hsu, and A. B. Chemical, "Metal–Cu2O core–shell nanocrystals for gas sensing applications: Effect of metal composition," vol. 204, pp. 190-196, 2014.
[35] G. Chen, M. Niu, L. Cui, F. Bao, L. Zhou, and Y. J. T. J. o. P. C. C. Wang, "Facile synthesis and formation mechanism of metal chalcogenides hollow nanoparticles," vol. 113, no. 18, pp. 7522-7525, 2009.
[36] T. M. Elmorsi, M. H. Elsayed, and M. F. J. C. J. o. C. Bakr, "Enhancing the removal of methylene blue by modified ZnO nanoparticles: kinetics and equilibrium studies," vol. 95, no. 5, pp. 590-600, 2017.
[37] X. Zhang et al., "Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods," vol. 4, p. 4596, 2014.
[38] 曾賢德, "金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作," Water Res., vol. 40, p. 1119, 2006.
[39] J. F. Tang, H. H. Su, Y. M. Lu, and S. Y. J. C. Chu, "Controlled growth of ZnO nanoflowers on nanowall and nanorod networks via a hydrothermal method," vol. 17, no. 3, pp. 592-597, 2015.
[40] S. Bayan, B. Satpati, P. J. S. Chakraborty, and I. Analysis, "ZnS nanoparticle decorated ZnO nanowall network: investigation through electron microscopy and secondary ion mass spectrometry," vol. 47, no. 1, pp. 37-44, 2015.
[41] K. Wenderich and G. J. C. r. Mul, "Methods, mechanism, and applications of photodeposition in photocatalysis: a review," vol. 116, no. 23, pp. 14587-14619, 2016.
[42] J. J. Wu and C. H. Tseng, "Photocatalytic properties of nc-Au/ZnO nanorod composites," Applied Catalysis B: Environmental, vol. 66, no. 1, pp. 51-57, 2006/06/20/ 2006.
[43] L. Sun et al., "Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity," vol. 363, no. 1, pp. 175-181, 2011.
[44] R. Ji, W. Sun, and Y. J. R. A. Chu, "One-step hydrothermal synthesis of Ag/Cu 2 O heterogeneous nanostructures over Cu foil and their SERS applications," vol. 4, no. 12, pp. 6055-6059, 2014.
[45] S. Gandla, S. R. Gollu, R. Sharma, V. Sarangi, and D. J. A. P. L. Gupta, "Dual role of boron in improving electrical performance and device stability of low temperature solution processed ZnO thin film transistors," vol. 107, no. 15, p. 152102, 2015.
[46] A. Kushwaha and M. J. J. o. P. D. A. P. Aslam, "Hydrogen-incorporated ZnO nanowire films: stable and high electrical conductivity," vol. 46, no. 48, p. 485104, 2013.
[47] B. H. Kim and J. W. J. S. r. Kwon, "Metal catalyst for low-temperature growth of controlled zinc oxide nanowires on arbitrary substrates," vol. 4, p. 4379, 2014.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw