進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208201900212300
論文名稱(中文) 探討異染色質-磷酸烯醇丙酮酸羧化激酶之中軸抑制高糖飲食誘導的腫瘤進程
論文名稱(英文) The HP1-PEPCK axis suppresses the HDS-induced tumor progression
校院名稱 成功大學
系所名稱(中) 生理學研究所
系所名稱(英) Department of Physiology
學年度 107
學期 2
出版年 108
研究生(中文) 劉孟璇
研究生(英文) Meng-Syuan Liu
學號 S36064038
學位類別 碩士
語文別 英文
論文頁數 47頁
口試委員 指導教授-顏賢章
口試委員-張純純
口試委員-蔡曜聲
口試委員-黃柏憲
中文關鍵字 高糖飲食  異染色質蛋白1  磷酸烯醇丙酮酸羧化激酶  果蠅癌症生物模式系統 
英文關鍵字 High-dietary-sugar (HDS)  Heterochromatin protein1 (HP1)  Phosphoenolpyruvate carboxykinase (PEPCK)  Drosophila tumor model 
學科別分類
中文摘要 近年來因高糖飲食所造成的疾病逐漸上升如第二型糖尿病及癌症,有文獻指出高糖飲食容易助長腫瘤的增生及造成的胰島素抗性和避免細胞凋亡促使腫瘤的惡化。異染色質蛋白1 (heterochromatin protein 1)參與異染色質的形成及在組蛋白3賴氨酸9的位點上被雙甲基化 (H3K9me2)修飾而抑制基因的轉錄表達,根據文獻指出在不同的人類癌症中,異染色質蛋白1的表達量有下降的趨勢。在實驗室過去的研究中,我們發現異染色質蛋白1的上調會抑制高糖飲食所誘導的腫瘤進程,而此抑制過程可能透過下調糖質新生的重要酵素-磷酸烯醇丙酮酸羧化激酶(Phosphoenolpyruvate carboxykinase, pepck),磷酸烯醇丙酮酸羧化激酶有兩種亞型,ㄧ種是位於細胞質的PEPCK-C (PEPCK1);另一種是位於粒線體的PEPCK-M (PEPCK2),然而,目前關於表觀遺傳分子調控磷酸烯醇丙酮酸羧化激酶在高糖飲食誘導的腫瘤進程中是不清楚的,本研究以果蠅為癌症生物系統模式,探討關於異染色質蛋白1-磷酸烯醇丙酮酸羧化激酶之中軸抑制高糖飲食誘導的腫瘤進程,我們發現在餵食高糖飲食的腫瘤果蠅中過度表達異染色質蛋白1能下降烯醇丙酮酸羧化激酶1的mRNA表現量,進一步的利用染色質免疫沉澱方法 (Chromatin Immunoprecipitation, ChIP),我們發現異染色質蛋白1介導的異染色質直接與烯醇丙酮酸羧化激酶1基因區域相互作用,在果蠅Ras/Src誘導的腫瘤中,磷酸烯醇丙酮酸羧化激酶的表現量隨著腫瘤進程而增加;然而在抑制磷酸烯醇丙酮酸羧化激酶後則有效的減少腫瘤組織的大小並且下降了發育遲緩及增加腫瘤動物的生存率,00除此之外,在高糖飲食誘導的腫瘤進程中下調磷酸烯醇丙酮酸羧化激酶可以抑制Wingless/Wnt 訊息傳遞路徑及增加基因組穩定性。綜合以上所述,這些證據顯示在高糖飲食誘導的腫瘤進程中,異染色質蛋白1-磷酸烯醇丙酮酸羧化激酶中軸所扮演的重要腳色,而我們的研究助於從表觀遺傳學的角度針對癌症的代謝提供有效的治療與解決的方向。
英文摘要 High-dietary-sugar (HDS) induces metabolic diseases and aggravates tumor progression through upregulating Wingless/Wnt signaling. It has been shown that levels of heterochromatin protein 1 (HP1), a key epigenetic molecule of heterochromatin formation associated with histone 3 lysine 9 methylation, including dimethylation (H3K9me2), are decreased in various human cancers. Unpublished data in our lab have found that HP1 reduces HDS-induced Drosophila tumor progression likely via regulating metabolism-related genes including phosphoenolpyruvate carboxykinase (pepck). PEPCKs, including PEPCK1 and PEPCK2, have been shown to promote tumor growth by reorganizing metabolic processes. However, the molecular mechanism by which HP1-PEPCK axis mediates the progression of HDS-induced tumor remains unclear. Thus, I hypothesize that the HP1-PEPCK axis inhibits the HDS-induced tumor progression through heterochromatin-mediated pepcks downregulation. Here, we find that HP1-mediated heterochromatin directly interacts with the pepck1 gene as shown by the ChIP assay with an anti-H3K9me2 antibody in flies overexpressing HP1. Furthermore, overexpression of HP1 reduces pepck1 expression in HDS-induced tumor tissues, in Drosophila K-Ras/Src tumor models. pepck1/2 are upregulated during HDS-induced tumor progression. Moreover, pepck1/2 knockdown reduces tumor size and increases animal survival in HDS-induced tumor animals. Importantly, knockdown of pepck1/2 decreases Wingless/dWnt-signaling and increases genome stability in HDS-induced tumor cells. Taken together, these results suggest that the HP1-PEPCK axis inhibits the HDS-induced tumor progression via heterochromatin-mediated direct downregulation of pepcks. Our research reveals epigenetically regulated metabolic targets for developing more effective cancer therapy.
論文目次 Abstract IV
中文摘要 V
Acknowledgement VI
Introduction 1
1-1Metabolism in tumor development 1
1-2 Tumor development and high dietary sugar 1
1-3 The role of PEPCKs in tumor development 2
1-4 Interplay between epigenetics and metabolism in tumor development 3
1-5 Drosophila high dietary sugar-induced tumor model 4
Materials and Methods 6
2-1 Fly stocks: 6
2-2 Fly cultures: 6
2-4 Immunofluorescence: 7
2-5 Quantitative RT-PCR: 8
Results 9
3-1 HP1 directly downregulates pepck1 in vivo 9
3-2 pepck1/2 are upregulated during HDS-induced tumor progression 9
3-3 Knockdown of pepck1/2 suppresses HDS-induced tumor progression 10
3-4 Knockdown of pepck1/2 reduces Wingless/Wnt singling in HDS-induced tumor cells 11
3-5 Downregulation of pepck1/2 increases genome stability in HDS-induced tumor cells 12
3-6 Knockdown of pepck1/2 reduces HDS-induced tumor burdens to reduce developmental delay and increase animal survival 13
3-7 Targeted pepck1/2 silencing by RNA interference (RNAi) is effective in Drosophila 14
Discussion 15
4-1 Summary of this research 15
4-2 The advantages and disadvantages of Drosophila in HDS-induced cancer model 18
4-3 The significance of this study 18
References 20
Figures 27
Figure 1. High dietary sugar aggravates tumor progression in a Drosophila tumor model. 27
Figure 2. HP1 directly downregulates pepck1 in vivo. 28
Figure 3. pepck1/2 are upregulated during HDS-induced tumor progression 30
Figure 4. Knockdown of pepck1/2 suppresses HDS-induced tumor progression 33
Figure 5. Knockdown of pepck1/2 reduces Wingless/Wnt singling in HDS-induced tumor cells 36
Figure 6. Downregulation of pepck1/2 increases genome stability in HDS-induced tumor cells 39
Figure 7. Knockdown of pepck1/2 reduces HDS-induced tumor burdens to reduce developmental delay and increase animal survival. 41
Figure 8. Targeted pepck1/2 silencing by RNA interference (RNAi) is effective in Drosophila 43
Figure 9. Model of the HP1-PEPCK axis suppressing the HDS-induced tumor progression. 44
Figure S1. Overexpression of HP1 suppresses HDS-induced tumor progressi 45
Table S1. Genotypes of flies used in the experiments of this thesis 47
參考文獻 Adekola, K., Rosen, S. T., & Shanmugam, M. (2012). Glucose transporters in cancer metabolism. Curr Opin Oncol, 24(6), 650-654. doi:10.1097/CCO.0b013e328356da72
Broustas, C. G., & Lieberman, H. B. (2014). DNA damage response genes and the development of cancer metastasis. Radiat Res, 181(2), 111-130. doi:10.1667/rr13515.1
Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-1205. doi:10.1016/j.cell.2012.05.012
Dialynas, G. K., Vitalini, M. W., & Wallrath, L. L. (2008). Linking Heterochromatin Protein 1 (HP1) to cancer progression. Mutat Res, 647(1-2), 13-20. doi:10.1016/j.mrfmmm.2008.09.007
Eichenlaub, T., Villadsen, R., Freitas, F. C. P., Andrejeva, D., Aldana, B. I., Nguyen, H. T., . . . Cohen, S. M. (2018). Warburg Effect Metabolism Drives Neoplasia in a Drosophila Genetic Model of Epithelial Cancer. Curr Biol, 28(20), 3220-3228.e3226. doi:10.1016/j.cub.2018.08.035
Fortini, M. E., Skupski, M. P., Boguski, M. S., & Hariharan, I. K. (2000). A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol, 150(2), F23-30. doi:10.1083/jcb.150.2.f23
Hamanaka, R. B., & Chandel, N. S. (2012). Targeting glucose metabolism for cancer therapy. J Exp Med, 209(2), 211-215. doi:10.1084/jem.20120162
Healy, M. E., Lahiri, S., Hargett, S. R., Chow, J. D., Byrne, F. L., Breen, D. S., . . . Hoehn, K. L. (2016). Dietary sugar intake increases liver tumor incidence in female mice. Sci Rep, 6, 22292. doi:10.1038/srep22292
Heigwer, F., Port, F., & Boutros, M. (2018). RNA Interference (RNAi) Screening in Drosophila. Genetics, 208(3), 853-874. doi:10.1534/genetics.117.300077
Hirabayashi, S., Baranski, T. J., & Cagan, R. L. (2013). Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell, 154(3), 664-675. doi:10.1016/j.cell.2013.06.030
Hu, C. M., Tien, S. C., Hsieh, P. K., Jeng, Y. M., Chang, M. C., Chang, Y. T., . . . Lee, W. H. (2019). High Glucose Triggers Nucleotide Imbalance through O-GlcNAcylation of Key Enzymes and Induces KRAS Mutation in Pancreatic Cells. Cell Metab, 29(6), 1334-1349.e1310. doi:10.1016/j.cmet.2019.02.005
Hussain, R., Shaukat, Z., Khan, M., Saint, R., & Gregory, S. L. (2017). Phosphoenolpyruvate Carboxykinase Maintains Glycolysis-driven Growth in Drosophila Tumors. Sci Rep, 7(1), 11531. doi:10.1038/s41598-017-11613-2
Johnsen, J. I., Wickstrom, M., & Baryawno, N. (2016). Wingless/beta-catenin signaling as a modulator of chemoresistance in cancer. Mol Cell Oncol, 3(2), e1131356. doi:10.1080/23723556.2015.1131356
Jonchere, V., & Bennett, D. (2013). Validating RNAi phenotypes in Drosophila using a synthetic RNAi-resistant transgene. PLoS One, 8(8), e70489. doi:10.1371/journal.pone.0070489
Keating, S. T., & El-Osta, A. (2015). Epigenetics and metabolism. Circ Res, 116(4), 715-736. doi:10.1161/circresaha.116.303936
Kim, J., Xu, S., Xiong, L., Yu, L., Fu, X., & Xu, Y. (2017). SALL4 promotes glycolysis and chromatin remodeling via modulating HP1alpha-Glut1 pathway. Oncogene, 36(46), 6472-6479. doi:10.1038/onc.2017.265
Kim, J. A., & Yeom, Y. I. (2018). Metabolic Signaling to Epigenetic Alterations in Cancer. Biomol Ther (Seoul), 26(1), 69-80. doi:10.4062/biomolther.2017.185
Kinner, A., Wu, W., Staudt, C., & Iliakis, G. (2008). Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res, 36(17), 5678-5694. doi:10.1093/nar/gkn550
Lake, C. M., Holsclaw, J. K., Bellendir, S. P., Sekelsky, J., & Hawley, R. S. (2013). The development of a monoclonal antibody recognizing the Drosophila melanogaster phosphorylated histone H2A variant (gamma-H2AV). G3 (Bethesda), 3(9), 1539-1543. doi:10.1534/g3.113.006833
Lee, Y. H., & Ann, D. K. (2015). Bi-phasic expression of Heterochromatin Protein 1 (HP1) during breast cancer progression: Potential roles of HP1 and chromatin structure in tumorigenesis. J Nat Sci, 1(7), e127.
Li, Y., Luo, S., Ma, R., Liu, J., Xu, P., Zhang, H., . . . Huang, B. (2015). Upregulation of cytosolic phosphoenolpyruvate carboxykinase is a critical metabolic event in melanoma cells that repopulate tumors. Cancer Res, 75(7), 1191-1196. doi:10.1158/0008-5472.can-14-2615
Liberti, M. V., & Locasale, J. W. (2016). The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci, 41(3), 211-218. doi:10.1016/j.tibs.2015.12.001
Liu, M. X., Jin, L., Sun, S. J., Liu, P., Feng, X., Cheng, Z. L., . . . Xiong, Y. (2018). Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. Oncogene, 37(12), 1637-1653. doi:10.1038/s41388-017-0070-6
Ma, X., Lu, J. Y., Dong, Y., Li, D., Malagon, J. N., & Xu, T. (2017). PP6 Disruption Synergizes with Oncogenic Ras to Promote JNK-Dependent Tumor Growth and Invasion. Cell Rep, 19(13), 2657-2664. doi:10.1016/j.celrep.2017.05.092
Manent, J., Banerjee, S., de Matos Simoes, R., Zoranovic, T., Mitsiades, C., Penninger, J. M., . . . Richardson, H. E. (2017). Autophagy suppresses Ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species. Oncogene, 36(40), 5576-5592. doi:10.1038/onc.2017.175
Mendez-Lucas, A., Hyrossova, P., Novellasdemunt, L., Vinals, F., & Perales, J. C. (2014). Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability. J Biol Chem, 289(32), 22090-22102. doi:10.1074/jbc.M114.566927
Mirzoyan, Z., Sollazzo, M., Allocca, M., Valenza, A. M., Grifoni, D., & Bellosta, P. (2019). Drosophila melanogaster: A Model Organism to Study Cancer. Front Genet, 10, 51. doi:10.3389/fgene.2019.00051
Montal, E. D., Dewi, R., Bhalla, K., Ou, L., Hwang, B. J., Ropell, A. E., . . . Girnun, G. D. (2015). PEPCK Coordinates the Regulation of Central Carbon Metabolism to Promote Cancer Cell Growth. Mol Cell, 60(4), 571-583. doi:10.1016/j.molcel.2015.09.025
Musselman, L. P., Fink, J. L., Narzinski, K., Ramachandran, P. V., Hathiramani, S. S., Cagan, R. L., & Baranski, T. J. (2011). A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech, 4(6), 842-849. doi:10.1242/dmm.007948
Musselman, L. P., & Kuhnlein, R. P. (2018). Drosophila as a model to study obesity and metabolic disease. J Exp Biol, 221(Pt Suppl 1). doi:10.1242/jeb.163881
Nusse, R., & Clevers, H. (2017). Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169(6), 985-999. doi:10.1016/j.cell.2017.05.016
Pandey, U. B., & Nichols, C. D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev, 63(2), 411-436. doi:10.1124/pr.110.003293
Pavlova, N. N., & Thompson, C. B. (2016). The Emerging Hallmarks of Cancer Metabolism. Cell Metab, 23(1), 27-47. doi:10.1016/j.cmet.2015.12.006
Poon, C. L. C., Brumby, A. M., & Richardson, H. E. (2018). Src Cooperates with Oncogenic Ras in Tumourigenesis via the JNK and PI3K Pathways in Drosophila epithelial Tissue. Int J Mol Sci, 19(6). doi:10.3390/ijms19061585
Read, R. D., Bach, E. A., & Cagan, R. L. (2004). Drosophila C-terminal Src kinase negatively regulates organ growth and cell proliferation through inhibition of the Src, Jun N-terminal kinase, and STAT pathways. Mol Cell Biol, 24(15), 6676-6689. doi:10.1128/mcb.24.15.6676-6689.2004
Schatoff, E. M., Leach, B. I., & Dow, L. E. (2017). Wnt Signaling and Colorectal Cancer. Curr Colorectal Cancer Rep, 13(2), 101-110. doi:10.1007/s11888-017-0354-9
Schwaiger, M., Kohler, H., Oakeley, E. J., Stadler, M. B., & Schubeler, D. (2010). Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res, 20(6), 771-780. doi:10.1101/gr.101790.109
Tang, Y., Zhang, Y., Wang, C., Sun, Z., Li, L., Cheng, S., & Zhou, W. (2018). Overexpression of PCK1 Gene Antagonizes Hepatocellular Carcinoma Through the Activation of Gluconeogenesis and Suppression of Glycolysis Pathways. Cell Physiol Biochem, 47(1), 344-355. doi:10.1159/000489811
Tasevska, N., Jiao, L., Cross, A. J., Kipnis, V., Subar, A. F., Hollenbeck, A., . . . Potischman, N. (2012). Sugars in diet and risk of cancer in the NIH-AARP Diet and Health Study. Int J Cancer, 130(1), 159-169. doi:10.1002/ijc.25990
Tuo, L., Xiang, J., Pan, X., Gao, Q., Zhang, G., Yang, Y., . . . Tang, N. (2018). PCK1 Downregulation Promotes TXNRD1 Expression and Hepatoma Cell Growth via the Nrf2/Keap1 Pathway. Front Oncol, 8, 611. doi:10.3389/fonc.2018.00611
Tuo, L., Xiang, J., Pan, X., Hu, J., Tang, H., Liang, L., . . . Tang, N. (2019). PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27(Kip1) axis. J Exp Clin Cancer Res, 38(1), 50. doi:10.1186/s13046-019-1029-y
Turgeon, M. O., Perry, N. J. S., & Poulogiannis, G. (2018). DNA Damage, Repair, and Cancer Metabolism. Front Oncol, 8, 15. doi:10.3389/fonc.2018.00015
Tzika, E., Dreker, T., & Imhof, A. (2018). Epigenetics and Metabolism in Health and Disease. Front Genet, 9, 361. doi:10.3389/fgene.2018.00361
Ugur, B., Chen, K., & Bellen, H. J. (2016). Drosophila tools and assays for the study of human diseases. Dis Model Mech, 9(3), 235-244. doi:10.1242/dmm.023762
Vincent, E. E., Sergushichev, A., Griss, T., Gingras, M. C., Samborska, B., Ntimbane, T., . . . Jones, R. G. (2015). Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation and Enables Glucose-Independent Tumor Growth. Mol Cell, 60(2), 195-207. doi:10.1016/j.molcel.2015.08.013
Wangler, M. F., Yamamoto, S., & Bellen, H. J. (2015). Fruit flies in biomedical research. Genetics, 199(3), 639-653. doi:10.1534/genetics.114.171785
Zhan, T., Rindtorff, N., & Boutros, M. (2017). Wnt signaling in cancer. Oncogene, 36(11), 1461-1473. doi:10.1038/onc.2016.304
Zhao, Y., & Chen, S. (2019). Targeting DNA Double-Strand Break (DSB) Repair to counteract tumor radio-resistance. Curr Drug Targets. doi:10.2174/1389450120666190222181857
Zoranovic, T., Manent, J., Willoughby, L., Matos de Simoes, R., La Marca, J. E., Golenkina, S., . . . Penninger, J. M. (2018). A genome-wide Drosophila epithelial tumorigenesis screen identifies Tetraspanin 29Fb as an evolutionarily conserved suppressor of Ras-driven cancer. PLoS Genet, 14(10), e1007688. doi:10.1371/journal.pgen.1007688
Han, J., Zhang, L., Guo, H., Wysham, W. Z., Roque, D. R., Willson, A. K., . . . Bae-Jump, V. L. (2015). Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol Oncol, 138(3), 668-675. doi:10.1016/j.ygyno.2015.06.036
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw