進階搜尋


下載電子全文  
系統識別號 U0026-2208201620515800
論文名稱(中文) 人類心肌旋轉蛋白I檢測平台研發
論文名稱(英文) Development of Diagnostic Platform for Human Cardiac Troponin I
校院名稱 成功大學
系所名稱(中) 醫學檢驗生物技術學系
系所名稱(英) Department of Medical Laboratory Science and Biotechnology
學年度 104
學期 2
出版年 105
研究生(中文) 倪子訓
研究生(英文) Tzu-Hsun Ni
學號 T36034149
學位類別 碩士
語文別 中文
論文頁數 74頁
口試委員 指導教授-葉才明
召集委員-謝淑珠
口試委員-劉秉彥
口試委員-張憲彰
中文關鍵字 心肌梗塞  單株抗體  酵素免疫分析法  心肌旋轉蛋白I 
英文關鍵字 AMI  monoclonal antibody  enzyme-linked immunosorbent assay  troponin I 
學科別分類
中文摘要 根據統計,心肌梗塞在全世界是死亡率最高的疾病,在台灣則是全國第二高。心肌梗塞的發生是由於供應心臟氧氣及養份的血管受到阻塞,使得血液沒有辦法流過,造成心肌細胞受損。當心臟受損時,會釋放出心肌旋轉蛋白-I (cTnI),是一種對心肌細胞受損時,具有非常優越的特異性和靈敏性的生物標記。現今檢測cTnI大多使用酵素免疫分析法(enzyme-linked immunosorbent assay, ELISA),因此對於檢測cTnI的抗體其靈敏性、特異性和穩定性顯得非常重要。至今已有許多廠商發展出檢測試劑套組或是cTnI的抗體,而對心肌梗塞的病患而言,早期診斷並把握治療的黃金時間是相當重要的。在本篇研究中,由先前實驗室所製作出來的人類全長cTnI重組蛋白(human full-length rcTnI)來免疫小鼠,利用融合瘤技術來生產cTnI抗體,並經過篩選及配對,得到一對的具高靈敏性和特異性的單株抗體,3B5和3B分別作為捕捉抗體及偵測抗體,並發展cTnI的檢測平台,建立我們的ELISA系統,目前對於cTnI的檢測,最低空白極限為0.0466 ng/mL,最低偵測極限為0.0862 ng/mL,10%變異係數在我們的測試中也都在10%以下。建立好的系統,經過不同條件的優化測試,我們嘗試把此系統進行批量製造、產品化,模擬市售的檢測試劑套組,並且確認我們抗體的穩定性和效價。同時,我們也建立冷光的ELISA系統來做比較,目的是希望可以增加檢測的靈敏性。在冷光ELISA系統,目前cTnI的最低空白極限為0.06 ng/mL,最低偵測極限為0.125 ng/mL,而10%變異係數在測試中則介於9%-12%之間。除此之外,我們嘗試發展更快速、方便的檢測方式,將cTnI的診斷建立在point-of-care (POC)的概念,所以利用膠體金與抗體鍵結,建立免疫層析試紙(lateral flow strip),目前在這方面,cTnI-T-C在血清及血漿檢體中分別可以偵測到0.5 ng/mL及5ng/mL,cTnI在兩種檢體中能偵測到的濃度皆為10 ng/mL。
關鍵詞:心肌梗塞、單株抗體、酵素免疫分析法、心肌旋轉蛋白I
英文摘要 Development of Diagnostic Platforms for Human Cardiac Troponin I

Tzu-Hsun Ni
Trai-Ming Yeh

College of Medicine
Department of Medical Laboratory Science and Biotechnology

SUMMARY

Acute myocardial infarction (AMI) is a major leading cause of death and disability worldwide. In this study, we immunized the mice by human full length recombinant cardiac troponin I which was generated by our lab before. Using the technology of hybridoma to generate the anti-cTnI antibodies. We used one pairing of our monoclonal antibodies to establish our enzyme-linked immunosorbent assay (ELISA) system for AMI diagnosis and optimized the detection conditions to enhance the sensitivity. We established the stability of ELISA strips by batch production to confirm the stability and titer of our antibodies. We also developed the luminescence-based immunoassay to enhance the sensitivity of detection of cTnI. We hope cTnI can be detected in the clinics or even at home in the future; therefore, we tried to developed the lateral flow strips for point-of-care (POC).

Key words: AMI, monoclonal antibody, enzyme-linked immunosorbent assay, troponin I

INTRODUCTION

AMI occurs when blood flow stops to part of the heart causing damage to the heart muscle. In Taiwan, cardiovascular disease is the second cause of death. The symptoms of AMI are chest pain, weakness, lightheadedness, dyspnea, diaphoresis, nausea, vomiting, and even sudden death. When the heart gets damage, it releases the cardiac troponin I (cTnI) which is a sensitive and specific biomarker for myocardial damage. Nowadays, the main diagnosis is using enzyme-linked immune-sorbent assay (ELISA) to detect this specific biomarker. Therefore, the sensitivity, specificity, affinity, and stability of the antibody to cTnI is very critical in this diagnosis.

MATERIALS AND METHODS

In the study, we used one pairing of our monoclonal antibodies (mAb) (3B5 as capture mAb and 3B as detection mAb) to detect human cTnI by ELISA system. We also set up the luminescence-based immunoassay to compare with the colorimetric ELISA system. And we developed the rapid test- lateral flow strip by using colloidal gold to shorten the time of AMI diagnosis.

RESULTS AND DISCUSSION

In our ELISA system, cTnI was measured with a limit of blank=0.0466 ng/mL, limit of detection=0.0862 ng/mL, and intra-CV in the test were all below 10%. We also found that the concentration of EDTA and serum matrix in the sample may affect the detection of cTnI in our ELISA system. Therefore, we used the new buffer- Buffer C to enhance the sensitivity of our ELISA system. In our assay, the sensitivity of our ELISA system with diluent Buffer C was much better than IVD-approval EIA kit (BioCheck). In our luminescence-based immunoassay, cTnI was measured with a limit of blank=0.06 ng/Ml, limit of detection=0.125 ng/Ml, and intra-CV in the test were between 9%-12%. We developed 2 different lateral flow strip, TABP-A and TABP-B. The performance of TABP-B was better than the commercial kit (Firstep). So far, the detection limit of cTnI-T-C was 0.5 ng/mL in serum sample and 5 ng/mL in plasma sample, and the detection limit of cTnI was only 10 ng/mL in both serum and plasma sample by TABP-B.

CONCLUSION

We have used our mAbs 3B5 as capture and 3B as detection to establish ELISA system, colorimetric ELISA system and luminescence-based immunoassay, for cTnI detection. In addition, the sensitivity of our ELISA system was enhanced when serum was used as our sample type and Buffer C as the diluent buffer. We also tried to develop lateral flow strip, TABP-B, as POC assay which can be used as early diagnosis for AMI patient.
論文目次 目錄
中文摘要...........................................................................................I
英文延伸摘要English Extended Abstract........................................III
致謝................................................................................................V
目錄...............................................................................................VI
表目錄.............................................................................................X
圖目錄............................................................................................XI
縮寫指引.......................................................................................XII
1. 緒論.............................................................................................1
1.1 心肌梗塞..................................................................................1
1.1.1 心肌梗塞現況.....................................................................1
1.1.2 心肌梗塞臨床症狀..............................................................1
1.1.3 心肌梗塞病理特徵..............................................................2
1.1.4 心肌梗塞診斷方式..............................................................3
1.2 生物標記.................................................................................3
1.2.1 心肌梗塞常見之生物標記...................................................4
1.2.2 心肌旋轉蛋白....................................................................5
1.2.3 心肌旋轉蛋白I於臨床診斷上的價值與評估..........................6
1.3 心肌旋轉蛋白I的偵測方法..............................…................……...6
1.3.1 酵素免疫分析法.................................................................7
1.3.2 化學冷光免疫分析法..........................................................7
1.3.3 螢光免疫分析法................................................................8
1.3.4 免疫層析試紙....................................................................8
2. 實驗動機與實驗目標...................................................................10
3. 實驗方法與材料..........................................................................12
3.1 表現cardiac troponin I (cTnI)重組蛋白....................................12
3.1.1重組蛋白的表現及純化......................................................12
3.1.2 SDS-PAGE分析重組蛋白.................................................13
3.1.3 西方墨點法分析重組蛋白.................................................13
3.2 單株抗體配對........................................................................14
3.3 抗體辨識之抗原決定位...........................................................15
3.3.1 噬菌體效價測試...............................................................15
3.3.2 噬菌體胜肽庫之結合篩選.................................................15
3.3.3 噬菌體結合能力測試........................................................16
3.3.4 噬菌體單股DNA萃取.......................................................17
3.4 抗體最低空白極限limit of blank (LoB)、最低偵測極限limit of detection (LoD)、10%變異係數值coefficient variation (CV)分析....18
3.5 臨床檢體測試與市售EIA檢測試劑套組平行比較.......................19
3.6 決定ELISA系統檢測檢體類型.................................................20
3.7 檢體血清含量濃度影響測試....................................................20
3.8 EDTA與EGTA含量濃度對檢體檢測的影響................................21
3.9 優化ELISA系統對血清檢體偵測的條件....................................21
3.10 實驗室ELISA系統與市售EIA檢測試劑套組比較......................22
3.11 抗體穩定性測試....................................................................23
3.12 建立新的ELISA系統以提升對cTnI-T-C檢測之靈敏度..............24
3.13 冷光ELISA系統之抗體LoB、LoD、10% CV分析....................24
3.14 優化冷光ELISA系統對血清檢體偵測的條件...........................25
3.15 免疫層析試紙檢測系統建立與測試並且和市售套組比較..........26
4. 結果..........................................................................................27
4.1 重組蛋白之分析.....................................................................27
4.2 單株抗體配對........................................................................27
4.3 抗體辨識之抗原決定位..........................................................28
4.4 抗體LoB、LoD、10% CV分析................................................28
4.5 臨床檢體測試與市售EIA檢測試劑套組平行比較.......................28
4.6 決定ELISA系統檢測檢體類型.................................................29
4.7 檢體血清含量濃度影響測試....................................................29
4.8 EDTA與EGTA含量濃度對檢體檢測的影響...............................29
4.9 優化ELISA系統對血清檢體偵測的條件....................................30
4.10 實驗室ELISA系統與市售EIA檢測試劑套組比較......................30
4.11 抗體穩定性測試...................................................................30
4.12 建立新的ELISA系統以提升對cTnI-T-C檢測之靈敏度..............31
4.13 冷光ELISA系統之抗體LoB、LoD、10% CV分析....................31
4.14 優化冷光ELISA系統對血清檢體偵測的條件............................31
4.15 免疫層析試紙檢測系統建立與測試並且和市售套組比較..........32
5. 討論..........................................................................................33
5.1 抗體辨識抗原決定位..............................................................33
5.2 血清以及EDTA對cTnI-T-C檢測的影響....................................33
5.3 肝素(heparin)對cTnI檢測的影響…………………….........…………...34
5.4 免疫層析試紙於檢測AMI的價值與改善...................................34
5.5 cTnI與cTnT檢測上的不同與比較……………......……………………….35
5.6 cTnI與hs-TnI的不同…………………………………………………………...36
5.7 冷光ELISA系統理論與實際實驗結果的差異…………………….......36
5.8 其他的生物標記………………………………………………………………….37
6. 結論..........................................................................................38
7. 參考文獻....................................................................................39
8. 表附錄.......................................................................................46
9. 圖附錄.......................................................................................52
附錄一、試劑配方..........................................................................68
附錄二、試劑及實驗耗材和抗體......................................................71
附錄三、儀器.................................................................................74
參考文獻 1. Twerenbold, R., et al., Impact of high-sensitivity cardiac troponin on use of coronary angiography, cardiac stress testing, and time to discharge in suspected acute myocardial infarction. Eur Heart J, 2016.
2. Thygesen, K., et al., Third universal definition of myocardial infarction. J Am Coll Cardiol, 2012. 60(16): p. 1581-98.
3. Mehta, P.K., J. Wei, and N.K. Wenger, Ischemic heart disease in women: a focus on risk factors. Trends Cardiovasc Med, 2015. 25(2): p. 140-51.
4. Mozaffarian, D., et al., Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation, 2015. 131(4): p. e29-322.
5. Murray, C.J. and A.D. Lopez, Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet, 1997. 349(9064): p. 1498-504.
6. Cheng, Y., et al., Secular trends in coronary heart disease mortality, hospitalization rates, and major cardiovascular risk factors in Taiwan, 1971-2001. Int J Cardiol, 2005. 100(1): p. 47-52.
7. Boersma, E., et al., Acute myocardial infarction. Lancet, 2003. 361(9360): p. 847-58.
8. Van de Werf, F., et al., Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J, 2008. 29(23): p. 2909-45.
9. Cervellin, G. and G. Rastelli, The clinics of acute coronary syndrome. Ann Transl Med, 2016. 4(10): p. 191.
10. Davis, T.M., et al., Silent myocardial infarction and its prognosis in a community-based cohort of Type 2 diabetic patients: the Fremantle Diabetes Study. Diabetologia, 2004. 47(3): p. 395-9.
11. Valensi, P., L. Lorgis, and Y. Cottin, Prevalence, incidence, predictive factors and prognosis of silent myocardial infarction: a review of the literature. Arch Cardiovasc Dis, 2011. 104(3): p. 178-88.
12. Burgess, D.C., et al., Incidence and predictors of silent myocardial infarction in type 2 diabetes and the effect of fenofibrate: an analysis from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Eur Heart J, 2010. 31(1): p. 92-9.
13. Chaitman, B.R., et al., The Bypass Angioplasty Revascularization Investigation 2 Diabetes randomized trial of different treatment strategies in type 2 diabetes mellitus with stable ischemic heart disease: impact of treatment strategy on cardiac mortality and myocardial infarction. Circulation, 2009. 120(25): p. 2529-40.
14. Sheifer, S.E., T.A. Manolio, and B.J. Gersh, Unrecognized myocardial infarction. Ann Intern Med, 2001. 135(9): p. 801-11.
15. Toma, M., et al., Does silent myocardial infarction add prognostic value in ST-elevation myocardial infarction patients without a history of prior myocardial infarction? Insights from the Assessment of Pexelizumab in Acute Myocardial Infarction (APEX-AMI) Trial. Am Heart J, 2010. 160(4): p. 671-7.
16. Omland, T., et al., Troponins in heart failure. Clin Chim Acta, 2015. 443: p. 78-84.
17. Thygesen, K., et al., Universal definition of myocardial infarction. Circulation, 2007. 116(22): p. 2634-53.
18. Chua, S., et al., Time courses of subcellular signal transduction and cellular apoptosis in remote viable myocardium of rat left ventricles following acute myocardial infarction: role of pharmacomodulation. J Cardiovasc Pharmacol Ther, 2009. 14(2): p. 104-15.
19. Antman, E., et al., Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology committee for the redefinition of myocardial infarctionThe Joint European Society of Cardiology/ American College of Cardiology Committee∗. Journal of the American College of Cardiology, 2000. 36(3): p. 959-969.
20. Kramer, C.M., et al., Multimodality imaging of myocardial injury and remodeling. J Nucl Med, 2010. 51 Suppl 1: p. 107s-121s.
21. Mueller, C., et al., Rapid rule out of acute myocardial infarction: novel biomarker-based strategies. Eur Heart J Acute Cardiovasc Care, 2016.
22. Vasan, R.S., Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation, 2006. 113(19): p. 2335-62.
23. Chan, D. and L.L. Ng, Biomarkers in acute myocardial infarction. BMC Med, 2010. 8: p. 34.
24. Lewandrowski, K.B., Cardiac markers of myocardial necrosis: a history and discussion of milestones and emerging new trends. Clin Lab Med, 2014. 34(1): p. 31-41, xi.
25. Gibler, W.B., et al., Myoglobin as an early indicator of acute myocardial infarction. Ann Emerg Med, 1987. 16(8): p. 851-6.
26. Jaffe, A.S., et al., It's time for a change to a troponin standard. Circulation, 2000. 102(11): p. 1216-20.
27. Schreier, T., L. Kedes, and R. Gahlmann, Cloning, structural analysis, and expression of the human slow twitch skeletal muscle/cardiac troponin C gene. J Biol Chem, 1990. 265(34): p. 21247-53.
28. Gaze, D.C. and P.O. Collinson, Multiple molecular forms of circulating cardiac troponin: analytical and clinical significance. Ann Clin Biochem, 2008. 45(Pt 4): p. 349-55.
29. Ricchiuti, V., et al., Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim. Clin Chem, 1998. 44(9): p. 1919-24.
30. Adams, J.E., 3rd, et al., Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation, 1993. 88(1): p. 101-6.
31. Larue, C., et al., Cardiac-specific immunoenzymometric assay of troponin I in the early phase of acute myocardial infarction. Clin Chem, 1993. 39(6): p. 972-9.
32. Cummins, B., M.L. Auckland, and P. Cummins, Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J, 1987. 113(6): p. 1333-44.
33. Apple, F.S., et al., Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem, 2012. 58(1): p. 54-61.
34. Adams, J.E., 3rd, et al., Comparable detection of acute myocardial infarction by creatine kinase MB isoenzyme and cardiac troponin I. Clin Chem, 1994. 40(7 Pt 1): p. 1291-5.
35. Mills, N.L., et al., Implementation of a sensitive troponin I assay and risk of recurrent myocardial infarction and death in patients with suspected acute coronary syndrome. Jama, 2011. 305(12): p. 1210-6.
36. Christenson, E. and R.H. Christenson, Characteristics of cardiac troponin measurements. Coron Artery Dis, 2013. 24(8): p. 698-704.
37. Conrad, M.J. and P. Jarolim, Cardiac troponins and high-sensitivity cardiac troponin assays. Clin Lab Med, 2014. 34(1): p. 59-73, vi.
38. de Antonio, M., et al., Head-to-head comparison of high-sensitivity troponin T and sensitive-contemporary troponin I regarding heart failure risk stratification. Clin Chim Acta, 2013. 426: p. 18-24.
39. Cho, I.H., et al., Chemiluminometric enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor based on cross-flow chromatography. Anal Chim Acta, 2009. 632(2): p. 247-55.
40. Hayes, M.A., et al., Demonstration of sandwich and competitive modulated supraparticle fluoroimmunoassay applied to cardiac protein biomarker myoglobin. Analyst, 2009. 134(3): p. 533-41.
41. Tuteja, S.K., et al., Graphene-gated biochip for the detection of cardiac marker Troponin I. Anal Chim Acta, 2014. 809: p. 148-54.
42. Liu, J., et al., Adenovirus-mediated delivery of bFGF small interfering RNA reduces STAT3 phosphorylation and induces the depolarization of mitochondria and apoptosis in glioma cells U251. J Exp Clin Cancer Res, 2011. 30: p. 80.
43. Wu, W.-Y., et al., PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I. Sensors and Actuators B: Chemical, 2010. 147(1): p. 298-303.
44. Fathil, M.F., et al., Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Biosens Bioelectron, 2015. 70: p. 209-20.
45. Dittmer, W.U., et al., Rapid, high sensitivity, point-of-care test for cardiac troponin based on optomagnetic biosensor. Clin Chim Acta, 2010. 411(11-12): p. 868-73.
46. Gan, S.D. and K.R. Patel, Enzyme immunoassay and enzyme-linked immunosorbent assay. J Invest Dermatol, 2013. 133(9): p. e12.
47. Engvall, E. and P. Perlmann, Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry, 1971. 8(9): p. 871-4.
48. Dodeigne, C., L. Thunus, and R. Lejeune, Chemiluminescence as diagnostic tool. A review. Talanta, 2000. 51(3): p. 415-39.
49. Pei, X., et al., Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal Chim Acta, 2013. 758: p. 1-18.
50. Boeckx, R.L., Chemiluminescence: applications for the clinical laboratory. Hum Pathol, 1984. 15(2): p. 104-11.
51. Wang, C., et al., Chemiluminescent Immunoassay and its Applications. Chinese Journal of Analytical Chemistry, 2012. 40(1): p. 3-10.
52. Qureshi, A., Y. Gurbuz, and J.H. Niazi, Biosensors for cardiac biomarkers detection: A review. Sensors and Actuators B: Chemical, 2012. 171-172: p. 62-76.
53. Hicks, J.M., Fluorescence immunoassay. Human Pathology, 1984. 15(2): p. 112-116.
54. Fan, X., et al., Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta, 2008. 620(1-2): p. 8-26.
55. Peacock, W.F., et al., Can a Point-of-Care Troponin I Assay be as Good as a Central Laboratory Assay? A MIDAS Investigation. Ann Lab Med, 2016. 36(5): p. 405-12.
56. Sluss, P.M., Methodologies for measurement of cardiac markers. Clin Lab Med, 2014. 34(1): p. 167-85, viii.
57. Farah, C.S., et al., Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem, 1994. 269(7): p. 5230-40.
58. Farah, C.S. and F.C. Reinach, The troponin complex and regulation of muscle contraction. Faseb j, 1995. 9(9): p. 755-67.
59. Liao, R., C.K. Wang, and H.C. Cheung, Coupling of calcium to the interaction of troponin I with troponin C from cardiac muscle. Biochemistry, 1994. 33(42): p. 12729-34.
60. Nakayama, S. and R.H. Kretsinger, Evolution of the EF-hand family of proteins. Annu Rev Biophys Biomol Struct, 1994. 23: p. 473-507.
61. Kobayashi, T., et al., Extensive interactions between troponins C and I. Zero-length cross-linking of troponin I and acetylated troponin C. Biochemistry, 1995. 34(34): p. 10946-52.
62. Morimoto, S. and I. Ohtsuki, Ca2+ binding to cardiac troponin C in the myofilament lattice and its relation to the myofibrillar ATPase activity. Eur J Biochem, 1994. 226(2): p. 597-602.
63. Sorenson, M.M., et al., Concerted action of the high affinity calcium binding sites in skeletal muscle troponin C. J Biol Chem, 1995. 270(17): p. 9770-7.
64. Gordon, A.M., E. Homsher, and M. Regnier, Regulation of contraction in striated muscle. Physiol Rev, 2000. 80(2): p. 853-924.
65. Pearlstone, J.R. and L.B. Smillie, Evidence for two-site binding of troponin I inhibitory peptides to the N and C domains of troponin C. Biochemistry, 1995. 34(21): p. 6932-40.
66. Eriksson, S., et al., Negative interference in cardiac troponin I immunoassays from a frequently occurring serum and plasma component. Clin Chem, 2003. 49(7): p. 1095-104.
67. Speth, M., K. Seibold, and N. Katz, Interaction between heparin and cardiac troponin T and troponin I from patients after coronary bypass surgery. Clinical Biochemistry, 2002. 35(5): p. 355-362.
68. Verrecchio, A., et al., Design of peptides with high affinities for heparin and endothelial cell proteoglycans. J Biol Chem, 2000. 275(11): p. 7701-7.
69. Chan, C.P., et al., Evidence-based point-of-care diagnostics: current status and emerging technologies. Annu Rev Anal Chem (Palo Alto Calif), 2013. 6: p. 191-211.
70. Anderson, J.L., et al., 2011 ACCF/AHA Focused Update Incorporated Into the ACC/AHA 2007 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 2011. 123(18): p. e426-579.
71. Hamm, C.W., et al., ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J, 2011. 32(23): p. 2999-3054.
72. Thygesen, K., et al., How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J, 2012. 33(18): p. 2252-7.
73. Panteghini, M., Assay-related issues in the measurement of cardiac troponins. Clin Chim Acta, 2009. 402(1-2): p. 88-93.
74. Jarolim, P., Overview of cardiac markers in heart disease. Clin Lab Med, 2014. 34(1): p. 1-14, xi.
75. Glatz, J.F., et al., Release of fatty acid-binding protein from isolated rat heart subjected to ischemia and reperfusion or to the calcium paradox. Biochim Biophys Acta, 1988. 961(1): p. 148-52.
76. Kleine, A.H., et al., Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol Cell Biochem, 1992. 116(1-2): p. 155-62.
77. McCann, C.J., et al., Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T. Eur Heart J, 2008. 29(23): p. 2843-50.
78. Ruff, C.T., et al., Evaluation of the diagnostic performance of heart-type fatty acid binding protein in the BWH-TIMI ED chest pain study. J Thromb Thrombolysis, 2013. 36(4): p. 361-7.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw