系統識別號 U0026-2208201615452200
論文名稱(中文) 開發一種尿液診斷尿路上皮癌的新穎方法
論文名稱(英文) Develop a novel method for the urinary diagnosis of urothelial carcinoma
校院名稱 成功大學
系所名稱(中) 醫學檢驗生物技術學系
系所名稱(英) Department of Medical Laboratory Science and Biotechnology
學年度 104
學期 2
出版年 105
研究生(中文) 何怡慧
研究生(英文) Yi-Hui Ho
學號 T36034123
學位類別 碩士
語文別 英文
論文頁數 66頁
口試委員 指導教授-黃暉升
中文關鍵字 尿路上皮癌  生物標誌  靈敏度  柏氏染色 
英文關鍵字 Urothelial carcinoma  Papanicolaou stain  CellDetect®  biomarker  CDCP1 
中文摘要 尿路上皮癌(urothelial carcinoma, UC) 是世界上最致命的癌症之一,在美國男性中UC是第四名常見的癌症。UC主要可分為兩種類型: 肌肉侵犯型(T2-T4)及非肌肉侵犯型(Tis, Ta, T1),其中以非肌肉侵犯型UC佔大多數且復發率高達70%。因此,UC病人常需定期回診做追蹤檢測。臨床上,黃金標準診斷UC的方法為膀胱鏡。然而,膀胱鏡是屬於侵入性、昂貴及造成病人不舒服感的方法。其他非侵入性診斷方法包含尿液細胞學及生物標記檢測。目前尿液細胞學所使用的染色方法是Papanicolaou (Pap) stain,Pap stain擁有高特異性,但對於檢測低惡性UC的靈敏度卻相當低且需要專業的病理人員透過細胞型態及特性判定是否為癌細胞。在本篇的研究中,我們比較傳統染劑(Pap stain)及新穎染劑(CellDetect®)何者較適合臨床的使用,CellDetect®能經由顏色區分正常細胞及癌細胞以降低病理人員需透過專業知識判定癌細胞的負擔。在對照28位病人的組織切片中,我們發現CellDetect®的靈敏度、陽性預測值及陰性預測值較Pap stain為佳。我們提出CellDetect®結合自動化儀器利用顏色區分以偵測尿液的癌細胞,而這個自動化儀器將會提高診斷效率及降低臨床病理人員的負擔。另一方面,現今美國食品藥物管理局認可的生物標記對於臨床檢測UC的靈敏度及專一性仍不夠合適,因此我們想要開發一個具高專一性的生物標記檢測UC。近年來研究發現,CDCP1是第一型穿膜的醣蛋白,在許多癌症中都有過度表現的情形,包含肺癌、乳癌、大腸癌、腎臟癌等。在本篇研究中主要是探討CDCP1在UC的臨床意義及檢測的應用性。我們利用免疫組織化學染色分析CDCP1在91例尿路上皮組織陣列中的臨床角色及意義,結果顯示CDCP1在UC病人中有過度表現的情形且和腫瘤分化具有高度相關性,這意味著CDCP1可能成為尿液中檢測UC有用的生物標記。利用CDCP1免疫細胞染色中我們發現當尿液中含有至少五顆以上三價的癌細胞,此人有很大的機率為UC病人。我們認為將CDCP1應用在臨床尿液檢測上可改善診斷效率及減少侵入性膀胱鏡檢測的使用次數。
英文摘要 Urothelial carcinoma (UC) is one of the most fatal cancer in the world, and the American Cancer Society has reported that bladder cancer is the fourth most common cancer among men. UC includes two subtypes: muscle invasive urothelial carcinoma (MIUC; T2-T4) and non-muscle invasive urothelial carcinoma (NMIUC; Tis, Ta, T1). NMIUC occupies most of UC and has high recurrence rate of up to 70%. Therefore, NMIUC patients need regular surveillance. The gold standard of clinical diagnoses of UC is cystoscopy, which is an invasive and expensive method. The other diagnostic methods are non-invasive, including urinary cytology and biomarkers detection. Papanicolaou (Pap) stain is widely used in cytology with high specificity, but low sensitivity to detect low-grade UC and requirement of pathological experts to clarify malignant cells by their morphological characteristics. In the present study, we performed a novel cytological stain called CellDetect®, which could highlight malignant cells through their color discrimination. In comparison with the tissue biopsy of twenty-eight UC patients, the sensitivity, positive predictive value and negative predictive values of CellDetect® stain were better than those of Pap stain. We suggest that the CellDetect® stain might be a promising method to develop an automatic detector to screen urinary UC cells. It might promote the diagnostic efficiency and reduce the burden of pathologists. On the other hand, the sensitivity and specificity of urinary biomarkers, even though the FDA approved biomarkers, are not good for clinical detection so far. Thus, we wanted to develop a novel useful biomarker in the urinary detection of UC. CUB domain-containing protein 1 (CDCP1) is a type I transmembrane glycoprotein, which highly expresses in various cancers, such as lung, breast, colon, kidney cancers, etc. We evaluated tissue arrays containing 103 cases for expression of CDCP1 in tumors compared with normal urothelium tissues by IHC staining. The results showed that CDCP1 was overexpressed in UC patients and associated with tumor grade with highly statistical significance. It indicates that CDCP1 might be a useful biomarker in the urinary detection of UC. As we analyzed several cases of UC patients, we found out that if a patient had at least five trivalent malignant cells in CDCP1 IHC staining, the patient would cause higher probability of having UC. The applications of CDCP1 in urinary cytology of UC will improve the diagnostic efficiency of the method.
論文目次 Index

中文摘要 I
Abstract II
誌謝 IV
Index V
Contents VI
Abbreviations VII
List of Figures VIII
List of Tables IX
List of Appendix X


1. Introduction 1
2. Specific aims 8
3. Materials and methods 9
4. Results 26
5. Discussion 32
6. References 36
7. Figures 43
8. Tables 57
9. Appendix 63

參考文獻 1. Grivas, P.D., M. Melas, and A.G. Papavassiliou, The biological complexity of urothelial carcinoma: Insights into carcinogenesis, targets and biomarkers of response to therapeutic approaches. Semin Cancer Biol, 2015. 35: p. 125-32.
2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA Cancer J Clin, 2016. 66(1): p. 7-30.
3. Pukkala, E., et al., Occupation and cancer - follow-up of 15 million people in five Nordic countries. Acta Oncol, 2009. 48(5): p. 646-790.
4. Turner, R.M., et al., Thiazolidinediones and associated risk of bladder cancer: a systematic review and meta-analysis. Br J Clin Pharmacol, 2014. 78(2): p. 258-73.
5. Levin, D., et al., Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologia, 2015. 58(3): p. 493-504.
6. Knowles, M.A. and C.D. Hurst, Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer, 2015. 15(1): p. 25-41.
7. Johnson, D.C., P.S. Greene, and M.E. Nielsen, Surgical advances in bladder cancer: at what cost? Urol Clin North Am, 2015. 42(2): p. 235-52, ix.
8. Babjuk, M., et al., EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur Urol, 2013. 64(4): p. 639-53.
9. von der Maase, H., et al., Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol, 2000. 18(17): p. 3068-77.
10. Necchi, A., et al., Efficacy and Safety of Gemcitabine Plus Either Taxane or Carboplatin in the First-Line Setting of Metastatic Urothelial Carcinoma: A Systematic Review and Meta-Analysis. Clin Genitourin Cancer, 2016.
11. Sternberg, C.N., et al., Methotrexate, vinblastine, doxorubicin, and cisplatin for advanced transitional cell carcinoma of the urothelium. Efficacy and patterns of response and relapse. Cancer, 1989. 64(12): p. 2448-58.
12. Saxman, S.B., et al., Long-term follow-up of a phase III intergroup study of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J Clin Oncol, 1997. 15(7): p. 2564-9.
13. Loehrer, P.J., Sr., et al., A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J Clin Oncol, 1992. 10(7): p. 1066-73.
14. von der Maase, H., et al., Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol, 2005. 23(21): p. 4602-8.
15. Mbeutcha, A., et al., Current Status of Urinary Biomarkers for Detection and Surveillance of Bladder Cancer. Urol Clin North Am, 2016. 43(1): p. 47-62.
16. Schmitz-Drager, B.J., et al., Molecular markers for bladder cancer screening, early diagnosis, and surveillance: the WHO/ICUD consensus. Urol Int, 2015. 94(1): p. 1-24.
17. Kokorowski, P.J., et al., Screening for malignancy after augmentation cystoplasty in children with spina bifida: a decision analysis. J Urol, 2011. 186(4): p. 1437-43.
18. Babjuk, M., et al., EAU Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2016. Eur Urol, 2016.
19. Grossman, H.B., et al., Detection of bladder cancer using a point-of-care proteomic assay. Jama, 2005. 293(7): p. 810-6.
20. Lotan, Y., R.S. Svatek, and N. Malats, Screening for bladder cancer: a perspective. World J Urol, 2008. 26(1): p. 13-8.
21. Schlake, A., et al., NMP-22, urinary cytology, and cystoscopy: a 1 year comparison study. Can J Urol, 2012. 19(4): p. 6345-50.
22. Wald, M., et al., Bladder tumor antigen stat test in non-urothelial malignant urologic conditions. Isr Med Assoc J, 2002. 4(3): p. 174-5.
23. Leyh, H., et al., Comparison of the BTA stat test with voided urine cytology and bladder wash cytology in the diagnosis and monitoring of bladder cancer. Eur Urol, 1999. 35(1): p. 52-6.
24. Mian, C., et al., Immunocyt: a new tool for detecting transitional cell cancer of the urinary tract. J Urol, 1999. 161(5): p. 1486-9.
25. Fradet, Y. and C. Lockhard, Performance characteristics of a new monoclonal antibody test for bladder cancer: ImmunoCyt trade mark. Can J Urol, 1997. 4(3): p. 400-405.
26. Zhou, A.G., et al., Role of Tetrasomy for the Diagnosis of Urothelial Carcinoma Using UroVysion Fluorescent In Situ Hybridization. Arch Pathol Lab Med, 2016. 140(6): p. 552-9.
27. Sullivan, P.S., et al., Comparison of ImmunoCyt, UroVysion, and urine cytology in detection of recurrent urothelial carcinoma: a "split-sample" study. Cancer, 2009. 117(3): p. 167-73.
28. Halling, K.C. and B.R. Kipp, Bladder cancer detection using FISH (UroVysion assay). Adv Anat Pathol, 2008. 15(5): p. 279-86.
29. Papanicolaou, G.N., Cytology of the urine sediment in neoplasms of the urinary tract. J Urol, 1947. 57(2): p. 375-9.
30. Saegusa, M., et al., [Isoantigens ABH in bladder tumors as an indicator of malignant potential. The staining pattern by PAP method and its correlation with prognosis]. Nihon Hinyokika Gakkai Zasshi, 1990. 81(2): p. 196-203.
31. Papanicolaou, G.N. and V.F. Marshall, URINE SEDIMENT SMEARS AS A DIAGNOSTIC PROCEDURE IN CANCERS OF THE URINARY TRACT. Science, 1945. 101(2629): p. 519-20.
32. VandenBussche, C.J., A review of the Paris system for reporting urinary cytology. Cytopathology, 2016. 27(3): p. 153-6.
33. Bhagat, P., et al., Efficacy of modified rapid economic acetic acid-based Papanicolaou stain. Cytopathology, 2016.
34. Deshpande, V. and G.T. McKee, Analysis of atypical urine cytology in a tertiary care center. Cancer, 2005. 105(6): p. 468-75.
35. Brown, F.M., Urine cytology. It is still the gold standard for screening? Urol Clin North Am, 2000. 27(1): p. 25-37.
36. Pham, H.V., L. Pantanowitz, and Y. Liu, Quantitative phase imaging to improve the diagnostic accuracy of urine cytology. Cancer Cytopathol, 2016.
37. Khadra, M.H., et al., A prospective analysis of 1,930 patients with hematuria to evaluate current diagnostic practice. J Urol, 2000. 163(2): p. 524-7.
38. Jorgensen, P.H., B. Vainer, and G.G. Hermann, A clinical and molecular review of inverted papilloma of the urinary tract: how to handle? APMIS, 2015. 123(11): p. 920-9.
39. Bhatia, A., et al., Malignant atypical cell in urine cytology: a diagnostic dilemma. Cytojournal, 2006. 3: p. 28.
40. Owens, C.L. and S.Z. Ali, Atypical squamous cells in exfoliative urinary cytology: clinicopathologic correlates. Diagn Cytopathol, 2005. 33(6): p. 394-8.
41. Bostwick, D.G. and D. Hossain, Does subdivision of the "atypical" urine cytology increase predictive accuracy for urothelial carcinoma? Diagn Cytopathol, 2014. 42(12): p. 1034-44.
42. García-Peláez, B., et al., Fluorescent in situ hybridization as a predictor of relapse in urothelial carcinoma. Actas Urológicas Españolas (English Edition), 2013. 37(7): p. 395-400.
43. Kassouf, W., The value of urine cytology in the workup of hematuria. Cancer Cytopathol, 2016. 124(5): p. 303-4.
44. Idelevich, P., et al., Novel dual-function CellDetect(R) staining technology: wedding morphology and tinctorial discrimination to detect cervical neoplasia. Diagn Pathol, 2010. 5: p. 70.
45. Davis, N., et al., A novel urine cytology stain for the detection and monitoring of bladder cancer. J Urol, 2014. 192(6): p. 1628-32.
46. Idelevich, P., et al., Screening for cervical neoplasia: a community-based trial comparing Pap staining, human papilloma virus testing, and the new bi-functional Celldetect(R) stain. Diagn Cytopathol, 2012. 40(12): p. 1054-61.
47. Min, K.W., et al., High Ki67/BCL2 index is associated with worse outcome in early stage breast cancer. Postgrad Med J, 2016.
48. Woo, T., et al., Prognostic value of KRAS mutations and Ki-67 expression in stage I lung adenocarcinomas. Lung Cancer, 2009. 65(3): p. 355-62.
49. Haga, Y., et al., Ki-67 expression and prognosis for smokers with resected stage I non-small cell lung cancer. Ann Thorac Surg, 2003. 75(6): p. 1727-32; discussion 1732-3.
50. He, S., et al., Application of the CellDetect(R) staining technique in diagnosis of human cervical cancer. Gynecol Oncol, 2014. 132(2): p. 383-8.
51. Huang, H.S., Z.M. Liu, and D.Y. Hong, Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes. Toxicol Appl Pharmacol, 2010. 244(2): p. 234-41.
52. Huang, H.S., et al., TG-interacting factor-induced superoxide production from NADPH oxidase contributes to the migration/invasion of urothelial carcinoma. Free Radic Biol Med, 2012. 53(4): p. 769-78.
53. Yeh, B.W., et al., Overexpression of TG-interacting factor is associated with worse prognosis in upper urinary tract urothelial carcinoma. Am J Pathol, 2012. 181(3): p. 1044-55.
54. Bertolino, E., et al., A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem, 1995. 270(52): p. 31178-88.
55. Wotton, D., et al., A Smad transcriptional corepressor. Cell, 1999. 97(1): p. 29-39.
56. Wallis, D.E. and M. Muenke, Molecular mechanisms of holoprosencephaly. Mol Genet Metab, 1999. 68(2): p. 126-38.
57. Liu, Z.M., et al., Transforming growth factor beta-interacting factor-induced malignant progression of hepatocellular carcinoma cells depends on superoxide production from Nox4. Free Radic Biol Med, 2015. 84: p. 54-64.
58. Hamid, R. and S.J. Brandt, Transforming growth-interacting factor (TGIF) regulates proliferation and differentiation of human myeloid leukemia cells. Mol Oncol, 2009. 3(5-6): p. 451-63.
59. Imoto, I., et al., Amplification and overexpression of TGIF2, a novel homeobox gene of the TALE superclass, in ovarian cancer cell lines. Biochem Biophys Res Commun, 2000. 276(1): p. 264-70.
60. Hooper, J.D., et al., Subtractive immunization using highly metastatic human tumor cells identifies SIMA135/CDCP1, a 135 kDa cell surface phosphorylated glycoprotein antigen. Oncogene, 2003. 22(12): p. 1783-94.
61. Lin, C.Y., et al., ADAM9 promotes lung cancer metastases to brain by a plasminogen activator-based pathway. Cancer Res, 2014. 74(18): p. 5229-43.
62. Cao, M., et al., HIF-2alpha regulates CDCP1 to promote PKCdelta-mediated migration in hepatocellular carcinoma. Tumour Biol, 2016. 37(2): p. 1651-62.
63. Uekita, T., et al., Oncogenic Ras/ERK signaling activates CDCP1 to promote tumor invasion and metastasis. Mol Cancer Res, 2014. 12(10): p. 1449-59.
64. Yang, L., et al., Dysregulated expression of cell surface glycoprotein CDCP1 in prostate cancer. Oncotarget, 2015. 6(41): p. 43743-58.
65. Bork, P. and G. Beckmann, The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol, 1993. 231(2): p. 539-45.
66. Wright, H.J., et al., CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer. Oncogene, 2016.
67. Uekita, T., et al., CUB domain-containing protein 1 is a novel regulator of anoikis resistance in lung adenocarcinoma. Mol Cell Biol, 2007. 27(21): p. 7649-60.
68. Wortmann, A., et al., Cellular settings mediating Src Substrate switching between focal adhesion kinase tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) tyrosine 734. J Biol Chem, 2011. 286(49): p. 42303-15.
69. Benes, C.H., et al., The SRC-associated protein CUB Domain-Containing Protein-1 regulates adhesion and motility. Oncogene, 2012. 31(5): p. 653-63.
70. Leroy, C., et al., CUB-domain-containing protein 1 overexpression in solid cancers promotes cancer cell growth by activating Src family kinases. Oncogene, 2015. 34(44): p. 5593-8.
71. Miura, S., et al., CUB-domain containing protein 1 represses the epithelial phenotype of pancreatic cancer cells. Exp Cell Res, 2014. 321(2): p. 209-18.
72. Uekita, T., et al., CUB-domain-containing protein 1 regulates peritoneal dissemination of gastric scirrhous carcinoma. Am J Pathol, 2008. 172(6): p. 1729-39.
73. Emerling, B.M., et al., Identification of CDCP1 as a hypoxia-inducible factor 2alpha (HIF-2alpha) target gene that is associated with survival in clear cell renal cell carcinoma patients. Proc Natl Acad Sci U S A, 2013. 110(9): p. 3483-8.
74. Awakura, Y., et al., Microarray-based identification of CUB-domain containing protein 1 as a potential prognostic marker in conventional renal cell carcinoma. J Cancer Res Clin Oncol, 2008. 134(12): p. 1363-9.
75. Ikeda, J., et al., Expression of CUB domain containing protein (CDCP1) is correlated with prognosis and survival of patients with adenocarcinoma of lung. Cancer Sci, 2009. 100(3): p. 429-33.
76. Gao, W., et al., Isolation and phenotypic characterization of colorectal cancer stem cells with organ-specific metastatic potential. Gastroenterology, 2013. 145(3): p. 636-46 e5.
77. Miyazawa, Y., et al., CUB domain-containing protein 1, a prognostic factor for human pancreatic cancers, promotes cell migration and extracellular matrix degradation. Cancer Res, 2010. 70(12): p. 5136-46.
78. He, Y., B.S. Harrington, and J.D. Hooper, New crossroads for potential therapeutic intervention in cancer - intersections between CDCP1, EGFR family members and downstream signaling pathways. Oncoscience, 2016. 3(1): p. 5-8.
79. Alajati, A., et al., Interaction of CDCP1 with HER2 enhances HER2-driven tumorigenesis and promotes trastuzumab resistance in breast cancer. Cell Rep, 2015. 11(4): p. 564-76.
80. Patriarca, C., et al., Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev, 2012. 38(1): p. 68-75.
81. Yilmaz, M. and G. Christofori, EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev, 2009. 28(1-2): p. 15-33.
82. Huncharek, M., R. McGarry, and B. Kupelnick, Impact of intravesical chemotherapy on recurrence rate of recurrent superficial transitional cell carcinoma of the bladder: results of a meta-analysis. Anticancer Res, 2001. 21(1b): p. 765-9.
83. Babjuk, M., et al., EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder. Eur Urol, 2008. 54(2): p. 303-14.
84. Tetu, B., Diagnosis of urothelial carcinoma from urine. Mod Pathol, 2009. 22 Suppl 2: p. S53-9.
85. Bryan, R.T., et al., Urinary EpCAM in urothelial bladder cancer patients: characterisation and evaluation of biomarker potential. Br J Cancer, 2014. 110(3): p. 679-85.
86. Baeuerle, P.A. and O. Gires, EpCAM (CD326) finding its role in cancer. Br J Cancer, 2007. 96(3): p. 417-23.
87. Balzar, M., et al., Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions. Mol Cell Biol, 2001. 21(7): p. 2570-80.
88. Litvinov, S.V., et al., Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol, 1994. 125(2): p. 437-46.
89. Sidaway, P., Bladder cancer: Urinary EGFR and EpCAM predict cancer-specific survival. Nat Rev Urol, 2015. 12(4): p. 184.
90. Wu, H., et al., Significance of Trask protein interactions in brain metastatic cohorts of lung cancers. Tumour Biol, 2015. 36(6): p. 4181-7.
91. Miyazawa, Y., et al., CDCP1 regulates the function of MT1-MMP and invadopodia-mediated invasion of cancer cells. Mol Cancer Res, 2013. 11(6): p. 628-37.
92. Orchard-Webb, D.J., et al., CUB domain containing protein 1 (CDCP1) modulates adhesion and motility in colon cancer cells. BMC Cancer, 2014. 14: p. 754.
93. Sawada, G., et al., Loss of CDCP1 expression promotes invasiveness and poor prognosis in esophageal squamous cell carcinoma. Ann Surg Oncol, 2014. 21 Suppl 4: p. S640-7.
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-22起公開。

  • 如您有疑問,請聯絡圖書館