進階搜尋


下載電子全文  
系統識別號 U0026-2208201617234700
論文名稱(中文) 201及304不銹鋼之鈍化與腐蝕行為研究
論文名稱(英文) Passivation and corrosion behavior of 201 and 304 stainless steels
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 李俊毅
研究生(英文) Jun-Yi Li
學號 N56031378
學位類別 碩士
語文別 中文
論文頁數 90頁
口試委員 指導教授-蔡文達
口試委員-鍾自強
口試委員-汪俊延
口試委員-郭瑞昭
中文關鍵字 鈍化  高錳不銹鋼  鉬酸鈉  電位衰退法 
英文關鍵字 Passivation  High-manganese stainless steel  Molybdate  Potential decay 
學科別分類
中文摘要 本研究主要在探討不同鈍化處理方法及添加Na2MoO4對201不銹鋼鈍化及腐蝕行為的影響。實驗材料使用201高錳不銹鋼,經不同鈍化處理方法,並在部分鈍化溶液中添加Na2MoO4,而後藉由循環極化法及開路電位衰退量測評估其鈍化效果。搭配XPS表面成分分析,以釐清不同鈍化溶液及條件間,鈍化膜之化學組成的差異,進一步說明其對耐蝕性質的影響。此外以304不銹鋼作為實驗對照組,藉此探討合金含量鈍化及腐蝕行為中所扮演的角色。
鈍化後,根據在0.1 M HCl水溶液中的電化學實驗結果顯示,在室溫30 % HNO3鈍化溶液中,化學鈍化時間的增加,以及電化學施加電位的提升,皆有助於鈍化膜耐蝕能力的改善,201不銹鋼表現在Enp值的提升。另一方面在鈍化溶液中添加Na2MoO4後,雖然對304不銹鋼無明顯影響,但對於201不銹鋼來說其Enp值反而較無添加者下降,對於鈍化膜的耐蝕性質產生負面效果,根據XPS對鈍化膜Mo3d5軌域進行分析,發現鈍化膜中有MoO3存在,但並沒有發揮穩定鈍化膜的能力,而亦吸附於鈍化膜表面的MoO42-,可能為影響鈍化反應的因子。再者,將化學及電化學鈍化處後之耐蝕評估與XPS分析結果做比較,可發現經兩鈍化處理後,鈍化膜中Cr2O3及Fe2O3的含量分別增加,為進一步說明化學鈍化條件具有較佳的抗蝕能力。而在所有鈍化條件下,304不銹鋼之抗蝕能力皆優於201不銹鋼。雖然201不銹鋼經化學鈍化後,其鈍化電流密度可降至與304不銹鋼相同,但Enp提升的效果仍有限,由XPS分析及極化曲線結果做比較,發現原因在於化學鈍化可以提升鈍化膜中Cr/Fe氧化物比例,但在0.1M HCl水溶液中,Enp值仍會受到Mn、Ni及Mo氧化物含量所影響。
英文摘要 Passivation and corrosion behavior of high-manganese containing 201 stainless steel (SS) with different passivation treatments, in comparison with that of 304 SS, were studied. Both chemical passivation and electrochemical passivation were employed, while the passivation solution was HNO3 solution containing Na2MoO4. The corrosion performances of the passive films were evaluated by conducting cyclic potentiodynamic polarization and potential decay analyses in 0.1 M HCl solution. The experimental results showed that increasing chemical passivation time and electrochemical passivation potential, could improve the stability of passive film. Besides, all chemical passivation processes studied were superior to those of electrochemical passivation. Furthermore, a less notable decrease in the breakdown potential was observed if 201 SS was passivated in the electrolytes with 0.1 M Na2MoO4.
論文目次 摘要 I
Extended Abstract III
致謝 X
總目錄 XI
表目錄 XIV
圖目錄 XVI

第一章 前言 1

第二章 文獻回顧及背景資料 3
2.1 不銹鋼腐蝕及防治 3
2.1.1 常見腐蝕形態與成因 3
2.1.2 表面防蝕處理 5
2.2 鈍化理論 6
2.2.1 鈍化簡介 6
2.2.2 鈍化膜成形機制 7
2.2.3 鈍化膜成長與崩解機構 8
2.2.4 鈍化膜研究方法 11
2.3 不銹鋼之鈍化性質 12
2.3.1 影響鈍化膜之因素 13
2.3.2 鈍化膜耐蝕性質 18

第三章 研究方法及步驟 28
3.1 實驗材料 28
3.2 鈍化處理 28
3.2.1 化學鈍化處理 29
3.2.2 電化學鈍化處理 29
3.3 鈍化膜耐蝕性質評估 30
3.3.1 動電位循環極化法 30
3.3.2 開路電位衰退法 31
3.4 鈍化膜組成分析 31

第四章 結果與討論 34
4.1 201及304不銹鋼於0.1 M HCl水溶液中的腐蝕行為 34
4.2 201及304不銹鋼於鈍化溶液中的電化學量測 35
4.3 鈍化膜穩定性評估 37
4.3.1 化學鈍化對201及304不銹鋼之鈍化及耐蝕性質影響 37
4.3.2 電化學鈍化對201及304不銹鋼之鈍化及耐蝕性質影響 39
4.3.3 比較化學及電化學鈍化處理對201及304不銹鋼之鈍化及耐蝕性質影響 40
4.3.4 添加Na2MoO4對201及304不銹鋼之鈍化及耐蝕性質影響 43
4.3.5 合金成分對不銹鋼之鈍化與耐蝕性質影響 44

第五章 結論 80

參考文獻 82
參考文獻 [1] M. Kemp, A.v. Bennekom, F.P.A. Robinson, "Evaluation of the corrosion and mechanical properties of a range of experimental Cr-Mn stainless steels," Materials Science and Engineering, vol. A199, pp. 183-194, 1995.
[2] D.S. Bergstrom, C.A. Botti, "AL 201HPTM (UNS S20100) alloy : a high-performance, lower-nickel alternative to 300 series alloys," Stainless Steel World, vol. P5119, p. 3, 2005.
[3] ASTM, A967/A967M, "Standard Specification for Chemical Passivation Treatments for Stainless Steel Parts," pp. 1-7, 2013.
[4] M.A. Stranick, "The Corrosion Inhibition of Metals by Molybdate Part I. Mild Steel," Corrosion, vol. 40, pp. 296-302, 1984.
[5] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, "Pitting corrosion behaviour of austenitic stainless steels - combining effects of Mn and Mo additions," Corrosion Science, vol. 50, pp. 1796-1806, 2008.
[6] K. Sugimoto, Y. Sawada, "Role of alloyed molybdenum in austenitic stainless steels in the inhibition of pitting in neutral halide solutions," Corrosion vol. 32, pp. 347-352, 1976.
[7] S. Ningshen, U.K. Mudali, G. Amarendra, B. Raj, "Corrosion assessment of nitric acid grade austenitic stainless steels," Corrosion Science, vol. 51, pp. 322-329, 2009.
[8] W. Fredriksson, "Depth Profiling of the Passive Layer on Stainless Steel using Photoelectron Spectroscopy," Doctor, 2012.
[9] T.G. Gooch, "Corrosion Behavior of Welded Stainless Steel," Welding Research, pp. 135-153, 1996.
[10] G. Rondelli, B. Vicentini, A. Cigada, "Influence of nitrogen and manganese on localized corrosion behavior of stainless steels in chloride enviroments," Werkst. Korros., vol. 46, pp. 628-632, 1995.
[11] S.J. Kerber, J. Tverberg, "Stainless steel surface analysis," Advanced Materials and Processes, ASM International, pp. 33-36, 2000.
[12] 陳哲生, "設備的防蝕塗裝," 中工高雄會刊, vol. 17, pp. 45-52, 民國99年.
[13] A. Leyland, M. Bin-Sudin, A.S. James, M.R. Kalantary, P.B. Wells, A. Matthews, "TiN and CrN PVD coatings on electroless nickel-coated steel substrates," Surface and Coatings Technology, vol. 60, pp. 474-479, 1993.
[14] 王昆林, 材料工程基础, 清华大学出版社有限公司, 中國, pp. 365-368, 2003.
[15] J. Kruger, PASSIVITY, John Wiley & Sons, Inc., pp. 151-155, 2011.
[16] H.H. Uhlig, "Pssivity in Metals and Alloys," Corrosion Science, vol. 19, pp. 777-791, 1979.
[17] S.L. Chawla, R.K. Gupta, "Materials selection for corrosion control," ASM International, pp. 523, 1993.
[18] M. Faraday, Experimental Researches in Electricity, vol. 2, p. 243, 1965.
[19] C. Bennett, W. Burnham, Trans. Electrochem. Soc, vol. 29, p. 217, 1916.
[20] L. Tronstad, C. Borgmann, Trans. Faraday Soc., vol. 30, p. 349, 1934.
[21] D.D. Macdonald, "The Point Defect Model for the Passive State," Journal of The Electrochemical Society, vol. 39, pp. 3434-3449, 1992.
[22] D.D. Macdonald, "Passivity-the key to our metals-based civilization," Pure and Applied Chemistry, vol. 71, pp. 951-978, 1999.
[23] C.-O.A. Olsson, D. Landolt, "Passive films on stainless steels - chemistry, structure and growth," Electrochimica Acta, vol. 48, pp. 1093-1104, 2003.
[24] N. Sato, "A theory for breakdown of anodic oxide films on metals," Electrochimica Acta, vol. 16, pp. 1683-1692, 1971.
[25] H. Bohni, "Breakdown of Passivity and Localized Corrosion Processes," Langmuir, vol. 3, pp. 924-930, 1986.
[26] J. Kruger, National Association of Corrosion Engineers, Houston, pp. 91, 1976.
[27] Heusler, K.E. Fischer, L. Werkst, Korros., vol. 27, pp. 551 & 778, 1976.
[28] N. Sato, "Anodic Breakdown of Passive Films on Metals," Journal of The Electrochemical Society, vol. 129, pp. 258, 1982.
[29] D.D. Macdonald, M.A. Rifaie, G.R. Engelhardt, "New Rate Laws for the Growth and Reduction of Passive Films", Journal of The Electrochemical Society, vol. 148, pp. B343-B347, 2001.
[30] ASTM, A380/A380M - 13, "Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment, and Systems1," ASTM International, pp. 1-13, 2013.
[31] L.V. Taveira, G. Frank, H.P. Strunk, L.F.P. Dick, "The influence of surface treatments in hot acid solutions on the corrosion resistance and oxide structure of stainless steels," Corrosion Science, vol. 47, pp. 757-769, 2005.
[32] P. Mutombo, N. Hackerman, "Potential decay behavior of iron in dilute nitric acid," Journal of Solid State Electrochemistry, vol. 1, pp. 194-198, 1997.
[33] M.A. Barbosa, "The pitting resistance of AISI 316 stainless steel passivated in diluted nitric acid," Corrosion Science, vol. 23, pp. 1293-1305, 1983.
[34] Y.S. Zhang, X.M. Zhu, M. Liu, R.X. Che, "Effects of anodic passivation on the constitution, stability and resistance to corrosion of passive film formed on an Fe-24Mn-4Al-5Cr alloy," Applied Surface Science, vol. 222, pp. 89-101, 2004.
[35] M.J. Kim, J.G. Kim, "Effect of Manganese on the Corrosion Behavior of Low Carbon Steel in 10 wt.% Sulfuric Acid," Journal of The Electrochemical Society, vol. 10, pp. 6872 - 6885, 2015.
[36] F. Mohammadi, T. Nickchi, M.M. Attar, A. Alfantazi, "EIS study of potentiostatically formed passive film on 304 stainless steel," Electrochimica Acta, vol. 56, pp. 8727-8733, 2011.
[37] D. Wallinder, J. Pan, C. Leygraf, A. Delblanc-Bauer, "EIS and XPS study of surface modification of 316LVM stainless steel after passivation," Corrosion Science, vol. 41, pp. 275-289, 1999.
[38] P. Keller, H.-H. Strehblow, "XPS investigations of electrochemically formed passive layers on FeCr-alloys in 0.5 M H2SO4," Corrosion Science, vol. 46, pp. 1939-1952, 2004.
[39] V. Maurice, W.P. Yang, P. Marcus, "XPS and STM Study of Passive Films Formed on Fe-22Cr(110) Single-Crystal Surfaces," The Electrochemical Society, vol. 143, pp. 1182-1200, 1996.
[40] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd Edition, NACE Cebelcor, Houston, Texas, pp. 256-306, 1974.
[41] S. Haupt, H.-H. Strehblow, "A combined surface analytical and electrochemical study of the formation of passive layers on Fe-Cr alloys in 0.5 M H2SO," Corrosion Science, vol. 37, pp. 43-54, 1995.
[42] G. Okamoto, "Passive Film Of 18-8 Sainless Steel Structure And Its Function," Corrosion Science, vol. 13, pp. 471-489, 1973.
[43] C.-O.A. Olsson, D. Hamm, D. Landolt, "Electrochemical Quartz Crystal Microbalance Studies of the Passive Behavior of Cr in a Sulfuric Acid Solution," Journal of The Electrochemical Society, vol. 147, pp. 2563-2571, 2000.
[44] G. Suresh, V.R. Raju, U.K. Mudali, R.K. Dayal, "Corrosion assessment of type 304L stainless steel in nitric acid," Corrosion Engineering, Science and Technology, vol. 38, pp. 309-312, 2003.
[45] M.G. Fontana, Corrosion engineering, McGraw-Hill, New York, 1986.
[46] Z. Ahmad, CORROSION KINETICS, Butterworth-Heinemann, pp. 94-107, 2006.
[47] 柯賢文, 腐蝕及其防制, 金華科技圖書股份有限公司, 臺北, pp. 81-98, 2005.
[48] P. Kovacs, N.S. Istephanous, Proceedings of the Symposium on Compatability of Biomedical Implants, Electrochemical Society, 1994.
[49] A.F. Olander, M.I. Marek, Compability of Biomedical Implants, The Electrochem. Soc. INC., New Jersey, pp. 196, 1994.
[50] S. Jin, A. Atrens, "ESCA-Studies of the structure and composition of the passive film formed on stainless steels by various immersion temperatures in 0.1 M NaCl solution," Applied Physics A, vol. 45, pp. 83-91, 1988.
[51] L. Wegrelius, I. Olefjord, 12th International Corrosion Congress, NACE, Houston, TX, 1993, p. 3887.
[52] V. Maurice, W.P. Yang, P. Marcus, "X‐Ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study of Passive Films Formed on (100) Fe-18Cr-13Ni Single-Crystal Surfaces," Journal of The Electrochemical Society, vol. 145, pp. 909-920, 1998.
[53] S.J. Kerber, J. Tverberg, "Effect of nitric acid passivation on the surface composition of mechanically polished type 316 L sanitary tube," European Journal of Parenteral Sciences, vol. 3, pp. 117-124, 1998.
[54] E. Otero, A. Pardo, E. Sáenz, M.V. Utrilla, P. Hierro, "A study of the influence of nitric acid concentration on the corrosion resistance of sintered austenitic stainless steel," Corrosion Science, vol. 38, pp. 1485-1493, 1996.
[55] Reference T. Shibata, M. Tanaka, 4th Japan-USSR Corrosion Seminar, Japan Society of Corrosion Engineering, Japan, 1985, p. 13.
[56] A. Fattah-alhosseinia, M.A. Sonamia, A. Loghmani, F.Z. Shoja, "Passivity of AISI 316L Stainless Steel as a Function of Nitric Concentration," Journal of Advanced Materials and Processing, vol. 2, pp. 21-30, 2014.
[57] J.S. Noh, N.J. Laycock, W. Gao, D.B. Wells, "Effects of nitric acid passivation on the pitting resistance of 316 stainless steel," Corrosion Science, vol. 42, pp. 2069-2084, 2000.
[58] F.-M. Pan, Y.-L. Lin, J. Oung, "XPS and AES Studies of Carbon Steel Polarized in Aqueous Molybdate Solutions," Surface and interface analysis, vol. 19, pp. 409-413, 1992.
[59] K. Ogura, T. Ohama, "Pit Formation in the Cathodic Polarization of Passive Iron IV. Repair Mechanism by Molybdate, Chromate and Tungstate," Corrosion, vol. 40, pp. 47-51, 1984.
[60] T. Kodama, J.R. Ambrose, Corrosion, vol. 33, pp. 155, 1979.
[61] J.P.G. Farr, M. Saremi, "Molybdate In Aqueous Corrosion Inhibition I : Effects Of Molybdate On The Potentiodynamic Behaviors Of Steel And Some Other Metals," Surface Technlogy, vol. 19, pp. 137-144, 1983.
[62] Y.C. Lu, C.R. Clayton, A.R. Brooks, "A bipolar model of the passivity of stainless steels - II. The influence of aqueous molybdate," Corrosion Science, vol. 29, pp. 863-880, 1989.
[63] C.O.A. Olsson, S. Malmgren, M. Gorgoi, K. Edstrom, Electrochemical and Solid-State Letters, pp. C1-C3, 2011.
[64] W. Fredriksson, K. Edström, C.-O.A. Olsson, "XPS analysis of manganese in stainless steel passive films on 1.4432 and the lean duplex 1.4162," Corrosion Science, vol. 52, pp. 2505-2510, 2010.
[65] R. Kirchheim, B. Heine, S. Hofmann, H. Hofsäss, "Compositional changes of passive films due to different transport rates and preferential dissolution," Corrosion Science, vol. 31, p. 573, 1990.
[66] I. Olefjord, B. Brox, U. Jelvestam, "Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA," Journal of The Electrochemical Society, vol. 132, pp. 2854-2861 1985.
[67] G. Herting, I.O. Wallinder, C. Leygraf, "Corrosion-induced release of the main alloying constituents of manganese - chromium stainless steels in different media," Journal of Environmental Monitoring, vol. pp. 1084-1091, 2008.
[68] J.-Y. Park, Y.-S. Ahn, "Effect of Ni and Mn on the Mechanical Properties of 22Cr Micro-duplex Stainless Steel," Acta Metallurgica Sinica, vol. 28, pp. 32-38, 2015.
[69] M. Liljas, P. Johansson, H.-P. Liu, C.-O.A. Olsson, Steel Research International, vol. 79, p. 466, 2008.
[70] G. Wranglen, "Pitting and sulphide inclusions in steel," Corrosion Science, vol. 14, pp. 331-349, 1974.
[71] K. Park, H. Kwon, "Effect of Mn on the localized corrosion behavior of Fe-18Cr alloys," Electrochimica Acta, vol. 55, pp. 3421- 3427, 2010.
[72] L. Veleva, B. Tsaneva, P. Castro-Borges, M.Burova, "Characterization of Passive Films Formed on Manganese Nickel-Free Stainless Steel Exposed to Simulated Concrete Pore Environment," Int. J. Electrochem. Sci, vol. 7, pp. 4121-4132, 2012.
[73] I.-u.-H. Toor, "Effect of Mn Content and Solution Annealing Temperature on the Corrosion Resistance of Stainless Steel Alloys," Journal of Chemistry, vol. 2014, pp. 1-2, 2014.
[74] K. Sugimoto, S. Matsuda, "Analysis of Passive Films on Austeno-Ferritic Stainless Steel by Microscopic Ellipsometry," Journal of The Electrochemical Society, vol. 130, pp. 2323-2329 1983.
[75] G.T. Burstein, R.M. Souto, "Improvement in Pitting Resistance of Stainless Steel Surfaces by Prior Anodic Treatment in Metasilicate Solution," Journal of The Electrochemical Society, vol. 151, pp. B537-B542, 2004.
[76] K. Asami, K. Hashimoto, S. Shimodaira, "An XPS study of the passivity of a series of iron - chromium alloys in sulphuric acid," Corrosion Science, vol. 18, pp. 151-160, 1978.
[77] H. Xu, T. Lou, Y. Li, "Synthesis and characterize of trivalent chromium Cr(OH)3 and Cr2O3 microspheres," Inorganic Chemistry Communications, vol. 7, pp. 666-668, 2004.
[78] A. Fattah-alhosseini, M.M. Khalvan, "Semiconducting Properties of Passive Films Formed on AISI 420 Stainless Steel in Nitric Acid," Journal of Advanced Materials and Processing, vol. 1, pp. 15-22, 2013.
[79] M. Sakashita, N. Sato, "The Effect Of Molybdate Anion On the Ion-Selectivity Of Hydrous Ferric Oxide Films In Chloride Solutions," Corrosion Science, vol. 17, pp. 473-486, 1977.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw