進階搜尋


下載電子全文  
系統識別號 U0026-2208201613360900
論文名稱(中文) 銦摻雜硫化鋅奈米線熱電性質研究
論文名稱(英文) Thermoeletric Properties of In-doped ZnS Nanowires
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 彭柏良
研究生(英文) Bo-Liang Peng
電子信箱 cdenhy333@gmail.com
學號 N56031085
學位類別 碩士
語文別 英文
論文頁數 98頁
口試委員 指導教授-劉全璞
口試委員-王瑞琪
口試委員-齊孝定
口試委員-黃榮俊
口試委員-陳永松
中文關鍵字 硫化鋅  摻雜    熱電 
英文關鍵字 ZnS  doping  indium  thermoelectricity 
學科別分類
中文摘要 本研究探討硫化鋅一維材料的熱電(thermoelectric)特性,我們發現硫化鋅的高電阻率會導致不良好的熱電表現,因此,為了解決硫化鋅的高電阻率(resistivity)問題,我們摻雜銦(Indium)於硫化鋅中以期提升熱電性質。
 為了了解硫化鋅摻雜銦之前與之後的不同,我們利用電子掃描式顯微鏡(scanning electron microscopy)和電子穿隧式顯微鏡(transmission electron microscope)觀察其無摻雜及銦摻雜(In-doped)硫化鋅一維材料的形貌及結晶性之狀況。除此之外,硫化鋅的光致發光(photoluminescence)之特性是相當特別的,因此我們在此研究中也針對其無摻雜及銦摻雜的硫化鋅進行相關的分析,我們發現銦摻雜硫化鋅一維材料的光致發光會隨著銦摻雜的濃度而變化。
  除此之外,為了瞭解無摻雜及銦摻雜的熱電及電性特性,我們製造了建立在單根一維材料上的裝置,其裝置建立了材料與測量設備之間的電性連結以供熱電及電性上的量測。而且銦摻雜硫化鋅一維材料的西貝克常數(Seebeck coefficient)相較於無摻雜硫化鋅一維材料來的低,但是銦摻雜硫化鋅一維材料擁有極低的電阻率,導致其熱電性質比無摻雜硫化鋅一維材料來的好。
  在本研究中,我們探討了硫化鋅用於熱電領域上的可能性,且利用摻雜技術以提升其熱電表現。
英文摘要 In our work, we study the thermoelectric properties of ZnS one-dimensional (1-D) material. However, ZnS does not perform well due to extremely high resistivity. To solve the resistivity issue, we doped metal element, such as indium, to ZnS.
In order to investigate the difference before and after doping, we use scanning electron microscopy and transmission electron microscope to examine the morphology and the crystallinity of the undoped and doped 1-D ZnS. Furthermore, photoluminescence of nanostructured ZnS is interesting, especially doped ZnS in the nano-structure. We found that the In-doped ZnS exhibits red-shift in which peak of PL spectrum, under 325-nm laser, and the wavelength of which peak of the doped ZnS increases with In concentration. To understand the thermoelectrical and electrical properties, we fabricated the device, based on single 1-D material. In our work, it is found that although the Seebeck coefficient of the undoped ZnS is higher than that of the In-doped ZnS, the resistivity of the In-doped ZnS is extremely low due to doping effect. Therefore, for the doped ZnS material, the decrease in the resistivity is truly more dominant than the low in the Seebeck coefficient, leading to the power factor, which can evaluate the efficiency of thermoelectrical material, higher than the undoped ZnS.
In this study, we explore the ZnS material to be utilized in thermoelectricity and apply doping effect to ZnS in order to enhance the thermoelectrical performance.
論文目次 Chapter 1. Motivation and Introduction.............................................................1
1.1 Introduction to one-dimensional thermoelectric materials...................1
1.2 Introduction to ZnS..............................................................................4
1.3 Motivation...........................................................................................5
Chapter 2. Literature Review on ZnS, application and thermoelectrics..................................................................................................7
2.1 Fundamentals of ZnS.........................................................................7
2.1.1 Structural Properties of ZnS....................................................7
2.1.2 Physical Properties of ZnS......................................................8
2.1.3 Growth Mechanism................................................................9
2.1.4 Applications..........................................................................11
2.2 Thermoelectrics in ZnS....................................................................18
2.2.1 Mechanisms of Themoelectrics............................................18
2.2.2 Thermoelectrical Properties of one-dimensional materials...23
2.2.3 The current development of ZnS for thermoelectrics............29
Chapter 3. Experimental Setup........................................................................30
3.1 Experimental Flow Chart.................................................................30
3.2 Growth of undoped and In-doped 1-D materials..............................31
3.2.1 Chemical Vapor Deposition (CVD).......................................31
3.3 Morphology and Crystal Structure Characterization........................35
3.3.1 Scanning Electron Microscopy (SEM)…..............................35
3.3.2 High Resolution Transmission Electron Microscopy (HRTEM).......................................................................................38
3.3.3 X-Ray Diffraction (XRD)......................................................40
3.4 Optical measurement.......................................................................42
3.4.1 Photoluminescence Spectroscope(PL)..................................42
3.5 Device fabrication............................................................................35
3.6 Thermoelectrical and electrical measurement..................................48
Chapter 4. Results and Discussion...................................................................52
4.1 Morphology Characterization..........................................................52
4.1.1 SEM analysis.........................................................................52
4.2 Structural Characterization..............................................................54
4.2.1 XRD and TEM analysis.........................................................54
4.3 PL characteristics.............................................................................60
4.3.1 photoluminescence of undoped ZnS......................................60
4.3.2 photoluminescence of In-doped ZnS......................................62
4.4 electric characteristics......................................................................66
4.4.1 I-V curve................................................................................68
4.4.2 Four-probe resistivity measurement......................................70
4.4.3 Resistivity at varying temperature.........................................72
4.5 Thermoelectrical characteristic.......................................................74
4.5.1 Seebeck coefficient at fixed temperature..............................74
4.5.2 Seebeck coefficient at varying temperature..........................80
4.6 power factor...................................................................................82
Chapter 5. Conclusions....................................................................................84
Chapter 6. Future aspects................................................................................86
Chapter 7. References......................................................................................87
參考文獻 [1] B. Tian, T. J. Kempa, and C. M. Lieber, “Single nanowire photovoltaics,” Chemical Society Reviews, vol. 38, no. 1, pp. 16-24, 2009.
[2] C. Soci, A. Zhang, B. Xiang et al., “ZnO nanowire UV photodetectors with high internal gain,” Nano Letters, vol. 7, no. 4, pp. 1003-1009, Apr, 2007.
[3] R. S. Chen, H. Y. Chen, C. Y. Lu et al., “Ultrahigh photocurrent gain in m-axial GaN nanowires,” Applied Physics Letters, vol. 91, no. 22, Nov 26, 2007.
[4] A. Motayed, M. Vaudin, A. V. Davydov et al., “Diameter dependent transport properties of gallium nitride nanowire field effect transistors,” Applied Physics Letters, vol. 90, no. 4, Jan 22, 2007.
[5] L. Liao, Z. Zhang, B. Yan et al., “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors,” Nanotechnology, vol. 20, no. 8, Feb 25, 2009.
[6] Y. Huang, and C. M. Lieber, “Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires,” Pure and Applied Chemistry, vol. 76, no. 12, pp. 2051-2068, Dec, 2004.
[7] A. D. Bass JC, "Milliwatt radioisotope power supply for space applications," presented at the Proc. Int. Conf. Thermoelectr., Baltimore, pp. 521–524, 1999.
[8] L. E. Bell, "Cooling, heating, generating power, and recovering waste heat with thermoelectric systems," Science, vol. 321, 5895, pp. 1457-1461, 2008.
[9] Leonov, V. and R. J. M. Vullers (2009). "Wearable Thermoelectric Generators for Body-Powered Devices." Journal of Electronic Materials 38(7): 1491-1498.
[10] L. Hicks and M. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, 19, pp. 12727-12731, 1993.
[11] L. Hicks and M. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, vol. 47, 24, pp. 16631-16634, 1993.
[12] H. X. Chen, D. N. Shi, J. S. Qi et al., “The stability and electronic properties of wurtzite and zinc-blende ZnS nanowires,” Physics Letters A, vol. 373, no. 3, pp. 371-375, Jan 12, 2009.
[13] M. Kishino, and T. Taguchi, “AFM and photoluminescence characterization of defects in the mirror-polished ZnSe bulk crystals and MBE-grown homoepitaxial layers,” Journal of Crystal Growth, vol. 210, no. 1-3, pp. 230-233, Mar, 2000.
[14] A. L. Rogach, N. Gaponik, J. M. Lupton et al., “Light-emitting diodes with semiconductor nanocrystals,” Angewandte Chemie-International Edition, vol. 47, no. 35, pp. 6538-6549, 2008.
[15] U. K. Gautam, Y. Bando, J. H. Zhan et al., “Ga-doped ZnS nanowires as precursors for ZnO/ZnGa2O4 nanotubes,” Advanced Materials, vol. 20, no. 4, pp. 810-+, Feb 18, 2008.
[16] S. Kohiki, T. Suzuka, M. Oku et al., “Coupling of codoped in and n impurities in ZnS : Ag: Experiment and theory,” Journal of Applied Physics, vol. 91, no. 2, pp. 760-763, Jan 15, 2002.
[17] T. V. Butkhuzi, T. G. Tchelidze, E. G. Chikoidze et al., “Silver doped p-type ZnS crystals,” Physica Status Solidi B-Basic Research, vol. 229, no. 1, pp. 365-370, Jan, 2002.
[18] K. Lott, L. Turn, O. Volobujeva et al., “High temperature electrical conductivity in Cu-doped ZnS,” Physica Status Solidi B-Basic Solid State Physics, vol. 229, no. 1, pp. 361-364, Jan, 2002.
[19] S. Nakamura, J. Yamaguchi, S. Takagimoto et al., “Luminescence properties of lithium-doped ZnS epitaxial layers grown by MOCVD,” Journal of Crystal Growth, vol. 237, pp. 1570-1574, Apr, 2002.
[20] S. Iida, T. Yatabe, and H. Kinto, “P-Type Conduction in Zns Grown by Vapor-Phase Epitaxy,” Japanese Journal of Applied Physics Part 2-Letters, vol. 28, no. 4, pp. L535-L537, Apr, 1989.
[21] B. Y. Geng, L. D. Zhang, G. Z. Wang et al., “Synthesis and photoluminescence properties of ZnMnS nanobelts,” Applied Physics Letters, vol. 84, no. 12, pp. 2157-2159, Mar 22, 2004.
[22] A. Datta, S. K. Panda, and S. Chaudhuri, “Phase transformation and optical properties of Cu-doped ZnS nanorods,” Journal of Solid State Chemistry, vol. 181, no. 9, pp. 2332-2337, Sep, 2008.
[23] Y. C. Chen, C. H. Wang, H. Y. Lin et al., “Growth of Ga-doped ZnS nanowires constructed by self-assembled hexagonal platelets with excellent photocatalytic properties,” Nanotechnology, vol. 21, no. 45, pp. 455604, Nov 12, 2010.
[24] Y. K. Liu, J. A. Zapien, Y. Y. Shan et al., “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Advanced Materials, vol. 17, no. 11, pp. 1372-+, Jun 6, 2005.
[25] T. Y. Zhai, X. Z. Zhang, W. S. Yang et al., “Growth of single crystalline ZnxCd1-xS nanocombs by metallo-organic chemical vapor deposition,” Chemical Physics Letters, vol. 427, no. 4-6, pp. 371-374, Aug 31, 2006.
[26] T. Y. Zhai, Z. J. Gu, W. S. Yang et al., “Fabrication, structural characterization and photoluminescence of single-crystal ZnxCd1-xS zigzag nanowires,” Nanotechnology, vol. 17, no. 18, pp. 4644-4649, Sep 28, 2006.
[27] R. Venugopal, P. I. Lin, and Y. T. Chen, “Photoluminescence and Raman scattering from catalytically grown ZnxCd1-xSe alloy nanowires,” Journal of Physical Chemistry B, vol. 110, no. 24, pp. 11691-11696, Jun 22, 2006.
[28] B. Sotillo, Y. Ortega, P. Fernández et al., “Influence of indium doping on the morphology of ZnS nanostructures grown by a vapor–solid method,” CrystEngComm, vol. 15, no. 35, pp. 7080, 2013.
[29] B. Sotillo, P. Fernández, and J. Piqueras, “Cathodoluminescence of In doped ZnS nanostructures grown by vapor–solid method,” Journal of Alloys and Compounds, vol. 563, pp. 113-118, 2013.
[30] Y. Shiraishi, R. Okazaki, H. Taniguchi et al., “Photo-Seebeck effect in ZnS,” Japanese Journal of Applied Physics, vol. 54, no. 3, pp. 031203, 2015.
[31] C. Wang, Y. Wang, G. Zhang et al., “Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires,” Phys Chem Chem Phys, vol. 16, no. 8, pp. 3771-6, Feb 28, 2014.
[32] T. Ito, “Simple criterion for wurtzite-zinc-blende polytypism in semiconductors,” Japanese Journal of Applied Physics Part 2-Letters, vol. 37, no. 10b, pp. L1217-L1220, Oct 15, 1998.
[33] S. Z. Karazhanov, P. Ravindran, A. Kjekshus et al., “Electronic structure and optical properties of ZnX (X=O, S, Se, Te): A density functional study,” Physical Review B, vol. 75, no. 15, Apr, 2007.
[34] Y. Cui, Q. Q. Wei, H. K. Park et al., “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, no. 5533, pp. 1289-1292, Aug 17, 2001.
[35] S. S. Wong, E. Joselevich, A. T. Woolley et al., “Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology,” Nature, vol. 394, no. 6688, pp. 52-55, Jul 2, 1998.
[36] J. Kong, N. R. Franklin, C. W. Zhou et al., “Nanotube molecular wires as chemical sensors,” Science, vol. 287, no. 5453, pp. 622-625, Jan 28, 2000.
[37] R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth ( New Method Growth Catalysis from Impurity Whisker Epitaxial + Large Crystals Si E ),” Applied Physics Letters, vol. 4, no. 5, pp. 89-&, 1964.
[38] C. H. Bartholomew, “Mechanisms of catalyst deactivation,” Applied Catalysis a-General, vol. 212, no. 1-2, pp. 17-60, Apr 30, 2001.
[39] X. S. Fang, U. K. Gautam, Y. Bando et al., “Multiangular branched ZnS nanostructures with needle-shaped tips: Potential luminescent and field-emitter nanomaterial,” Journal of Physical Chemistry C, vol. 112, no. 12, pp. 4735-4742, Mar 27, 2008.
[40] S. Biswas, S. Kar, and S. Chaudhuri, “Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process,” Journal of Physical Chemistry B, vol. 109, no. 37, pp. 17526-17530, Sep 22, 2005.
[41] M. Lin, T. Sudhiranjan, C. Boothroyd et al., “Influence of Au catalyst on the growth of ZnS nanowires,” Chemical Physics Letters, vol. 400, no. 1-3, pp. 175-178, Dec 11, 2004.
[42] X. S. Fang, Y. H. Bando, C. H. Ye et al., “Shape- and size-controlled growth of ZnS nanostructures,” Journal of Physical Chemistry C, vol. 111, no. 24, pp. 8469-8474, Jun 21, 2007.
[43] J. Zhang, Y. D. Yang, F. H. Jiang et al., “Fabrication, structural characterization and photoluminescence of Q-1D semiconductor ZnS hierarchical nanostructures,” Nanotechnology, vol. 17, no. 10, pp. 2695-2700, May 28, 2006.
[44] C. Ma, D. Moore, J. Li et al., “Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS,” Advanced Materials, vol. 15, no. 3, pp. 228-+, Feb 5, 2003.
[45] D. F. Moore, Y. Ding, and Z. L. Wang, “Crystal orientation-ordered ZnS nanowire bundles,” Journal of the American Chemical Society, vol. 126, no. 44, pp. 14372-14373, Nov 10, 2004.
[46] W. L. Davidson, “X-Ray Diffraction Evidence for Zns Formation in Zinc Activated Rubber Vulcanizates,” Physical Review, vol. 74, no. 1, pp. 116-117, 1948.
[47] U. K. Gautam, X. S. Fang, Y. Bando et al., “Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube - In nanowire core-shell heterostructures,” Acs Nano, vol. 2, no. 5, pp. 1015-1021, May, 2008.
[48] U. K. Gautam, Y. Bando, J. H. Zhan et al., “Ga-doped ZnS nanowires as precursors for ZnO/ZnGa2O4 nanotubes,” Advanced Materials, vol. 20, no. 4, pp. 810-+, Feb 18, 2008.
[49] J. H. He, Y. Y. Zhang, J. Liu et al., “ZnS/Silica nanocable field effect transistors as biological and chemical nanosensors,” Journal of Physical Chemistry C, vol. 111, no. 33, pp. 12152-12156, Aug 23, 2007.
[50] G. D. Yuan, W. J. Zhang, W. F. Zhang et al., “p-type conduction in nitrogen-doped ZnS nanoribbons,” Applied Physics Letters, vol. 93, no. 21, Nov 24, 2008.
[51] G. Z. Shen, P. C. Chen, Y. Bando et al., “Pearl-Like ZnS-Decorated InP Nanowire Heterostructures and Their Electric Behaviors,” Chemistry of Materials, vol. 20, no. 21, pp. 6779-6783, Nov 11, 2008.
[52] T. Kezuka, M. Konishi, T. Isobe et al., “Preparation and properties of nanocrystalline ZnS : Mn-polymer composite films,” Journal of Luminescence, vol. 87-9, pp. 418-420, May, 2000.
[53] L. Svob, C. Thiandoume, A. Lusson et al., “p-type doping with N and Li acceptors of ZnS grown by metalorganic vapor phase epitaxy,” Applied Physics Letters, vol. 76, no. 13, pp. 1695-1697, Mar 27, 2000.
[54] S. Kishimoto, A. Kato, A. Naito et al., “Attempts of homo p-n junction formation in ZnS by impurity co-doping with vapor phase epitaxy,” Physica Status Solidi B-Basic Research, vol. 229, no. 1, pp. 391-393, Jan, 2002.
[55] T. Yamamoto, S. Kishimoto, and S. Iida, “Control of valence states for ZnS by triple-codoping method,” Physica B-Condensed Matter, vol. 308, pp. 916-919, Dec, 2001.
[56] D. J. Chadi, “Reliable predictor of dopant activity in zinc blende semiconductors: Theory.,” Abstracts of Papers of the American Chemical Society, vol. 218, pp. U493-U493, Aug 22, 1999.
[57] D. J. Chadi, “Predictor of p-type doping in II-VI semiconductors,” Physical Review B, vol. 59, no. 23, pp. 15181-15183, Jun 15, 1999.
[58] U. K. Gautam, L. S. Panchakarla, B. Dierre et al., “Solvothermal Synthesis, Cathodoluminescence, and Field-Emission Properties of Pure and N-Doped ZnO Nanobullets,” Advanced Functional Materials, vol. 19, no. 1, pp. 131-140, Jan 9, 2009.
[59] D. C. Look, B. Claflin, Y. I. Alivov et al., “The future of ZnO light emitters,” Physica Status Solidi a-Applications and Materials Science, vol. 201, no. 10, pp. 2203-2212, Aug, 2004.
[60] X. S. Fang, Y. Bando, U. K. Gautam et al., “ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors,” Critical Reviews in Solid State and Materials Sciences, vol. 34, no. 3-4, pp. 190-223, 2009.
[61] From Wikipedia, The free encyclopedia. (https://en.wikipedia.org/wiki/Ultraviolet)
[62] X. S. Fang, Y. Bando, M. Y. Liao et al., “Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors,” Advanced Materials, vol. 21, no. 20, pp. 2034-2039, May 25, 2009.
[63] F. J. DiSalvo, “Thermoelectric cooling and power generation,” Science, vol. 285, no. 5428, pp. 703-706, Jul 30, 1999.
[64] A. Shakouri, “Recent Developments in Semiconductor Thermoelectric Physics and Materials,” Annual Review of Materials Research, Vol 41, vol. 41, pp. 399-431, 2011.
[65] M. Cutler, J. F. Leavy, and R. L. Fitzpatrick, “Electronic Transport in Semimetallic Cerium Sulfide,” Physical Review, vol. 133, no. 4a, pp. 1143-+, 1964.
[66] Richman.R, "Prospects for efficient thermoelectric materials in the near term," presented at the DARPA/DOE High Efficient Thermoelectric Workshop, San Diego, CA, 2002.
[67] L. D. Hicks, and M. S. Dresselhaus, “Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Physical Review B, vol. 47, no. 19, pp. 12727-12731, May 15, 1993.
[68] L. D. Hicks, and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Physical Review B, vol. 47, no. 24, pp. 16631-16634, Jun 15, 1993.
[69] K. Nielsch, J. Bachmann, J. Kimling et al., “Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites,” Advanced Energy Materials, vol. 1, no. 5, pp. 713-731, Oct, 2011.
[70] Z. B. Zhang, X. Z. Sun, M. S. Dresselhaus et al., “Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays,” Applied Physics Letters, vol. 73, no. 11, pp. 1589-1591, Sep 14, 1998.
[71] Z. B. Zhang, X. Z. Sun, M. S. Dresselhaus et al., “Electronic transport properties of single-crystal bismuth nanowire arrays,” Physical Review B, vol. 61, no. 7, pp. 4850-4861, Feb 15, 2000.
[72] Y. M. Lin, X. Z. Sun, and M. S. Dresselhaus, “Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires,” Physical Review B, vol. 62, no. 7, pp. 4610-4623, Aug 15, 2000.
[73] X. Sun, Z. Zhang, and M. S. Dresselhaus, “Theoretical modeling of thermoelectricity in Bi nanowires,” Applied Physics Letters, vol. 74, no. 26, pp. 4005-4007, Jun 28, 1999.
[74] C. L. Chen, Y. Y. Chen, S. J. Lin et al., “Fabrication and Characterization of Electrodeposited Bismuth Telluride Films and Nanowires,” Journal of Physical Chemistry C, vol. 114, no. 8, pp. 3385-3389, Mar 4, 2010.
[75] J. H. Zhou, C. G. Jin, J. H. Seol et al., “Thermoelectric properties of individual electrodeposited bismuth telluride nanowires,” Applied Physics Letters, vol. 87, no. 13, Sep 26, 2005.
[76] X. B. Zhao, X. H. Ji, Y. H. Zhang et al., “Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites,” Applied Physics Letters, vol. 86, no. 6, Feb 7, 2005.
[77] N. Mingo, “Thermoelectric figure of merit of II-VI semiconductor nanowires,” Applied Physics Letters, vol. 85, no. 24, pp. 5986-5988, Dec 13, 2004.
[78] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli et al., “Silicon nanowires as efficient thermoelectric materials,” Nature, vol. 451, no. 7175, pp. 168-171, Jan 10, 2008.
[79] A. I. Hochbaum, R. K. Chen, R. D. Delgado et al., “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, vol. 451, no. 7175, pp. 163-U5, Jan 10, 2008.
[80] J. W. Roh, S. Y. Jang, J. Kang et al., “Size-dependent thermal conductivity of individual single-crystalline PbTe nanowires,” Applied Physics Letters, vol. 96, no. 10, Mar 8, 2010.
[81] D. Y. Li, Y. Y. Wu, P. Kim et al., “Thermal conductivity of individual silicon nanowires,” Applied Physics Letters, vol. 83, no. 14, pp. 2934-2936, Oct 6, 2003.
[82] W. S. Seo, R. Otsuka, H. Okuno et al., “Thermoelectric properties of sintered polycrystalline ZnIn2S4,” Journal of Materials Research, vol. 14, no. 11, pp. 4176-4181, Nov, 1999.
[83] R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Crystal Growth,” Jom-Journal of Metals, vol. 16, no. 9, pp. 761-&, 1964.
[84] Q. J. Huang, C. M. Lilley, R. Divan et al., “Electrical Failure Analysis of Au Nanowires,” Ieee Transactions on Nanotechnology, vol. 7, no. 6, pp. 688-692, Nov, 2008.
[85] Y. S. Gu, J. J. Qi, and Y. Zhang, “Surface Energy of In-Doped ZnO Studied by PAW+U Method,” Materials Science Forum, vol. 561-565, pp. 1861-1864, 2007.
[86] R. K. Chandrakar, R. N. Baghel, V. K. Chandra et al., “Synthesis, characterization and photoluminescence studies of undoped ZnS nanoparticles,” Superlattices and Microstructures, vol. 84, pp. 132-143, 2015.
[87] J. C. Lee, and D. H. Park, “Self-defects properties of ZnS with sintering temperature,” Materials Letters, vol. 57, no. 19, pp. 2872-2878, Jun, 2003.
[88] A. P. Roth, J. B. Webb, and D. F. Williams, “Band-Gap Narrowing in Heavily Defect-Doped Zno,” Physical Review B, vol. 25, no. 12, pp. 7836-7839, 1982.
[89] J. E. Nicholls, and J. J. Davies, “An Optically-Detected Magnetic-Resonance Investigation of Recombination Emission in Indium Doped Zinc-Sulfide,” Journal of Physics C-Solid State Physics, vol. 13, no. 12, pp. 2393-2405, 1980.
[90] Sze, S.M. (1981). “Physics of Semiconductor Devices,” John Wiley & Sons. ISBN 0-471-05661-8. Discussion of theory plus device implications.
[91] Zangwill, Andrew (1988). “Physics at Surfaces,” Cambridge University Press. ISBN 0-521-34752-1. Approaches contacts from point of view of surface states and reconstruction.
[92] G. Wenhua, and K. Kyekyoon, “A new approach to accurate resistivity measurement for a single nanowire — theory and application,” pp. 304-305, 2006.
[93] M. Cutler, J. F. Leavy, and R. L. Fitzpatrick, “Electronic Transport in Semimetallic Cerium Sulfide,” Physical Review, vol. 133, no. 4A, pp. A1143-A1152, 1964.
[94] Y. Hyun, Y. Park, W. Choi et al., “Evaluation of Seebeck coefficients in n- and p-type silicon nanowires fabricated by complementary metal-oxide-semiconductor technology,” Nanotechnology, vol. 23, no. 40, pp. 405707, Oct 12, 2012.
[95] R. Venkatasubramanian, "Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures," Physical Review B, vol. 61, 4, pp. 3091-3097, 2000.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw