進階搜尋


 
系統識別號 U0026-2208201819514300
論文名稱(中文) 利用全球衛星定位系統及雷達差分干涉法之成果探討2017年Mw 6.5菲律賓蘇里高地震之震源特性
論文名稱(英文) Coseismic Source Model of the 2017 Mw 6.5 Surigao, Philippines Earthquake from GPS and DInSAR data
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 106
學期 2
出版年 107
研究生(中文) 劉珈瑋
研究生(英文) Jia-Wei Liu
學號 P66051054
學位類別 碩士
語文別 英文
論文頁數 100頁
口試委員 口試委員-饒瑞鈞
口試委員-張午龍
口試委員-莊昀叡
指導教授-景國恩
中文關鍵字 蘇里高地震  全球衛星定位系統  雷達差分干涉法  同震滑移模型 
英文關鍵字 Surigao earthquake  GPS  DInSAR  Distributed-Slip model 
學科別分類
中文摘要 2017年規模6.5蘇里高地震發生於菲律賓民答那峨島(Mindanao Island)東北方外海約10公里處,震源深度約10公里,並造成周遭地區傳出災情,其中尤以民答那峨島東北部的蘇里高市最為嚴重。此次地震提供了解研究區域震源特性的機會,並透過建置同震模型來探討研究區域的斷層特性。藉由10個GPS測站資料計算地震事件之同震位移量,最大水平位移量出現在蘇里高市附近的連續站約為14公分,但由於GPS測站分布太稀疏,無法有效解析大區域同震位移,因此本研究也使用Sentinel衛星影像的觀測資料,採用了雷達差分干涉法(DInSAR)處理衛星影像以求得視衛星方向(LOS)同震位移量,結果顯示蘇里高市南部有明顯視衛星方向22 公分位移落差。為了利用兩種觀測資料建置同震模型,透過將GPS位移投影至視衛星方向進行同調性分析,並確定兩種不同觀測資料具有高相關性後,利用馬可夫蒙地卡羅法(Markov Chain Monte Carlo algorithm)來搜尋此次地震之斷層幾何,並透過同震滑移模型(Distributed-slip model)反演出最佳同震模型解,結果顯示此次地震為走向滑移事件,而滑移量主要出現在三條斷層,最大滑移量約1公尺出靠近震央附近地面,另外在民答那峨島東北部斷層破裂面地區的滑移量顯示約為60公分,也與野外調查的數據相近,而蘇里高市東南方附近深度18公里以下觀察到一破裂面,推測此條斷層的滑移量是造成蘇里高市嚴重災害的主要原因。而後透過同震模型所計算出的震矩,根據歷史地震的地震能量釋放數據評估民答那峨島東北部發生規模6以上的地震重現期約為65年,此外利用經驗公式得到本次地震造成較小的平均滑移量和較大的破裂面的成果,並從而判斷研究區域具有斷層潛移至鎖定的過渡帶特性。
英文摘要 2017 Mw 6.5 Surigao earthquake occurred at 10 km far away from the northeastern Mindanao Island, Philippines. Its focal depth is 10 km while caused damage in neighboring islands, especially in the Surigao City on northeastern Mindanao Island is the most serious. This earthquake provides an opportunity to build a coseismic source model of northeastern Mindanao Island to recognize the fault characteristics. Two geodetic observations of GPS and DInSAR data are used to analyze the crustal deformation of this event. 10 GPS stations data processed with Bernese v.5.0 software to obtain the offset in horizontal and vertical components. The maximum coseismic GPS horizontal displacement is about 14 cm in station PSUR near Surigao City. To obtain a large area of ground motion, Sentinel-1 SAR images are applied to generate a interferogram with GMTSAR software. The largest LOS change appears in the south of Surigao City with an offset of 22 cm. While two datasets which show high-correlation by projection analysis are used to establish the source model together. The optimal fault geometry is obtained from the uniform-slip model with Markov Chain Monte Carlo algorithm while the slip distribution is verified from the distributed-slip model. The optimal result reveals this is a strike-slip event and the maximum slip of 1 m appears near the epicenter near the surface. An asperity on northeastern Mindanao Island ruptured into the surface shows a large slip of 60 cm slip as similar as the offset of surface rupture. Moreover, an asperity shows out beneath surface with 18 km depth in the southeast of Surigao City which is considered as the main factor to cause the serious damage. The energy release of this earthquake mainly show in three fault segments. Compared the moment with historical earthquake events, the earthquake recurrence interval of northeastern Mindanao Island is about 65 years. The model result also indicates the earthquake made a smaller mean slip and larger rupture area on three fault segments which features as the transition zone between creeping and locked.
論文目次 摘要............ I
Abstract........... II
Acknowledgments........ III
Contents.......... IV
List of Tables......... VI
List of Figures.......... VII
1. Introduction.......... 1
2. Geological Background........ 6
3. Coseismic GPS Displacements...... 12
3.1 Analysis of GPS Coordinate Time Series.... 14
3.2 Coseismic GPS Displacement Field..... 18
4. Coseismic LOS Displacements...... 22
4.1 SAR Image.......... 22
4.2 DInSAR......... 25
4.2.1 GMTSAR......... 27
4.2.2 Interferogram Analysis....... 30
4.3 Coseismic LOS Displacement Field.... 33
4.4 Assessment of Vegetation Effect to DInSAR Data.. 36
4.5 Correlation Analysis....... 40
5. Coseismic Source Model........ 48
5.1 Downsampling......... 48
5.2 Fault Configurations........ 53
5.2 Uniform-Slip Model....... 59
5.3 Distributed-Slip Model....... 73
6. Discussion......... 83
6.1 Checkerboard Test....... 83
6.2 Earthquake Potential Assessment and Recurrence Interval.. 87
7. Conclusions.......... 93
8. References......... 95
參考文獻 Aurelio, M. A. (2000), Shear partitioning in the Philippines: Constraints from Philippine Fault and global positioning system data, The Island Arc, 9, pp. 584 – 597.

Aurelio, M. A., E. Barrier, C. Rangin, and C. Muller (1990), The Philippine Fault: a young or an inherited feature, paper presented at Orogenesis in Action: Tectonics and processes in the west equatorial Pacific margin, London, April, pp. 18 – 20.

Bacolcol, T. (2003), Etude geodesique de la faille Philippine dans les Visayas (PhD. Dissertation), Universite Pierre et Marie Curie, France.

Barka, A. A., and K. Kadinsky-Cade (1988), Strike‐slip fault geometry in Turkey and its influence on earthquake activity, Tectonics, VOL. 7, NO. 3, pp. 663 – 684.

Barrier, E., P. Huchon, M. Aurelio (1991), Philippine Fault: A key for Philippine kinematics, Geology, 19, pp. 32 – 35.

Barrier, E., C. Rangin, C. Muller, R. Quebral, and M. Aurelio (1988), Mechanism and age of the Philippine Fault in the Masbate, Leyte and Surigao areas [Philippines], Int. Syrup. Geodynamic Evolution of Eastern Eurasian Margins, Paris, p.26.

Bautista MLP, Oike K (2000) Estimation of the magnitudes and epicenters of Philippine historical earthquakes, Tectonophys, 317, pp. 137 – 169.

Béjar-Pizarro M., C. Guardiola-Albert, R. P. García-Cárdenas, G. Herrera, A. Barra, A. L. Molina, S. Tessitore, A. Staller, J. A. Ortega-Becerril, and R. P. García-García (2016), Interpolation of GPS and Geological Data Using InSAR Deformation Maps: Method and Application to Land Subsidence in the Alto Guadalentín Aquifer (SE Spain), Remote Sensing, 2016, 8, p. 965.

Chen, C. W., and H. A. Zebker (2000), Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms, Journal of the Optical Society of America A, VOL. 17, Issue 3, pp. 401 – 414.

Ching, K. E., K. M. Johnson, R. J. Rau, R. Y. Chuang, L. C. Kuo, and P. L. Leu (2010), Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model, Earth and Planetary Science Letters, 301 (2011), pp. 78 – 86.

Ching, K. E., R. J. Rau, and Y. Zeng (2007), Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements, Journal of Geophysical Research, VOL. 112, B06422.

Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (2007), Bernese GPS Software Version 5.0, Astronomical Institute, University of Bern, p. 612.

Duquesnoy, T., E. Barrier, M. Kasser, M. Aurelio, R. Gaulon, R. ss Punongbayan, and C. Rangin (1994), Detection of creep results of geodetic Philippine along the Philippine Fault: First measurements on Leyte island, central Philippines, Geophysical Research Letters, 21 (11), pp. 975 – 978.

Dziewonski, A. M., T. A. Chou, and J. H. Woodhouse (1981), Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Seismicity, Journal of Geophysical Research, VOL. 86, NO. B4, pp. 2825 – 2852.

Farr, T. G., et al. (2007), The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004.

Fitch, T. J. (1972), Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific, J. Geophys. Res., 77, 23, pp. 4432 – 4460.

Ghosh, D., and D. Chakravarty (2011), Integration of DInSAR Technique and Conventional Methods through GIS for Verification of Quantified Surface Changes, Journal of the Indian Society of Remote Sensing, VOL. 40, pp. 179 – 190.

Goldstein, R. M., and C. L. Werner (1998), Radar interferogram filtering for geophysical applications, Geophysical Research Letters, 25(21), pp. 4035 – 4038.

Goldstein, R. M., and C. L. Werner (1997), Radar ice motion interferometry, 3rd ERS Symp., vol. 2, Florence, Italy, pp. 969 – 972.

Hall, R. (2000), Neogene sutures in eastern Indonesia, Egyptian Journal of Medical Human Genetics, Journal of Asian Earth Sciences 18 (2000), pp. 781 – 808.

Hall, R. (1987), Plate boundary evolution in the Halmahera region, Indonesia, Tectonophysics, 144, p. 337352.

Jelks, J. (2015), SAR Interferometry (InSAR): principles.

Kanamori, H. (1977), The energy release in great earthquakes, Journal of Geophysical Research, 82 (20), pp. 2981 – 2987.

Kobayashi, T., M. Tobita, M. Koarai, T. Okatani, A. Suzuki, Y. Noguchi, M. Yamanaka, and B. Miyahara (2012), InSAR-derived crustal deformation and fault models of normal faulting earthquake (Mj 7.0) in the Fukushima-Hamadori area, Earth Planets Space, 64, pp. 1209 – 1221.

Kolb, J., and S. Hagemann (2009), Structural control of low-sulfidation epithermal gold mineralization in the Rosario–Bunawan district, East Mindanao Ridge, Philippines, Miner Deposita, 44, pp. 795 – 815.

Liu, Y., C. Xu, Y. Wen, and H. S. Fok (2015), A New Perspective on Fault Geometry and Slip Distribution of the 2009 Dachaidan Mw 6.3 Earthquake from InSAR Observations, Sensors, 2015, 15, pp. 16786 – 16803.

Mai, P. M., and G. C. Beroza (2000), Source scaling properties from finitefault-rupture models, Bull. Seismol. Soc. Am., 90, pp. 604 – 615.
Massonnet, D., and K. L. L. Feigl (1998), Radar Interferometry and Its Application to Changes in the Earth’s Surface, American Geophysical Union, 97RG03139, 441-500.

Metal Mining Agency of Japan (1974), Report on the geological survey of eastern Mindanao (consolidated report), Overseas Technical Cooperation Agency, Japan.
Metropolis, N. et al (1953), Equations of state calculations by fast computing machines, J. Chem. Phys., 21, pp. 1087 – 1092.

Miller, M. M. (2015), Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms, Journal of Geophysical Research: Solid Earth, 120, pp. 5822 – 5842.

Pepe, A., and F. Calo (2017), A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements, Multidisciplinary Digital Publishing Institute, 7 (12), p. 1264.

Perez, J. S., and Tsutsumi H. (2017), Tectonic geomorphology and paleoseismology of the Surigao segment of the Philippine fault in northeastern Mindanao Island, Philippines, Tectonophysics, 699, pp. 244 – 257.

Perez, J. S., and Tsutsumi, H. (2016), Historical and Paleoseismic Evidence of the 1879 Mw 7.4 Surigao Earthquake, Philippines, 11th Asian Seismological Commission General Assembly.

Philippine Bureau of Mines (1963), 1: 1,000,000 Geological map of the Philippines, Manila.

Pubellier, M., R. Quebral, C. Rangin, B. Deffontaines, C. Muller, J. Butterlin, and J. Manzano (1991), The Mindanao collision zone: a soft collision event within a continuous Neogene strike-slip setting, J. of SE Asian Earth Science, 6, 314, pp. 239 – 248.

Quebral, R. D. (1996), The onset of movement on the Philippine Fault in eastern Mindanao: A transition from a collision to a strike-slip environment, TECTONICS, VOL. 15, NO. 4, pp. 713 – 726.

Quebral, R. and M. A. Aurelio (1990), Studies on the southern termination of the Philippine Fault, GEOCON'90: the 3rd Annual Geological Convention, Geological Society of the Philippines, UPNIGS, Dec.5 – 7.

Rutland, R. W. R. (1967), A tectonic study of part of the Philippine fault zone, Quarterly Journal of the Geological Society, 123 (1 - 4), pp. 293 – 323.

Sandwell, D. T., R. Mellors, T. Xiaopen, M. Wei, and P. Wessel (2016), GMTSAR: An InSAR Processing System Based on Generic Mapping Tools Second Edition.

Sandwell, D. T., R. Mellors, T. Xiaopen, M. Wei, and P. Wessel (2011), GMTSAR: An InSAR Processing System Based on Generic Mapping Tools.

Tsutsumi, H., and J. S. Perez (2013), Philippine Fault Zone Maps - Philippine Institute of the Philippine fault based on aerial photograph interpretation, Active Fault Research, No. 39, pp. 29 – 37.

Tsutsumi, H., Perez, J. S. (2011), Along strike variation of seismic behavior of the Philippine fault based on historical- and paleo-seismicity, American Geophysical Union, Fall Meeting 2011.

Wdowinski, S., Y. Bock, J. Zhang, and P. Fang (1997), Southern California Permanent GPS Geodetic Array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophys. Res., 102, pp. 18057 – 18070.

Wright, T. J., Z. Lu, and C. Wicks (2003), Source model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR, Geophysical Research Letters, VOL. 30, NO. 18, p. 1974.

Wright, T. J., B. Parsons, J. Jackson, M. Haynes, E. Fielding, P. England, and P. Clarke (1999), Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic body wave modelling, Earth Planet. Sci. Lett., 172, pp. 23 – 37.

Wyss, M. (1979). Estimating maximum expectable magnitude of earthquakes from fault dimensions, Geology, 7, pp. 336 – 340.

Zeng, Y., and J. G. Anderson (1996), A composite source modeling of the 1994 Northridge earthquake using genetic algorithms, Bull. Seismol. Soc. Am., 86, pp. 71 – 83.

Zwieback, S., and I. Hajnsek (2014), The impact of vegetation growth on DInSAR coherence regions and estimated deformations, 2014 IEEE Geoscience and Remote Sensing Symposium.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw