進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208201911003600
論文名稱(中文) 利用高壓單晶 X 光繞射探討含水頑火輝石晶體結構
論文名稱(英文) Study of crystal structure of hydrous orthoenstatite by single-crystal X-ray diffraction at high pressure
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 107
學期 2
出版年 108
研究生(中文) 花天享
研究生(英文) Tian-Siang Hua
學號 L46064026
學位類別 碩士
語文別 英文
論文頁數 78頁
口試委員 指導教授-龔慧貞
口試委員-許桂芳
口試委員-吳來錦
口試委員-張耘瑗
中文關鍵字 含水頑火輝石  高壓單晶X光繞射、  壓縮行為  低速帶 
英文關鍵字 hydrous orthoenstatite  single-crystal X-ray diffraction  high pressure  compression behavior  low-velocity zone 
學科別分類
中文摘要 結晶學的資料對於詮釋上部地函中礦物的物理性質是極其重要的。在上部地函的組成礦物,如橄欖石、輝石和石榴子石,在結晶結構上為無水礦物。然而,在擄獲岩裡觀察到其結構有羥基(OH-)的存在。當有羥基存在於礦物的結晶結構中時會影響到其物理性質,如彈性係數、熱傳導係數等,進而可作為地球物理上的觀測的解釋,如低速帶。來自地函的岩樣顯示輝石相對於橄欖石與石榴子石能含有更多的羥基。此外,頑火輝石(orthoenstatite,簡稱OEn)成分(MgSiO3)在上部地函的溫壓範圍裡有不同的同分異構物存在,並且若是有羥基存在於OEn中也會改變其相邊界,這被認為可能可以作為解釋地球物理觀測中上部地函幾個不連續面的關鍵因素。因此,了解含水輝石的結構對於詮釋其物理性質的測量資料和解釋地球物理在上部地函觀測資料提供重要的資訊。
本研究在高溫高壓條件合成了含水OEn並且其含水量與天然輝石樣品相近。含水含鋁OEn中的含水量可高達500至1000 ppm,而在含水OEn中的含水量為300-500 ppm。並且本研究利用單晶X光繞射技術在常溫常壓下和高壓下解析含鋁含水以及含水OEn結晶結構,比較含水與無水OEn結晶結構的差異以及其在壓力演化下的壓縮行為。我們發現無水和低含水量OEn(約500 ppm)在結晶結構上並無顯著差別。而在高壓實驗顯示,我們觀察到低含水量OEn其壓縮行為也與無水OEn的相似。然而,在含水含鋁OEn中沿a軸與c軸的壓縮行為與無水和含水OEn的壓縮行為卻有差別。
本研究結果顯示含水量~1000 ppm對於OEn的壓縮行為無太大影響,這可能表示上部地函中水對於OEn的P波波速隨壓力變化的影響微乎其微。另一方面,含水OEn的S波波速至今尚未測量。因此,期望未來能結合S波速實驗資料更全面了解水對於OEn中速度的影響。此外,本研究也藉由前人的實驗學資料粗略估算水對於低速帶的影響,並提出可能影響低速帶的成因。
英文摘要 Crystallographic information plays an important role to interpret the physical properties of minerals in the upper mantle. The constituent minerals in the upper mantle, such as olivine, pyroxene, and garnet, are anhydrous in the crystal structure. However, OH-bond in the structure of NAMs were observed in natural samples from upper mantle. Water incorporated into minerals can affect their physical properties, such as elasticity and transport properties. The origin of the LVZ could be caused by reduction of seismic velocity induced by the change of physical property. Natural samples indicate that water content in pyroxenes is more twice or three-fold than those in olivine and garnet. Besides, water in OEn could change the phase boundary from OEn to HPCEn and may be the cause of the discontinuities in the upper mantle. Thus, the knowledge of compression behavior for the hydrous OEn shall shed light on the physical state of the upper mantle.
We synthesized the OEn from 5-7 GPa and 1100-1300℃. The pure OEn contains ~500 ppm water and Al-bearing OEn contains up to 1000 ppm, like the water content in natural pyroxene. The study shows the compression behaviors of hydrous orthoenstatite (OEn) at high pressure by single-crystal X-ray diffraction. The compression behavior of anhydrous OEn is similar to hydrous OEn which is about 500 ppm water content. However, there is a minor influence on the compression behavior along a-axis in Al-bearing OEn.
In this study, the results show that ~1000 ppm of water in the OEn does not have much influence on the compression behavior. It indicates that the influence of water on the P-wave velocity of OEn with the pressure in the upper mantle is negligible. On the other hand, the S wave velocity of the hydrous OEn has not been measured so far. Therefore, by combination with the S-wave velocity experimental data, it is expected that the impact of water on the velocity in OEn will be more fully understood in the future. Also, our estimation of shear velocities according to the transition of thermal gradient shows that it reduces insignificantly in the LVZ in continental regions. It implies that the origin of velocity reduction of the LVZ in the continental areas could be contributed by temperature rather than pressure.
論文目次 Abstract…………………………………………..…………………………………..I
摘要…………………………………………………………………….…………..III
Ackonwlegment………………………………………………………………..……V
致謝…………………………………………………………………………………V
Content……………………………………………………………….………….VI
List of tables…..…………………………………...………………………………VII
List of figures……………………………………….…………………………….VIII
Chapter 1 Introduction…………………………….……………………………….1
1-1 Enstatite……………………………………….………………………….…..3
1-2 Literature review……………………………………………………………..4
- Water in orthoenstatite………………………..…………………………….4
- Compression behavior of enstatite…………….…………………………...5
1-3 Motivation……………….…………………………………………………...6
Chapter 2 Experimental methods…………………...……………………………10
2-1 High pressure device………………………………..………………………..10
- Large-volume press system……………………..………………………..10
- Diamond Anvils Cell……………………...………………………………11
2-2Chemical analyses…………………………………………………………...12
- Raman Spectroscopy……………………….…………………………….12
- Energy Dispersive Spectroscopy…………………………………………13
- Secondary-ion mass Spectroscopy………….……………………………13
2-3 Sample synthesis and characterization………….……………………………14
2-4 Single-Crystal X-Ray Diffraction……………………………………………16
Chapter 3 Results and discussion……….………………………………………..31
3-1Raman analysis………………………………………………………………31
3-2 Chemical analysis……………………………………………………………32
- Chemical composition………………………………….………………...32
- Water content and Aluminous content in OEn……………………………33
3-3 Diffraction analyses………………………………………….………………34
- Ambient conditions………………………………………………………34
Cell parameters……………………...……………………………………34
Detailed structure analyses……….………………………………………36
- High pressure………..…...………………………………………………39
Chapter 4 Geophysical implications………………………….…………………..55
Reference……………………………………………………...………………...…68
Appendix……………………………………………………..……………………74
參考文獻 Akashi, A., Nishihara, Y., Takahashi, E., Nakajima, Y., Tange, Y., & Funakoshi, K. (2009). Orthoenstatite/clinoenstatite phase transformation in MgSiO3 at high-pressure and high temperature determined by in situ X-ray diffraction: Implications for nature of the X discontinuity. Journal of Geophysical Research-Solid Earth, 114.
Anderson, O. L., Isaak, D., & Oda, H. (1992). HIGH-TEMPERATURE ELASTIC-CONSTANT DATA ON MINERALS RELEVANT TO GEOPHYSICS. Reviews of Geophysics, 30(1), 57-90.
Angel, R. J., Chopelas, A., & Ross, N. L. (1992). STABILITY OF HIGH-DENSITY CLINOENSTATITE AT UPPER-MANTLE PRESSURES. Nature, 358(6384), 322-324.
Angel, R. J., & Jackson, J. M. (2002). Elasticity and equation of state of orthoenstatite, MgSiO3. American Mineralogist, 87(4), 558-561.
Balan, E., Blanchard, M., Yi, H. H., & Ingrin, J. (2013). Theoretical study of OH-defects in pure enstatite. Physics and Chemistry of Minerals, 40(1), 41-50.
Bell, D. R., & Rossman, G. R. (1992). WATER IN EARTHS MANTLE - THE ROLE OF NOMINALLY ANHYDROUS MINERALS. Science, 255(5050), 1391-1397.
Bolfan-Casanova, N., Keppler, H., & Rubie, D. C. (2000). Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth's mantle. Earth and Planetary Science Letters, 182(3-4), 209-221.
Bromiley, G. D., & Bromiley, F. A. (2006). High-pressure phase transitions and hydrogen incorporation into MgSiO3 enstatite. American Mineralogist, 91(7), 1094-1101.
Cammarano, F., & Romanowicz, B. (2007). Insights into the nature of the transition zone from physically constrained inversion of long-period seismic data. Proceedings of the National Academy of Sciences of the United States of America, 104(22), 9139-9144.
Chantel, J., Manthilake, G., Andrault, D., Novella, D., Yu, T., & Wang, Y. B. (2016). Experimental evidence supports mantle partial melting in the asthenosphere. Science Advances, 2(5).
Christensen, N. I., & Lundquist, S. M. (1982). PYROXENE ORIENTATION WITHIN THE UPPER MANTLE. Geological Society of America Bulletin, 93(4), 279-288.
Darling, K. L., Gwanmesia, G. D., Kung, J., Li, B. S., & Liebermann, R. C. (2004). Ultrasonic measurements of the sound velocities in polycrystalline San Carlos olivine in multi-anvil, high-pressure apparatus. Physics of the Earth and Planetary Interiors, 143, 19-31.
Demouchy, S., & Bolfan-Casanova, N. (2016). Distribution and transport of hydrogen in the lithospheric mantle: A review. Lithos, 240, 402-425.
Dera, P., Finkelstein, G. J., Duffy, T. S., Downs, R. T., Meng, Y., Prakapenka, V., et al. (2013). Metastable high-pressure transformations of orthoferrosilite Fs(82). Physics of the Earth and Planetary Interiors, 221, 15-21.
Domeneghetti, M. C., Molin, G. M., & Tazzoli, V. (1995). A CRYSTAL-CHEMICAL MODEL FOR PBCA ORTHO-PYROXENE. American Mineralogist, 80(3-4), 253-267.
Dziewonski, A. M., & Anderson, D. L. (1981). PRELIMINARY REFERENCE EARTH MODEL. Physics of the Earth and Planetary Interiors, 25(4), 297-356.
Ferot, A., & Bolfan-Casanova, N. (2012). Water storage capacity in olivine and pyroxene to 14 GPa: Implications for the water content of the Earth's upper mantle and nature of seismic discontinuities. Earth and Planetary Science Letters, 349, 218-230.
Finkelstein, G. J., Dera, P. K., & Duffy, T. S. (2015). Phase transitions in orthopyroxene (En(90)) to 49 GPa from single-crystal X-ray diffraction. Physics of the Earth and Planetary Interiors, 244, 78-86.
Fischer, K. M., Ford, H. A., Abt, D. L., & Rychert, C. A. (2010). The Lithosphere-Asthenosphere Boundary. Annual Review of Earth and Planetary Sciences, Vol 38, 38, 551-575.
Gavrilenko, P., Ballaran, T. B., & Keppler, H. (2010). The effect of Al and water on the compressibility of diopside. American Mineralogist, 95(4), 608-616.
Grant, K., Ingrin, J., Lorand, J. P., & Dumas, P. (2007). Water partitioning between mantle minerals from peridotite xenoliths. Contributions to Mineralogy and Petrology, 154(1), 15-34.
Green, D. H. (2015). Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth's upper mantle. Physics and Chemistry of Minerals, 42(2), 95-122.
Hirschmann, M. M. (2010). Partial melt in the oceanic low-velocity zone. Physics of the Earth and Planetary Interiors, 179(1-2), 60-71.
Hirschmann, M. M., Aubaud, C., & Withers, A. C. (2005). The storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth and Planetary Science Letters, 236(1-2), 167-181.
Hughjones, D. A., & Angel, R. J. (1994). A COMPRESSIONAL STUDY OF MGSIO3 ORTHOENSTATITE UP TO 8.5-GPA. American Mineralogist, 79(5-6), 405-410.
Ingrin, J., & Skogby, H. (2000). Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. European Journal of Mineralogy, 12(3), 543-570.
Ito, J. (1975). HIGH-TEMPERATURE SOLVENT GROWTH OF ORTHOENSTATITE, MGSIO3, IN AIR. Geophysical Research Letters, 2(12), 533-536.
Jackson, J. M., Sinogeikin, S. V., & Bass, J. D. (1999). The elasticity of MgSiO3 orthoenstatite. American Mineralogist, 84(4), 677-680.
Jackson, J. M., Sinogeikin, S. V., & Bass, J. D. (2007). Sound velocities and single-crystal elasticity of orthoenstatite to 1073 K at ambient pressure. Physics of the Earth and Planetary Interiors, 161(1-2), 1-12.
Jacobsen, S. D. (2006). Effect of water on the equation of state of nominally anhydrous minerals. Water in Nominally Anhydrous Minerals, 62, 321-342.
Jacobsen, S. D., Jiang, F. M., Mao, Z., Duffy, T. S., Smyth, J. R., Holl, C. M., et al. (2008). Effects of hydration on the elastic properties of olivine. Geophysical Research Letters, 35(14).
Jacobsen, S. D., Liu, Z. X., Ballaran, T. B., Littlefield, E. F., Ehm, L., & Hemley, R. J. (2010). Effect of H2O on upper mantle phase transitions in MgSiO3: Is the depth of the seismic X-discontinuity an indicator of mantle water content? Physics of the Earth and Planetary Interiors, 183(1-2), 234-244.
Jordan, T. H. (1978). COMPOSITION AND DEVELOPMENT OF CONTINENTAL TECTOSPHERE. Nature, 274(5671), 544-548.
Karato, S. (2006). Remote sensing of hydrogen in Earth's mantle. Water in Nominally Anhydrous Minerals, 62, 343-+.
Karato, S. (2011). Water distribution across the mantle transition zone and its implications for global material circulation. Earth and Planetary Science Letters, 301(3-4), 413-423.
Karato, S., & Jung, H. (1998). Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157(3-4), 193-207.
Karato, S. I. (2012). On the origin of the asthenosphere. Earth and Planetary Science Letters, 321, 95-103.
Katz, R. F., Spiegelman, M., & Langmuir, C. H. (2003). A new parameterization of hydrous mantle melting. Geochemistry Geophysics Geosystems, 4.
Kohlstedt, D. L., Keppler, H., & Rubie, D. C. (1996). Solubility of water in the alpha, beta and gamma phases of (Mg,Fe)(2)SiO4. Contributions to Mineralogy and Petrology, 123(4), 345-357.
Kumamoto, K. M., Warren, J. M., & Hauri, E. H. (2017). New SIMS reference materials for measuring water in upper mantle minerals. American Mineralogist, 102(3), 537-547.
Kung, J., Jackson, I., & Liebermann, R. C. (2011). High-temperature elasticity of polycrystalline orthoenstatite (MgSiO3). American Mineralogist, 96(4), 577-585.
Liu, W., Kung, J., & Li, B. S. (2005). The elasticity of San Carlos olivine to 8 GPa and 1073 K. Geophysical Research Letters, 32(16).
Mao, Z., & Li, X. Y. (2016). Effect of hydration on the elasticity of mantle minerals and its geophysical implications. Science China-Earth Sciences, 59(5), 873-888.
Matsukage, K. N., Nishihara, Y., & Karato, S. (2005). Seismological signature of chemical differentiation of Earth's upper mantle. Journal of Geophysical Research-Solid Earth, 110(B12).
McDonough, W. F. (1990). CONSTRAINTS ON THE COMPOSITION OF THE CONTINENTAL LITHOSPHERIC MANTLE. Earth and Planetary Science Letters, 101(1), 1-18.
Mierdel, K., & Keppler, H. (2004). The temperature dependence of water solubility in enstatite. Contributions to Mineralogy and Petrology, 148(3), 305-311.
Mierdel, K., Keppler, H., Smyth, J. R., & Langenhorst, F. (2007). Water solubility in aluminous orthopyroxene and the origin of Earth's asthenosphere. Science, 315(5810), 364-368.
Periotto, B., Balic-Zunic, T., Nestola, F., Katerinopoulou, A., & Angel, R. J. (2012). Re-investigation of the crystal structure of enstatite under high-pressure conditions. American Mineralogist, 97(10), 1741-1748.
Peslier, A. H., Luhr, J. F., & Post, J. (2002). Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth and Planetary Science Letters, 201(1), 69-86.
Prechtel, F., & Stalder, R. (2010). FTIR spectroscopy with a focal plane array detector: A novel tool to monitor the spatial OH-defect distribution in single crystals applied to synthetic enstatite. American Mineralogist, 95(5-6), 888-891.
Rauch, M., & Keppler, H. (2002). Water solubility in orthopyroxene. Contributions to Mineralogy and Petrology, 143(5), 525-536.
Rohm, A. H. E., Snieder, R., Goes, S., & Trampert, J. (2000). Thermal structure of continental upper mantle inferred from S-wave velocity and surface heat flow. Earth and Planetary Science Letters, 181(3), 395-407.
Shimizu, K., Ushikubo, T., Hamada, M., Itoh, S., Higashi, Y., Takahashi, E., et al. (2017). H2O, CO2, F, S, Cl, and P2O5 analyses of silicate glasses using SIMS: Report of volatile standard glasses. Geochemical Journal, 51(4), 299-313.
Skogby, H. (2006). Water in natural mantle minerals I: Pyroxenes. Water in Nominally Anhydrous Minerals, 62, 155-167.
Smyth, J. R., Bell, D. R., & Rossman, G. R. (1991). INCORPORATION OF HYDROXYL IN UPPER-MANTLE CLINOPYROXENES. Nature, 351(6329), 732-735.
Smyth, J. R., Mierdel, K., Keppler, H., Langenhorst, F., Dubrovinsky, L., & Nestola, F. (2007). Crystal chemistry of hydration in aluminous orthopyroxene. American Mineralogist, 92(5-6), 973-976.
Stalder, R. (2004). Influence of Fe, Cr and Al on hydrogen incorporation in orthopyroxene. European Journal of Mineralogy, 16(5), 703-711.
Stalder, R., Klemme, S., Ludwig, T., & Skogby, H. (2005). Hydrogen incorporation in orthopyroxene: interaction of different trivalent cations. Contributions to Mineralogy and Petrology, 150(5), 473-485.
Stalder, R., Prechtel, F., & Ludwig, T. (2012). No site-specific infrared absorption coefficients for OH-defects in pure enstatite. European Journal of Mineralogy, 24(3), 465-470.
Stalder, R., & Skogby, H. (2002). Hydrogen incorporation in enstatite. European Journal of Mineralogy, 14(6), 1139-1144.
Stixrude, L., & Lithgow-Bertelloni, C. (2005a). Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone. Journal of Geophysical Research-Solid Earth, 110(B3).
Stixrude, L., & Lithgow-Bertelloni, C. (2005b). Thermodynamics of mantle minerals - I. Physical properties. Geophysical Journal International, 162(2), 610-632.
Suzuki, I., Anderson, O. L., & Sumino, Y. (1983). ELASTIC PROPERTIES OF A SINGLE-CRYSTAL FORSTERITE MG2SIO4, UP TO 1,200-K. Physics and Chemistry of Minerals, 10(1), 38-46.
Takeda, H. (1973). TETRAHEDRAL SIZES OF ORTHOPYROXENES AND SILICON-ALUMINUM ORDERING. American Mineralogist, 58(11-1), 1096-1097.
Thompson, A. B. (1992). WATER IN THE EARTHS UPPER MANTLE. Nature, 358(6384), 295-302.
Thompson, R. M., & Downs, R. T. (2003). Model pyroxenes I: Ideal pyroxene topologies. American Mineralogist, 88(4), 653-666.
Thybo, H. (2006). The heterogeneous upper mantle low-velocity zone. Tectonophysics, 416(1-4), 53-79.
Ulmer, P., & Stalder, R. (2001). The Mg(Fe)SiO3 orthoenstatite-clinoenstatite transitions at high pressures and temperatures determined by Raman-spectroscopy on quenched samples. American Mineralogist, 86(10), 1267-1274.
Woodland, A. B. (1998). The orthorhombic to high-P monoclinic phase transition in Mg-Fe pyroxenes: Can it produce a seismic discontinuity? Geophysical Research Letters, 25(8), 1241-1244.
Wright, K. (2006). Atomistic models of OH defects in nominally anhydrous minerals. Water in Nominally Anhydrous Minerals, 62, 67-83.
Xu, J. G., Zhang, D. Z., Fan, D. W., Zhang, J. S., Hu, Y., Guo, X. Z., et al. (2018). Phase Transitions in Orthoenstatite and Subduction Zone Dynamics: Effects of Water and Transition Metal Ions. Journal of Geophysical Research-Solid Earth, 123(4), 2723-2737.
Yang, H. X., & Ghose, S. (1995). HIGH-TEMPERATURE SINGLE-CRYSTAL X-RAY-DIFFRACTION STUDIES OF THE ORTHO-PROTO PHASE-TRANSITION IN ENSTATITE, MG2SI2O6 AT 1360 K. Physics and Chemistry of Minerals, 22(5), 300-310.
Zhang, J. S., Dera, P., & Bass, J. D. (2012). A new high-pressure phase transition in natural Fe-bearing orthoenstatite. American Mineralogist, 97(7), 1070-1074.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw