進階搜尋


下載電子全文  
系統識別號 U0026-2208201819173000
論文名稱(中文) 無洩漏風險之二氧化碳地質封存之數值模擬研究
論文名稱(英文) Numerical Study of CO2 Geological Storage without CO2 Leakage Risk in a Saline Aquifer
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 馬瑋謙
研究生(英文) Wei-Chien Ma
學號 N46051033
學位類別 碩士
語文別 英文
論文頁數 91頁
口試委員 指導教授-謝秉志
口試委員-沈建豪
口試委員-楊耿明
口試委員-楊明偉
中文關鍵字 二氧化碳地質封存  礦化封存機制  地熱流體  二氧化碳溶解封存 
英文關鍵字 Geological storage  Mineralization mechanisms  Geothermal fluid  Dissolved CO2 injection 
學科別分類
中文摘要 本研究提出二氧化碳溶液封存,以注儲溶於地層水的二氧化碳溶液於鹽水層為目標,使二氧化碳溶液相直接以溶解封存機制封存,並直接導致離子封存與礦化封存,使封存達到無洩漏風險的目的。
為了考量封存的安全性,本研究使用CMG-GEM多成分模擬器來觀察溶液相的二氧化碳進入地層中的移動行為,以及模擬二氧化碳在注儲期間與觀察期間的封存機制。
本研究的案例分析位於台灣西北Y礦區,利用Y礦區之砂岩區段Y進行二氧化碳溶液封存之數值模擬,以下方間隔超過1,000公尺深的砂岩K生產地熱水來解決溶解二氧化碳的水需求,透過在地表的能量轉換將高溫的地熱流體產出地熱能源,降溫後的地熱流體用於溶解二氧化碳,形成注入溶液,回注於較淺層的目標封存砂段Y。
模擬結果顯示二氧化碳溶解封存無洩漏風險,並大幅減少二氧化碳進入礦化封存機制所需的時間,加快固化二氧化碳於地層當中的速度,進入永久且安全性高的封存機制。
英文摘要 The purpose of this study is to create a pilot CO2 geological storage without leakage risk in a saline aquifer, directly leads to CO2 ionization and mineralization with the formation water and rocks. As soon as it was injected by means of dissolving the CO2 into groundwater produced from deep saline aquifer, aiming at finding a storage avenue which is long-lasting, stable and environmentally benign in relatively short time comparing with traditional CO2 supercritical fluid injection.
This study presented a pilot test in northwestern Taiwan, the potential CO2 storage formation is the Y-sandstone formation, which is located in Y-field, one of the onshore gas fields in the Taishi Basin. Over 1,000 m underneath the Y-sandstone, the K-sandstone has high water saturation and suitable geological condition to produce formation water to supply the water needs for dissolved CO2 storage after energy use.
CMG-GEM compositional simulator was used in this study to simulate the long-term fate of CO2, the results showed that dissolved CO2 injection remove the buoyancy effect to the storage process, preventing the leakage risk. In this study, the migration and the fate of the injected dissolved CO2 was studied, the CO2 trapping mechanisms and long-term fate of CO2 was analyzed to make sure the enhanced safety.
A novel strategy was presented to offer a CO2 geological storage without leakage risk in a saline aquifer. Security was ensured in this study, compared with traditional injection method, the geochemical reactions process was fastened, consequently accelerating the mineralization speed, hence CO2 was fixed in the reservoir by the safest trapping mechanisms in shorter time.
論文目次 Abstract I
中文摘要 II
致謝 III
Contents IV
List of Tables VI
List of Figures VII
Nomenclature X
Chapter 1 Introduction 1
1-1 Background 1
1-2 Motivation 3
1-3 Purpose 4
Chapter 2 Literature review 5
Chapter 3 Methodologies 9
3-1 CO2 solubility mechanisms 9
3-2 Numerical simulation 11
3-2-1 Numerical method 12
3-2-2 Reaction stoichiometry 15
3-3 Geochemical reaction mechanisms 18
3-4 Energy conversion: geothermal fluid production 21
Chapter 4 Regional geology 23
4-1 Geological description 23
4-2 Data collections 26
Chapter 5 Simulation model construction 31
5-1 Numerical simulation model design 31
5-2 Base case design 35
Chapter 6 Results 38
6-1 Injection of dissolved CO2 (base case) 38
6-1-1 Injection performance of base case 38
6-1-2 Spatial distribution of base case 43
6-1-3 Trapping mechanisms’ contributions for base case 52
6-2 Injection of supercritical CO2 56
6-2-1 Injection performance of supercritical CO2 56
6-2-2 Spatial distribution of supercritical CO2 60
6-2-3 Trapping mechanisms’ contributions for supercritical CO2 69
6-3 Summary of base case and supercritical injection case 71
Chapter 7 Discussion 75
7-1 CO2/brine dissolution mechanism 75
7-1-1 CO2 solubility curve in brine containing ions 75
7-1-2 CO2/brine co-injected mixing 76
7-1-3 CO2/ brine surface dissolution 78
7-2 Sensitivity analysis 80
7-2-1 Well locations 80
7-3 Geothermal fluid production and energy conversion 83
Chapter 8 Conclusions and suggestion 86
8-1 Conclusions 86
8-2 Suggestion 86
References 87
Appendix A: Wellhead production temperature derivative 90

參考文獻 Bethke, C. (1996). Geochemical reaction modeling: Concepts and applications. Oxford
University Press on Demand.
Bachu, S. (2008). CO2 storage in geological media: Role, means, status and barriers
to deployment. Progress in Energy and Combustion Science, 34(2), 254-273.
Benson, S. M., & Orr, F. M. (2008). Carbon dioxide capture and storage. Mrs Bulletin, 33(4), 303-305.
Bikle, D. (2009). Nonclassic actions of vitamin D. The Journal of Clinical
Endocrinology & Metabolism, 94(1), 26-34.
CPC Corporation, Taiwan. (1971) internal report. (in Chinese)
CPC Corporation, Taiwan. (1982) internal report. (in Chinese)
Chiang, S. P. (2007). Early Development of the Central Taiwan Foreland Basin
Revealed from Stratigraphic Record. Master's Thesis, Institute of Geophysics, National Central University.
CMG (2011) User’s guide GEM Advanced oil/gas reservoir simulator, Computer
Modelling Group Ltd., Calgary, Alberta.
DiPippo, R. (1989). The effect of ambient temperature on geothermal binary-plant
performance. Geothermal hot line, 19, 68-70.
Duan, Q., Sorooshian, S., & Gupta, V. (1992). Effective and efficient global
optimization for conceptual rainfall‐runoff models. Water resources research, 28(4), 1015-1031.
Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., ... & Caldwell, J.
(2003). A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. Journal of computational chemistry, 24(16), 1999-2012.
DiPippo, R. (2007). Ideal thermal efficiency for geothermal binary
plants. Geothermics, 36(3), 276-285.
Duan, Z., Sun, R., Zhu, C., & Chou, I. M. (2006). An improved model for the
calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl−, and SO42−. Marine Chemistry, 98(2-4), 131-139.
DiPippo, R. (2012). Geothermal power plants: principles, applications, case studies
and environmental impact. Butterworth-Heinemann.
Environmental Protection Administration (EPA). (2017) 2017 Taiwan greenhouse gas
inventory report summary. (in Chinese)
Ganjdanesh, R., Bryant, S., Orbach, R., Pope, G., & Sepehrnoori, K. (2014). Coupled
carbon dioxide sequestration and energy production from geopressured/geothermal aquifers. SPE Journal, 19(02), 239-248.
Gislason, S., Broecker, W., Gunnlaugsson, E., Snaebjornsdottir, S., Mesfin, K.,
Alfredsson, H., ... & Matter, J. (2014). Rapid solubility and mineral storage of CO2 in basalt. In Energy Procedia 63 (Vol. 63, pp. 4561-4574). Elsevier.
Hepple, R. P., & Benson, S. M. (2005). Geologic storage of carbon dioxide as a
climate change mitigation strategy: performance requirements and the implications of surface seepage. Environmental Geology, 47(4), 576-585.
Hsieh, B.Z. (2012). Analysis of drill cutting minerals and simulation study of CO2
mineral trapping mechanisms in saline aquifers of Y-field (commissioned by EDRI (CPC Corporation, Taiwan)), (Project number: FED0114001) (in Chinese)
Hsieh, B. Z., Nghiem, L., Shen, C. H., & Lin, Z. S. (2013). Effects of complex
sandstone–shale sequences of a storage formation on the risk of CO2 leakage: Case study from Taiwan. International Journal of Greenhouse Gas Control, 17, 376-387.
IPCC. (2005). Carbon dioxide capture and storage: special report of the
intergovernmental panel on climate change.
IPCC. (2006). Carbon dioxide capture and storage: special report of the
intergovernmental panel on climate change.
IPCC (2007). Carbon dioxide capture and storage: special report of the
intergovernmental panel on climate change. Cambridge University Press.
International Energy Agency (IEA) (2017) The Global Status of CCS. Global CCS
Institute
Keith, H., Mackey, B. G., & Lindenmayer, D. B. (2009). Re-evaluation of forest
biomass carbon stocks and lessons from the world's most carbon-dense forests. Proceedings of the National Academy of Sciences, pnas-0901970106.
Liu, C. T., Hsieh, B. Z., Chen, I. H., Lin, Z. S., & Chen, T. L. (2014). Estimation of
CO2 Practical Capacity in Saline Formations. Energy Procedia, 63, 5211-5221.
Li, Y.H. (2016). Effects of Sandstone–Shale Sequences of a Saline Aquifer on Carbon
Dioxide Migration Behavior and Storage Capacity
Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B. (2006). Fundamentals
of engineering thermodynamics. John Wiley & Sons.
Matter, J. M., & Kelemen, P. B. (2009). Permanent storage of carbon dioxide in
geological reservoirs by mineral carbonation. Nature Geoscience, 2(12), 837.
Matter, J., Broecker, W., Gislason, S., Gunnlaugsson, E., Oelkers, E., Stute, M., ... &
Axelsson, G. (2011). The CarbFix pilot project: Storing carbon dioxide in basalt. Energy Procedia, 4, 5579-5585.
Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., Oelkers, E. H., Gislason, S. R.,
Aradottir, E. S., ... & Axelsson, G. (2016). Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352(6291), 1312-1314.
Nghiem, L., Shrivastava, V., Kohse, B., Hassam, M., & Yang, C. (2009, January).
Simulation of trapping processes for CO2 storage in saline aquifers. In Canadian International Petroleum Conference. Petroleum Society of Canada.
Pitzer, K. S. (1973). Thermodynamics of electrolytes. I. Theoretical basis and general
equations. The Journal of Physical Chemistry, 77(2), 268-277.
Pacala, S., & Socolow, R. (2004). Stabilization wedges: solving the climate problem
for the next 50 years with current technologies. science, 305(5686), 968-972.
Ramey Jr, H. J. (1962). Wellbore heat transmission. Journal of petroleum
Technology, 14(04), 427-435.
Rouzier, R., Perou, C. M., Symmans, W. F., Ibrahim, N., Cristofanilli, M., Anderson,
K., ... & Morandi, P. (2005). Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clinical cancer research, 11(16), 5678-5685.
Rochelle, G. T. (2009). Amine scrubbing for CO2 capture. Science, 325(5948), 1652-
1654.
Saleh, B., Koglbauer, G., Wendland, M., & Fischer, J. (2007). Working fluids for low-
temperature organic Rankine cycles. Energy, 32(7), 1210-1221.
Thomas, G. W. (1982). Exchangeable cations. Methods of soil analysis. Part 2.
Chemical and microbiological properties, (methodsofsoilan2), 159-165.
Thurston, G. C., Bliem, C. J., & Plum, M. M. (1991). The Feasiblity Of Hydraulic
Recovery From Geopressured Geothermal Resources. Proceedings, Industrial Consortium for the Utilization of the Geopressured Geothermal Resource, Austin, 2, 115.
Thibeau, S., Nghiem, L. X., & Ohkuma, H. (2007, January). A modelling study of the
role of selected minerals in enhancing CO2 mineralization during CO2 aquifer storage. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Zarrouk, S. J., & Moon, H. (2014). Efficiency of geothermal power plants: A
worldwide review. Geothermics, 51, 142-153.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw