進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208201717185400
論文名稱(中文) 準確估測各項睡眠指標的自動睡眠判讀系統
論文名稱(英文) An Automatic Sleep Scoring System for Accurate Estimation of Various Sleep Measures
校院名稱 成功大學
系所名稱(中) 醫學資訊研究所
系所名稱(英) Institute of Medical Informatics
學年度 105
學期 2
出版年 106
研究生(中文) 張廷宣
研究生(英文) Ting-Hsuan Chang
學號 Q56044064
學位類別 碩士
語文別 英文
論文頁數 47頁
口試委員 指導教授-梁勝富
口試委員-張大緯
口試委員-郭至恩
中文關鍵字 自動睡眠判讀  睡眠指標  法則式  決策樹  失眠 
英文關鍵字 automatic sleep scoring  objective sleep measurements  rule-based  decision tree  insomnia 
學科別分類
中文摘要 人類大約花了三分之一的時間在睡覺,睡眠會影響到我們的記憶力、專注力、以及代謝功能,好的睡眠有助於大腦運作及身心健康,然而對患有睡眠疾病的人來說,尤其是失眠患者,擁有良好的睡眠品質實不容易。為了治療這些疾病,睡眠技師會使用多通道生理紀錄儀 (Polysomnography, PSG) 來紀錄病患整晚的生理訊號,之後再進行人工判讀睡眠階段以供專家或醫師診斷參考,除了睡眠階段之外,睡眠指標也是一項專家拿來評估睡眠品質及症狀的重要參考。由於人工判讀是一項非常主觀且耗時間的工作,故已有許多自動睡眠判讀的演算法相繼被提出。然而目前許多自動睡眠判讀系統雖然在準確率上有不錯的表現,卻鮮少有系統回報睡眠指標的準確率,當專家需要參考睡眠指標時,就需要額外花時間另外判讀,而多數系統僅適用在睡眠效率良好的族群上,但比較難以判讀的反而是睡眠效率差的族群。
本研究提出一套適用於健康者與失眠者並能準確估測各項睡眠指標的自動睡眠判讀系統,系統的主要分類方式是使用能結合專家知識的法則式決策樹。一般判讀演算法並未考慮族群之間的差異性,而本研究結合了專家對兩族群的觀察並分別提出適合的模型,結合一個能自動選擇適合模型的分類方式跑出最佳的結果。系統與專家的睡眠階段總體準確率可達85.38%,睡眠指標的Sleep efficiency、Sleep onset time、Wake after sleep onset及Total sleep time的平均偏差值分別只有1.32分鐘、-1.34分鐘、-4.06分鐘及5.4分鐘。將來希望能納入老人族群,提升系統的完整性,並透過與睡眠技師的需求訪談,整合出一套可以為臨床使用系統。
英文摘要 Human beings spend approximately one-third of their lives sleeping. Sleep not only plays a vital role in our health but also affect our memory, attention, and metabolic function. However, having a good sleep quality is not easy for the sleep disorders, especially the insomnia patients. The clinical use Polysomnography (PSG) to record sleep physiological signals all-night from these patients. The recording will be manual sleep scoring by the expert for diagnosis. Except for the sleep stage, the expert also references the objective sleep measurements to assess the sleep quality and symptom. Since manual scoring is a very subjective and time-consuming work, there are many automatic sleep scoring methods have been proposed. Although these methods have a good performance in the sleep scoring, the accuracy of sleep measurements is rarely a concern in their system. Moreover, the most system only fit on the subjects with good sleep efficiency, the bad sleep efficiency is rare.
In this study, we propose a system with accurate estimation of sleep measurements and fit on the healthy subjects and the insomnia subjects. The main classification method of the system is a rule-based decision tree, which combines the expert knowledge. Generally, the automatic sleep scoring method may not consider the differences between groups. Our study merges the expert’s observation of the healthy and the insomnia subjects and proposes two suitable models, respectively. Moreover, an automatic selecting method that could choose the proper model is also proposed. The agreement between the expert and the system is 85.38% and the mean bias of the sleep measurements, including sleep efficiency, sleep onset time, wake after sleep onset and total sleep time, are only 1.32 min, -1.34 min, -4.06 min, and 5.4 min, respectively. In the future, the elderly can be integrated into the system to improve the system. By doing the needs assessment with experts, the system can be modified into the one that can be used clinically.
論文目次 Contents
摘 要 III
ABSTRACT IV
誌謝 VI
CONTENTS VII
List of Tables IX
List of Figures XI
Chapter1 Introduction 1
1.1. Background 1
1.2. Automatic sleep staging 2
1.3. Insomnia 3
1.4. Objective sleep measurements 3
1.5. Motivation 4
Chapter2 Materials and Methods 5
2.1. Subjects and recordings 5
2.2. Feature extraction 7
2.3. Rule-based automatic sleep staging method 11
2.4. Healthy model 13
2.4.1. Modification of DT_h 15
2.4.2. Smoothing rules 17
2.5. Insomnia model 18
2.5.1. Modification of DT_i 20
2.5.2. Separation of the opening eyes epochs and examination of the first N1 22
2.6. Model selection method 26
Chapter3 Result 28
3.1. Performance of the two models’ sleep staging 28
3.2. Result of selecting models 29
3.3. Assessment of objective sleep measurements 31
3.4. Performance of the proposed system 35
Chapter4 Discussion 37
Chapter5 Conclusion and Future Work 44
Reference 45
參考文獻 Agarwal, R., & Gotman, J. (2001). Computer-assisted sleep staging. IEEE Transactions on Biomedical Engineering, 48(12), 1412-1423.
Anderer, P., Gruber, G., Parapatics, S., Woertz, M., Miazhynskaia, T., Klösch, G., . . . Danker-Hopfe, H. (2005). An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24× 7 utilizing the Siesta database. Neuropsychobiology, 51(3), 115-133.
Bland, J. M., & Altman, D. G. (1995). Comparing methods of measurement: why plotting difference against standard method is misleading. The lancet, 346(8982), 1085-1087.
Carotenuto, M., Gallai, B., Parisi, L., Roccella, M., & Esposito, M. (2013). Acupressure therapy for insomnia in adolescents: a polysomnographic study. Neuropsychiatric disease and treatment, 9, 157.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psychological measurement, 20(1), 37-46.
Dement, W. C. C. V. (1999). The Promise of Sleep: A Pioneer in Sleep Medicine Explores the Vital Connection Between Health, Happiness, and a Good Night's Sleep.
Duman, F., Erdamar, A., Erogul, O., Telatar, Z., & Yetkin, S. (2009). Efficient sleep spindle detection algorithm with decision tree. Expert Systems with Applications, 36(6), 9980-9985.
Edinger, J. D., Bonnet, M. H., & Bootzin, R. R. (2004). Derivation of research diagnostic criteria for insomnia: report of an American Academy of Sleep Medicine Work Group.
Hassan, A. R., Bashar, S. K., & Bhuiyan, M. I. H. (2015). Automatic classification of sleep stages from single-channel electroencephalogram. Paper presented at the India Conference (INDICON), 2015 Annual IEEE.
Hsu, Y.-L., Yang, Y.-T., Wang, J.-S., & Hsu, C.-Y. (2013). Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing, 104, 105-114.
Iber, C. (2007). The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications: American Academy of Sleep Medicine.
Imtiaz, S. A., & Rodriguez-Villegas, E. (2015). Automatic sleep staging using state machine-controlled decision trees. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE.
Jansen, B. H., & Dawant, B. M. (1989). Knowledge-based approach to sleep EEG analysis-a feasibility study. IEEE Transactions on Biomedical Engineering, 36(5), 510-518.
Kanady, J. C., Drummond, S., & Mednick, S. C. (2011). Actigraphic assessment of a polysomnographic‐recorded nap: A validation study. Journal of sleep research, 20(1pt2), 214-222.
Koley, B., & Dey, D. (2012). An ensemble system for automatic sleep stage classification using single channel EEG signal. Computers in Biology and Medicine, 42(12), 1186-1195.
Lajnef, T., Chaibi, S., Ruby, P., Aguera, P.-E., Eichenlaub, J.-B., Samet, M., . . . Jerbi, K. (2015). Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines. Journal of neuroscience methods, 250, 94-105.
Li, X., Cui, L., Tao, S., Chen, J., Zhang, X., & Zhang, G.-Q. (2017). HyCLASSS: A Hybrid Classifier for Automatic Sleep Stage Scoring. IEEE Journal of Biomedical and Health Informatics.
Liang, S.-F., Kuo, C.-E., Hu, Y.-H., & Cheng, Y.-S. (2012). A rule-based automatic sleep staging method. Journal of neuroscience methods, 205(1), 169-176.
Liang, S.-F., Kuo, C.-E., Shaw, F.-Z., Chen, Y.-H., Hsu, C.-H., & Chen, J.-Y. (2016). Combination of expert knowledge and a genetic fuzzy inference system for automatic sleep staging. IEEE Transactions on Biomedical Engineering, 63(10), 2108-2118.
Lichstein, K., Durrence, H., Taylor, D., Bush, A., & Riedel, B. (2003). Quantitative criteria for insomnia. Behaviour research and therapy, 41(4), 427-445.
Lin, Y.-S. (2016). A Rule-based Automatic Sleep Scoring System for the Healthy Individuals and Insomnia Subjects. (Master), National Cheng Kung University, Taiwan.
Mignot, E. (2008). Why we sleep: the temporal organization of recovery. PLoS Biol, 6(4), e106.
Morin, C. M., Hauri, P. J., Espie, C. A., Spielman, A. J., Buysse, D. J., & Bootzin, R. R. (1999). Nonpharmacologic treatment of chronic insomnia. Sleep, 22(8), 1134-1156.
Moser, D., Anderer, P., Gruber, G., Parapatics, S., Loretz, E., Boeck, M., . . . Danker-Hopfe, H. (2009). Sleep classification according to AASM and Rechtschaffen & Kales: effects on sleep scoring parameters. Sleep, 32(2), 139-149.
Park, H., Park, K., & Jeong, D.-U. (2000). Hybrid neural-network and rule-based expert system for automatic sleep stage scoring. Paper presented at the Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE.
Peker, M. (2016). A new approach for automatic sleep scoring: Combining Taguchi based complex-valued neural network and complex wavelet transform. Computer methods and programs in biomedicine, 129, 203-216.
Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects.
Rodríguez-Sotelo, J. L., Osorio-Forero, A., Jiménez-Rodríguez, A., Cuesta-Frau, D., Cirugeda-Roldán, E., & Peluffo, D. (2014). Automatic sleep stages classification using eeg entropy features and unsupervised pattern analysis techniques. Entropy, 16(12), 6573-6589.
Rosenberg, R. S., & Van Hout, S. (2013). The American Academy of Sleep Medicine inter-scorer reliability program: sleep stage scoring. J Clin Sleep Med, 9(1), 81-87.
Schaltenbrand, N., Lengelle, R., Toussaint, M., Luthringer, R., Carelli, G., Jacqmin, A., . . . Macher, J.-P. (1996). Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep, 19(1), 26-35.
Smith, J. R., Negin, M., & Nevis, A. H. (1969). Automatic analysis of sleep electroencephalograms by hybrid computation. IEEE transactions on systems science and cybernetics, 5(4), 278-284.
Spielman, A. J., Saskin, P., & Thorpy, M. J. (1987). Treatment of chronic insomnia by restriction of time in bed. Sleep, 10(1), 45-56.
Stepnowsky, C., Levendowski, D., Popovic, D., Ayappa, I., & Rapoport, D. M. (2013). Scoring accuracy of automated sleep staging from a bipolar electroocular recording compared to manual scoring by multiple raters. Sleep medicine, 14(11), 1199-1207.
Tian, J., & Liu, J. (2006). Automated sleep staging by a hybrid system comprising neural network and fuzzy rule-based reasoning. Paper presented at the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.
WD, B. (2005). Sleep: A Comprehensive Handbook (T. L. Lee-Chiong Ed.). New Jersey: John Wiley and Sons.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw