進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208201920484200
論文名稱(中文) 探討直接能量沉積之雷射瓦數對316L不鏽鋼中機械性質與微結構的影響
論文名稱(英文) Effect of Laser Power on Mechanical Properties and Microstructure of 316L Stainless Steel Deposited by Direct Energy Deposition(DED)
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 邱泰育
研究生(英文) Tai-Yu Chiu
學號 N56061103
學位類別 碩士
語文別 中文
論文頁數 187頁
口試委員 指導教授-郭瑞昭
口試委員-劉浩志
口試委員-敖仲寧
口試委員-童士恒
口試委員-潘永村
中文關鍵字 直接能量沉積  316L不鏽鋼  機械性質  Schmid factor  晶格旋轉 
英文關鍵字 Direct energy deposition  316L stainless steel  mechanical properties  Schmid factor  DIC 
學科別分類
中文摘要 直接能量雷射沉積(DED)為一種金屬3D列印技術,適合用於生產航太、生醫等高複雜度金屬零件與修補損壞設備,由於大多用於特殊需求環境或是有高穩定性要求,因此探討成品的機械性質與微結構相當重要。

本研究探討影響DED製程品質最直接相關的雷射瓦數,並實際以316L不鏽鋼粉末垂直沉積多層成品。考量現實應用中多重應力下的效應,以三點抗彎試驗對沉積物施以應力變形,並結合數位影像相關法(DIC)量測其機械性質與應變分布,微結構方面以背向電子散射繞射儀技術(EBSD)分析在受拉伸、壓縮應力與中性區間的微結構演變。

實驗結果顯示,雷射瓦數800 W至1600 W之中低瓦雷射,隨雷射瓦數越高,中心晶粒越粗化,使降伏強度呈現下降趨勢,在1600 W至2000 W之高瓦雷射,隨雷射瓦數提高,降伏強度提升,並由Schmid Factor分布發現在2000 W粗化之晶粒有較低的值;由DIC量測之應變分布結果發現在低瓦數時有較高之拉伸應變值且分布較均勻,隨瓦數提升應變值下降,然而在高瓦數下發現應變局部集中在特定晶粒上。在微結構演變方面,極圖演變中發現拉伸與壓縮的應力造成極面分布沿ND軸旋轉,旋轉方向取決於晶粒取向,<001>取向晶粒貢獻RD軸旋轉、<101>取向晶粒貢獻TD軸旋轉;反極圖顯示在拉伸應力下大多發生向反極圖上方之方向滑移,在壓縮應力下則發生向反極圖下方滑移。
英文摘要 Laser power is the most directly relevant process parameter affecting the quality in Direct Energy Deposition (DED) process. In this study, we investigated laser power effect on mechanical properties and microstructure of multi-layer products after vertical deposition of 40 layers using 316L stainless steel powder.
The mechanical properties were analyzed by three-point bending test combined with digital image correlation (DIC) to obtain strain distribution. The microstructure under tensile, compressive stress and neutral regions were analyzed by EBSD.
Considering laser power from 800 W to 2000 W, 800 W has the highest yield stress of 476 MPa and 1600 W the lowest yield stress of 407 MPa due to coarsening effect. By analyzing strain distribution and Schmid factor, 2000 W shows low strain value and low value of Schmid factor resulting in increasing yield stress of 454 MPa.
論文目次 中文摘要 I
Extended Abstract II
誌謝 XII
目錄 XIV
表目錄 XVII
圖目錄 XVIII
第一章 前言 1
第二章 文獻回顧 3
2.1 直接能量雷射沉積 3
2.1.1 製程原理 5
2.1.2 雷射沉積之凝固組織 9
2.1.3 單層沉積性質 14
2.1.4 多層沉積性質 17
2.2 三點抗彎試驗 23
2.3 數位光學應變量測 31
第三章 材料與實驗方法 34
3.1 實驗材料 34
3.2 直接能量雷射沉積實驗 36
3.3 巨觀分析 39
3.3.1 形貌尺寸量測 39
3.3.2 層界分析 41
3.4 三點抗彎試驗分析 43
3.4.1 試片製備 43
3.4.2 三點抗彎試驗 45
3.4.3 應變分布量測 46
3.5 EBSD分析 51
3.5.1 積層塊材之金相顯微組織 51
3.5.2 極圖分析 54
3.5.3 滑移系統分析 57
第四章 實驗結果 62
4.1 沉積物之形貌尺寸 62
4.2 積層塊材之機械性質 65
4.2.1 應力應變曲線 65
4.2.2 應變分布 70
4.2.3 降伏強度與硬化指數 78
4.3 積層塊材於拉伸區之金相顯微組織 82
4.3.1 金相顯微組織 82
4.3.2 極圖分析 90
4.3.3 滑移系統分析 99
4.4 積層塊材於壓縮區之金相顯微組織 106
4.4.1 金相顯微組織 106
4.4.2 極圖分析 114
4.4.3 滑移系統分析 123
4.5 積層塊材於中性區之金相顯微組織 130
4.5.1 金相顯微組織 130
4.5.2 極圖分析 138
4.5.3 滑移系統分析 147
第五章 討論 153
5.1 雷射瓦數對SS316L沉積物之形貌尺寸之影響 153
5.2 雷射瓦數對SS316L積層塊材之機械性質之影響 158
5.3 受力方向對滑移方向之影響 164
5.4 受力方向對極圖演變之影響 167
第六章 結論 178
參考文獻 180
參考文獻 [1] D. M. Goodarzi, J. Pekkarinen, and A. Salminen, Analysis of laser cladding process parameter influence on the clad bead geometry, 2017, Welding in the World, 61(5), 883-891.
[2] Y. T. Chen, Effect of Process Parameters on Structure and Properties of single track of 316L stainless steel deposited by Direct Energy Deposition, 2018, M.S. thesis., National Cheng Kung University.
[3] F. Brueckner, M. Riede, F. Marquardt, R. Willner, A. Seidel, S.Thieme, and E. Beyer, Process characteristics in high-precision laser metal deposition using wire and powder, 2017, Journal of Laser Applications, 29(2), 022301.444
[4] K. Li, D. Li, D. Liu, G. Pei, and L. Sun, Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel, 2015, Applied Surface Science, 340, 143-150.
[5] J. S. Park, M. G. Lee, Y. J. Cho, J. H. Sung, M. S. Jeong, S. K. Lee, and D. H. Kim, Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process, 2016, Metals and Materials International, 22(1), 143-147.
[6] B. E. Carroll, T. A. Palmer, and A. M. Beese, Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing, 2015, Acta Materialia, 87, 309-320.
[7] J. Sam, B. Franco, J. Ma, I. Karaman, A. Elwany, and J. H. Mabe, Tensile actuation response of additively manufactured nickel-titanium shape memory alloys, 2018, Scripta Materialia, 146, 164-168.
[8] W. Jeong, Y. S. Kwon, and D. Kim, Three-dimensional printing of tungsten structures by directed energy deposition, 2019, Materials and Manufacturing Processes, 1-7.
[9] C. Rinaldi and G. Antonelli, Epitaxial repair and in situ damage assessment for turbine blades, 2005, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 219(2), 93-99.
[10] M. Miedzinski, Materials for Additive Manufacturing by Direct Energy Deposition, 2017, M.S. thesis., Chalmers Halmers University of Technology
[11] M. C. Sahour, A. B. Vannes, and J. M. Pelletier, Laser cladding by powder injection: optimization of the processing conditions, 1991, Le Journal de Physique IV, 1(C7), C7-51.
[12] P. A. Vetter, T. Engel, and J. Fontaine, Laser cladding: the relevant parameters for process control, 1994, In Laser Materials Processing: Industrial and Microelectronics Applications (Vol. 2207, pp. 452-463). International Society for Optics and Photonics.
[13] A. J. Pinkerton, and L. Li, An analytical model of energy distribution in laser direct metal deposition, 2004, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(4), 363-374.
[14] K. Shah, A. J. Pinkerton, A. Salman, and L. Li, Effects of melt pool variables and process parameters in laser direct metal deposition of aerospace alloys, 2010, Materials and Manufacturing Processes, 25(12), 1372-1380.
[15] L. Xue, Y. Li, and S. Wang, Direct manufacturing of net-shape functional components/test-pieces for aerospace, automotive, and other applications, 2011, Journal of Laser Applications, 23(4), 042004.
[16] M. Ma, Z. Wang, D. Wang, and X. Zeng, Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L Stainless Steel, 2013, Optics & Laser Technology, 45, 209-216.
[17] T. Amine, J. W. Newkirk, and F. Liou, An investigation of the effect of laser deposition parameters on characteristics of multilayered 316 L deposits, 2014, The International Journal of Advanced Manufacturing Technology, 73(9-12), 1739-1749.
[18] J. J. Lewandowski and M. Seifi, Metal additive manufacturing: a review of mechanical properties, 2016, Annual review of materials research, 46, 151-186.
[19] V. Giuliani, R. J. Hugo,and P. Gu, Powder particle temperature distribution in laser deposition technologies, 2009, Rapid prototyping journal, 15(4), 244-254.
[20] J. Lei, J. Xie, S. Zhou, H. Song, X. Song, and X. Zhou, Comparative study on microstructure and corrosion performance of 316 stainless steel prepared by laser melting deposition with ring-shaped beam and Gaussian beam, 2019, Optics & Laser Technology, 111, 271-283.
[21] A. J. Pinkerton, An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition, 2007, Journal of Physics D: Applied Physics, 40(23), 7323.
[22] C. Katinas, W. Shang, Y. C. Shin, and J. Chen, Modeling Particle Spray and Capture Efficiency for Direct Laser Deposition Using a Four Nozzle Powder Injection System, 2018, Journal of Manufacturing Science and Engineering, 140(4), 041014.
[23] J. Yan, I. Battiato, and G. Fadel, Design of injection nozzle in direct metal deposition (DMD) manufacturing of thin-walled structures based on 3D models, 2017, The International Journal of Advanced Manufacturing Technology, 91(1-4), 605-616.
[24] D. S. Shim, G. Y. Baek, J. S. Seo, G. Y. Shin, K. P. Kim, and K. Y. Lee, Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process, 2016, Optics & Laser Technology, 86, 69-78.
[25] Y. Huang, Characterization of dilution action in laser-induction hybrid cladding, 2011, Optics & Laser Technology, 43(5), 965-973.
[26] D. M. Stefanescu, Science and engineering of casting solidification(3rd ed.), 2015, Springer-Verlag, 12-16
[27] J. W. Rutter and B. Chalmers, A prismatic substructure formed during solidification of metals, 1953, Canadian Journal of Physics, 31(1), 15-39.
[28] D. A. Porter, K. E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys(3rd ed.), 2009, CRC press, 209-220.
[29] S. Kou, Welding metallurgy(2nd ed.), 2003, John Wiley and Sons, 166-201.
[30] R. Vilar, Laser cladding, 1999, Journal of Laser Applications, 11(2), 64–79
[31] X. Do, D. Li, A. Zhang, B. He, H. Zhang, and T. Doan, Investigation on multi-track multi-layer epitaxial growth of columnar crystal in direct laser forming, 2013, Journal of Laser Applications, 25(1), 012007.
[32] N. A. Berjeza, S. P. Velikevitch, V. I. Mazhukin, I. Smurov, and G. Flamant, Influence of temperature gradient to solidification velocity ratio on the structure transformation in pulsed-and CW-laser surface treatment, 1995, Applied surface science, 86(1-4), 303-309.
[33] P. Wen, Z. Feng, and S. Zheng, Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel, 2015, Optics & Laser Technology, 65, 180-188.
[34] S. Sun, Y. Durandet, and M. Brandt, Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel, 2005, Surface and Coatings Technology, 194(2-3), 225-231.
[35] B. Lu, X. Cui, Y. Li, Z. Cai, E.Liu, G. Jin, and Y. Hu, Microstructure, bonding properties and the basis of pinning effect of in-situ NbC reinforced Co50 composite coating by plasma cladding, 2017, Surface and Coatings Technology, 319, 155-163.
[36] Z. Gan, H. Liu, S. Li, X. He, and G. Yu, Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron, 2017, International Journal of Heat and Mass Transfer, 111, 709-722.
[37] A. Yadollahi, N. Shamsaei, S. M. Thompson, and D. W. Seely, Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel, 2015, Materials Science and Engineering: A, 644, 171-183.
[38] D. K. Kim, W. Woo, E. Y. Kim, and S. H. Choi, Microstructure and mechanical characteristics of multi-layered materials composed of 316L stainless steel and ferritic steel produced by direct energy deposition, 2019, Journal of Alloys and Compounds, 774, 896-907.
[39] X. Zhou, X. Liu, D. Zhang, Z. Shen, and W. Liu, Balling phenomena in selective laser melted tungsten, 2015, Journal of Materials Processing Technology, 222, 33-42.
[40] B. Zheng, Y. Zhou, J. E. Smugeresky, J. M. Schoenung, and E. J. Lavernia, Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion, 2008, Metallurgical and materials transactions A, 39(9), 2237-2245.
[41] P. R. G. Hein and L. Brancheriau, Comparison between three-point and four-point flexural tests to determine wood strength of Eucalyptus specimens, 2018, Maderas. Ciencia y tecnología, 20(3), 333-342.
[42] T. Tsukamoto, C. Y. Chen, H. Okamoto ,and K. Danjo, The effects of adsorbed water on tensile strength and Young's modulus of moldings determined by means of a three-point bending method, 2000, Chemical and pharmaceutical bulletin, 48(6), 769-773.
[43] W. S. Luo, A study on mechanical properties and fractography of anodic aluminum oxide template by three-point bending test, 2007, M.S. thesis., National Chiao Tung University.
[44] J. H. Jang, B. D. Joo, C. J. Van Tyne, and Y. H. Moon, Characterization of deposited layer fabricated by direct laser melting process, 2013, Metals and Materials International, 19(3), 497-506.
[45] R. C. Hibbeler, Mechanics of materials(8th ed.), 2010, Rearson, 255-354.
[46] N. McCormick and J. Lord, Digital image correlation. Materials today, 2010, 13(12), 52-54.
[47] T. C. Chu, W. F. Ranson, and M. A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics, 1985, Experimental mechanics, 25(3), 232-244.
[48] A. G. Zink, R. B. Hanna, and J. W. Stelmokas, Measurement of Poisson's ratios for yellow-poplar, 1997, Forest products journal, 47(3), 78.
[49] A. Picazo, J. C. Gálvez, M. G. Alberti, and A. Enfedaque, Assessment of the shear behaviour of polyolefin fibre reinforced concrete and verification by means of digital image correlation, 2018, Construction and Building Materials, 181, 565-578.
[50] J. C. Kuo, S. H. Tung, M. H. Shih, W. P. Sung, T. Y. Kuo, C. H. WU, and W. S. Hwang, Applying digital image correlation method to measure flow field, 2014, Journal of Civil Engineering, 12(2), 369-373
[51] J. C. Kuo, and H. H.Wang, Determination of residual strain by combining EBSD and DIC techniques, 2010, International Journal of Materials and Product Technology, 37(3-4), 328-337.
[52] D. T. Yang, D. Zhang, and D. D. Arola, Fatigue of the bone/cement interface and loosening of total joint replacements, 2010, International Journal of Fatigue, 32(10), 1639-1649.
[53] Q. Zhu, W. He, J. Zhu, Y. Zhou, and L. Chen, Investigation on interfacial fracture toughness of plasma-sprayed TBCs using a three-point bending method, 2018, Surface and Coatings Technology, 353, 75-83.
[54] P. Koehnen, C. Haase, J. Bueltmann, S. Ziegler, J. H. Schleifenbaum, and W. Bleck, Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel, 2018, Materials & Design, 145, 205-217.
[55] M. Biegler, B. Graf, and M. Rethmeier, In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations, 2018, Additive Manufacturing, 20, 101-110.
[56] S. H. Tung, M. H.Shih, and J. C. Kuo, Application of digital image correlation for anisotropic plastic deformation during tension testing, 2010, Optics and Lasers in Engineering, 48(5), 636-641.
[57] S. L. Ceng, Digital image correlation for large deformation measurement, 2014, M.S. thesis., National Chung Hsing University.
[58] R. Pan and D. F. Watt, Use of computer simulation to predict appropriate current profiles in the resistance welding of bar stock, 1993, Journal of Materials Processing Technology, 38(1-2), 203-220.
[59] I. C. Jung, L. Cho, and B. C. De Cooman, In situ Observation of the Influence of Al on Deformation-induced Twinning in TWIP Steel, 2015, ISIJ International, 55(4), 870-876.
[60] T. H. Courtney, Mechanical behavior of materials(2nd ed.), 2000, McGraw-Hill, 140-174
[61] T. Mayama, K. Aizawa, Y. Tadano, and M. Kuroda, Influence of twinning deformation and lattice rotation on strength differential effect in polycrystalline pure magnesium with rolling texture, 2009, Computational Materials Science, 47(2), 448-455.
[62] T. Gu, B. Chen, C. Tan, and J. Feng, Microstructure evolution and mechanical properties of laser additive manufacturing of high strength Al-Cu-Mg alloy, 2019, Optics & Laser Technology, 112, 140-150.
[63] T. R. Smith, J. D. Sugar, C. San Marchi, and J. M. Schoenung, Strengthening mechanisms in directed energy deposited austenitic stainless steel, 2019, Acta Materialia, 164, 728-740.
[64] Y. Zhao, T. Yu, J. Sun, W. Xi, and X. Bi, Effect of laser cladding on forming qualities of YCF101 alloy powder in the different lap joint modes, 2018, The International Journal of Advanced Manufacturing Technology, 96(5-8), 1991-2001.
[65] Z. Zhang, P. Farahmand, and R. Kovacevic, Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser, 2016, Materials & Design, 109, 686-699.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw