進階搜尋


下載電子全文  
系統識別號 U0026-2208201714234000
論文名稱(中文) 應用在大氣觀測微衛星之任務規劃系統
論文名稱(英文) Mission Planning System for an Atmospheric Research CubeSat
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 劉容辰
研究生(英文) Jung-Chen Liu
學號 n26044367
學位類別 碩士
語文別 英文
論文頁數 82頁
口試委員 指導教授-莊智清
口試委員-苗君易
口試委員-詹劭勳
口試委員-余國瑞
口試委員-壽鶴年
中文關鍵字 微衛星  遙測與指令  地面站  任務規劃 
英文關鍵字 CubeSat  Telecommnad and Telemetry  Ground Station  Mission Planning 
學科別分類
中文摘要 隨著電子設備的進步,微衛星所能擔負的功能也逐漸增加。從最初的姿態控制與通訊的驗證之外,開始能從事如大氣觀測等科學活動。因此衛星所需執行的任務以及地面設施間通訊的資料量也逐漸增加。但在微衛星上一些可用資源如:機載電腦記憶體或與地面通訊時間有限的情況下,我們需要利用任務規劃系統來做更有效的資源利用。
本論文研究即是針對微衛星PHOENIX,設計一套任務規劃系統。微衛星PHOENIX為2U之微衛星並參與歐盟QB50計畫,此計畫中數個微衛星將會搭載大氣觀測科學儀器,在低地軌道形成衛星網路進行大氣研究。而任務規劃系統與演算法會以衛星操作者提供的要求為基礎並評估衛星上的機載資源與任務的重要性,規劃接下來衛星所需執行的任務以及對應的通訊指令以及執行時間。此系統將可以更有效的利用衛星上有限的資源,並大幅減少操作人員的負擔。
英文摘要 The PHOENIX CubeSat is developed by NCKU as one of the CubeSats in QB50 mission which is to carry out atmospheric research within the lower thermosphere. Every CubeSat in the mission will carry atmospheric sensors as its main science payloads to collect science data which will be transmitted to the ground for science research.
In a satellite mission, the ground station is an indispensable part because it is the only gateway to control the satellite and receive the satellite information. The operation of the ground station is governed by the mission planning system which is responsible for task scheduling and optimization. As the CubeSat missions become more complicated and diverse, the mission planning system will become more important in the CubeSat missions.
The thesis describes the ground station and mission planning system of the PHOENIX CubeSat mission. This mission planning system can avoid the conflict between the satellite tasks, generate the telecommands scripts for the ground station software and reduce the workload of ground station operator.
論文目次 摘要 I
Abstract II
Acknowledgements IV
Contents V
List of Tables IX
List of Figures X
List of Abbreviations XI
Chapter 1 Introduction 1
1.1 Objectives 1
1.2 Literature Study 1
1.3 Thesis organization 4
Chapter 2 PHEONIX Mission 6
2.1 QB50 mission 6
2.2 PHOENIX CubeSat 7
2.2.1 On-board data handling subsystem (OBDH) 9
2.2.2 Communication subsystem 12
2.2.3 Antenna subsystem 12
2.2.4 Electric power subsystem 13
2.2.5 Attitude determination and control subsystem 13
2.2.6 GPS receiver 13
2.2.7 Ion-Neutral Mass Spectrometer (INMS) 14
2.2.8 Solar Extreme Ultraviolet (SEUV) 14
2.2.9 Others 14
2.3 Telemetry, Tracking, and Command 15
2.3.1 System overview 15
2.3.2 Communication protocol 16
2.3.3 Telecommand packet 16
2.3.4 Telemetry packet 17
2.3.5 The list of telecommand and telemetry 18
2.3.5.1 Telecommand 20
2.3.5.2 Telemetry 23
2.4 Mission operation and requirements 25
2.4.1 Operation mode 25
2.4.2 In-Orbit operation 28
2.4.2.1 Commissioning 29
2.4.2.2 Operations 30
Chapter 3 PHOENIX Ground Station 32
3.1 System overview 32
3.2 Tracking system 33
3.2.1 Hardware 34
3.2.2 Software 34
3.3 Telemetry and Telecommand System 35
3.3.1 Hardware 36
3.3.2 Software 36
3.3.2.1 EPFL Satellite Control Software (SCS) 36
Chapter 4 Mission Planning System 39
4.1 System overview 39
4.1.1 Resource 39
4.1.1.1 The communication with ground station 40
4.1.1.2 Power 41
4.1.1.3 Memory 41
4.1.2 Mission scenario 42
4.2 System design 43
4.3 Software function 44
4.3.1 Priority define 44
4.3.2 Satellite simulator 45
4.3.3 Task definition 46
4.3.4 Mission planning algorithm 47
4.3.5 Telecommand optimized 49
4.3.6 Convert task to telecommand 50
4.3.7 Create telecommand script 50
Chapter 5 Testing and Verification 52
5.1 Testing configuration 52
5.1.1 Hardware 52
5.1.2 Software 56
5.2 Testing campaign 57
5.2.1 Testing on ground station 57
5.2.1.1 End to end test 57
5.2.1.2 Mission verification test 58
5.2.1.3 Telecommand test 58
5.2.1.4 End-to-end test with in-orbit satellite 58
5.2.2 Testing on satellite planning test 58
5.2.2.1 Scenarios testing 59
5.2.2.2 Testing with PHOENIX 60
5.3 Testing result 60
5.3.1 Test result of end-to-end test 61
5.3.2 Test result of scenarios testing 62
5.3.3 Test result of testing with PHOENIX 72
Chapter 6 Conclusion and Future Works 76
6.1 Summary 76
6.2 Future work 77
Reference 78
參考文獻 [1] S. Lee, “CubeSat Design Specification,” 2014.
[2] C. E. John Keesee, “Satellite Telemetry, Tracking and Control Subsystems,” 2003.
[3] W. Ley, K. Wittmann, and W. Hallmann, Handbook of Space Technology. 2009.
[4] S. Buckreuss and B. Schättler, “The TerraSAR-X ground segment,” IEEE Trans. Geosci. Remote Sens., 2010.
[5] F. Wu, A. Wu, and C. Shieh, “Development of image processing system for rocsat-2,” Reducing Costs Spacecr. Gr. Syst. Oper., no. October, 2003.
[6] C. Fong et al., “Constellation Deployment for the FORMOSAT-3 / COSMIC Mission,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3367–3379, 2008.
[7] A. J. Vázquez-Álvarez, R. Tubío-Pardavila, A. González-Muiño, F. Aguado-Agelet, M. Arias-Acuna, and J. A. Vilán-Vilán, “Design of a polarization diversity system for ground stations of cubesat space systems,” IEEE Antennas Wirel. Propag. Lett., 2012.
[8] S. Srikanth Nekkanti, “Assessment and Qualification of Velox-P Ground Segment and Communication Subsystem,” Master thesis Luleå Univ. Technol., 2012.
[9] J. C. Pemberton and F. Galiber, “A Constraint-Based Approach to Satellite Scheduling,” Pacific-Sierra Res., 2000.
[10] S.-m. Han, S.-w. Beak, K.-r. Cho, D.-w. Lee, and H.-d. Kim, “Satellite Mission Scheduling Using Genetic Algorithm,” SICE Annu. Conf. 2008, 2008.
[11] W. Jiang and X.-l. Pang, “Multi-Agent based Dynamic Mission Planning for Satellite Data Transmission,” 12th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov., 2016.
[12] M. Wolfmuller, D. Dietrich, E. Sireteanu, S. Kiemle, E. Mikusch, and M. Bottcher, “Data Flow and Workflow Organization - The Data Management for the TerraSAR-X Payload Ground Segment,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 44–50, 2009.
[13] J.-h. Lee et al., “Multi-satellite control system architecture and mission scheduling optimization,” in IEEE Aerospace Conference Proceedings, 2012.
[14] W. Lin, “Hybrid Algorithms for Satellite Imaging Scheduling,” Syst. Man Cybern., vol. 3, 2005.
[15] Y. Yang, “Imaging Order Scheduling of an Earth Observation Satellite,” IEEE Trans. Syst. Man. Cybern., vol. 37, no. 5, pp. 794–802, 2007.
[16] W. J. Wolfe and S. E. Sorensen, “Three Scheduling Algorithms Applied to the Earth Observing Systems Domain,” Manage. Sci., vol. 46, no. 1, pp. 148–166, 2000.
[17] T. Sorensen, E. Pilger, and M. Nunes, “COSMOS - An innovative nodal architecture for controlling large numbers of small satellites and other diverse assets,” in RAST 2015 - Proceedings of 7th International Conference on Recent Advances in Space Technologies, 2015.
[18] T. Hiramatsu, “UNIFORM-1 Ground System,” 2014.
[19] J. Castaing, “Scheduling Downloads for Multi-Satellite, Multi-Ground Station Missions,” 28th Annu. AIAA/USU Conf. Small Satell., 2014.
[20] J. E. Hilland, R. R. Wessen, D. Porter, and R. S. Austin, “A market-based conflict resolution approach for satellite mission planning,” IEEE Trans. Eng. Manag., 2001.
[21] F. Xhafa, J. Sun, A. Barolli, A. Biberaj, and L. Barolli, “Genetic algorithms for satellite scheduling problems,” Mob. Inf. Syst., vol. 8, pp. 351–377, 2012.
[22] A. J. Vázquez Álvarez and R. S. Erwin, “The Satellite Range Scheduling Problem,” Springer Optim. Its Appl., vol. 106, no. 3, pp. 21–47, 2015.
[23] F. Perea, R. Vazquez, and J. Ga An-Vioque, “Swath-Acquisition Planning in Multiple-Satellite Missions: An Exact and Heuristic Approach,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3, pp. 1717–1725, 2015.
[24] G. W. Klau, Lagrangian Relaxation : An overview. 2007.
[25] G. Wu et al., “An adaptive Simulated Annealing-based satellite observation scheduling method combined with a dynamic task clustering strategy,” p. 23, 2014.
[26] “QB50,” 2017. [Online]. Available: https://www.qb50.eu/.
[27] “QB50 DPAC,” 2017. [Online]. Available: https://upload.qb50.eu/.
[28] “NanoRacks-QB50 (NanoRacks-QB50) - 04.05.17,” 2017. [Online]. Available: https://www.nasa.gov/mission_pages/station/research/experiments/2539.html.
[29] L. Chen et al., “Assembly Integration and Testing Readiness Review PHOENIX Design Overview,” Natl. Cheng K. Univ., 2014.
[30] KK, “NanoMind A712D,” 2016.
[31] S. Speretta, E. Timmer, and M. Alvarez, “ISIS TRxVU Interface Control Document,” 2015.
[32] R. Fernandez, “Antenna System User Manual,” 2014.
[33] ADOM and VSKA, “QB50 Communication system,” 2016.
[34] GOMSpace, “NanoPower Datasheet,” 2017.
[35] L. Visagie, C. Underwood, and H. Steyn, “QB50 ADCS Reference Manual Approval for Release Name Date Signature,” Surrey Sp. Cent., 2015.
[36] R. Chaudery, “QB50 INMS User Manual,” Mullard Sp. Sci. Lab., 2014.
[37] F. George, S. Billeter, and M. Richard, “AX.25 Telemetry and Telecommand Transfer Frames Format RECORD OF REVISIONS,” Swiss Sp. Cent. EPFL, no. 3, 2014.
[38] Consultative Committee for Space Data System, “Recommendation for Space Data System Standards CCSDS FILE DELIVERY PROTOCOL (CFDP) STATEMENT OF INTENT,” 2007.
[39] L.I. Ibanez and S. S., “Test Report-ISIS.TRXVU.TR.001,” 2015.
[40] F. George and S. Billeter, “Satellite Control Software TM & TC Packets Definition Recommendation Proposed ECSS-E-70-41A tailoring,” Swiss Sp. Cent. EPFL, no. 4, 2014.
[41] ESA-ESTEC, “Space engineering Ground systems and operations — Telemetry and telecommand packet utilization ECSS Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk, The Netherlands,” 2003.
[42] K. Huang and L.-w. Chen, “PHOENIX Telecommand Interface Control Document Issue 10.3,” Natl. Cheng K. Univ., 2016.
[43] K. Huang, L.-w. Chen, andL.Kevin, “Data User Manual,” Natl. Cheng K. Univ., no. 2, pp. 1–17, 2017.
[44] T.-C. Huang and J.-C. Juang, “Implementation and Verification of Reliable Flight Software for CubeSats,” 2016.
[45] K. Liu and R. Hung, “Ground Station Readiness Review rev2,” 2017.
[46] T. Joanna and L. Kevin, “PHOENIX GS User Manual_v5,” 2016.
[47] “SDC/SCC TWO/THREE CARD ELEMENT SET - INTERNAL FORMAT,” 1988.
[48] S.Billeter, M.Richard, andY.Voumard, “Deliverable D250.1: SCS description and interface control document,” Swiss Sp. Cent. EPFL, no. 4, 2014.
[49] F.George andS.Billeter, “Satellite Control Software (SCS) Mission Control System Extensibility User Guide,” Swiss Sp. Cent. EPFL, 2013.
[50] F.George andS.Billeter, “Satellite Control Software (SCS) Mission Data Client Extensibility User Guide,” Swiss Sp. Cent. EPFL, 2013.
[51] S.Spangelo, J.Cutler, K.Gilson, andA.Cohn, “Optimization-based scheduling for the single-satellite, multi-ground station communication problem,” Comput. Oper. Res., 2015.
[52] ICOM Inc., “Insctruction Manual VHF/UHF All Mode Transceiver IC-910H,” 1997.
[53] ICOM Inc., “Instruction ManualHF/VHF/UHF transceiver IC-9100,” 2011.
[54] Timewave Techology Inc., “PK-96 Operating Manual,” 1997.
[55] Yaesu, “INSTRUCTION MANUAL G-5500,” 1998.
[56] Yaesu, “GS-232B Computer Control Interfce for Antenna Rotators,” 2004.
[57] ICOM Inc., “Icom insctructions AG1 AG-25 AG-30 AG-35 AG-1200,” 2010.
[58] ICOM Inc., “ICOM CT-17 Instruction Manual,” 1997.
[59] Dai-Ichi Denpa Kogyo CO., “Precision SWR-Power meter Operation Instructions SX-1000,” 2012.
[60] J. King, “Transponder Satellite System Link_Adaptive,” amsat-uk, 2012.
[61] Peter Cho, “APRS via the ISS – A Quick Tutorial,” 2008.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw