系統識別號 U0026-2208201612492500
論文名稱(中文) 研究口腔癌細胞和免疫細胞之間的互動關係
論文名稱(英文) Study the dialogue between oral cancer cells and immune cells
校院名稱 成功大學
系所名稱(中) 分子醫學研究所
系所名稱(英) Institute of Molecular Medicine
學年度 104
學期 2
出版年 105
研究生(中文) 黃俞瑄
研究生(英文) Yu-Hsuan Huang
學號 T16034022
學位類別 碩士
語文別 英文
論文頁數 47頁
口試委員 指導教授-吳梨華
中文關鍵字 口腔癌  調節性T細胞  FOXP3  CCL22 
英文關鍵字 Oral cancer  Regulatory T cells  FOXP3  CCL22 
中文摘要 在台灣口腔癌已成為第五大致死癌症。大部分的口腔癌患者有伴隨著免疫失調的現象。有研究顯示誘導調節性T細胞和骨髓衍生抑制細胞的浸潤對於腫瘤逃離宿主的免疫監督為重要的調控機制。因此為了深入探討在口腔癌癌過程中,對於骨髓衍生抑制細胞或是調節性T細胞的召集作用,使用動物實驗餵食老鼠4-NQO和檳榔鹼這兩種藥物來誘發口腔癌的發生,並且利用流式細胞儀分析口腔癌過程中每個月時間點老鼠血液中這兩種免疫細胞的含量。結果發現在餵食藥物組別中,只有調節性T細胞在每個時間點的含量皆高於對照組。除了在餵食藥物組的舌頭組織,鄰近頸部的淋巴結也有顯著地增加調節性T細胞的累積。已知有許多癌症腫瘤細胞分泌的CCL22會影響調節性T細胞的累積。我們發現在餵食藥物組中CCL22的高度表現並且在68位口腔癌患者的組織中發現調節性T細胞的指標FOXP3與CCL22之間表現一致增加。Kaplan-Meier存活分析顯示相較於CCL22表現量低的口腔癌患者,高度表現CCL22的患者可能會伴隨較差的預後。腫瘤微環境中促進發炎的細胞激素TNF-或IL-可以促進腫瘤細胞CCL22產生的一種機制分別在口腔癌老鼠實驗和細胞實驗中看到。腫瘤細胞釋出的CCL22不僅會透過旁泌作用來調節有表現CCL22受體CCR4的T細胞移動,也會透過自泌作用調控口腔癌細胞的增生和移動能力。儘管先前研究已知CCL22會召集調節性T細胞,然而仍需探討在口腔癌發展過程中,高度表現的CCL22參與在口腔癌細胞和調節性T細胞之間的作用機制。
英文摘要 Oral cancer is the 5th leading cause of cancer death in Taiwan. Most of these patients demonstrate compromised immunity. The induction of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) infiltration are important mechanisms for the tumor escape from immunological surveillance. To further investigate the recruitment of MDSCs and/or Tregs during oral cancer progression in vivo, mice were co-treated with 4-NQO and arecoline for oral cancer induction and their blood was monthly collected for flow cytometry. The percentage of circulating Tregs but not MDSCs was significantly increased at all the time points during drug-induced oral cancer progression. In addition to the increased FOXP3 expression in affected tongue tissues, we also detected the increased infiltration of Tregs in cervical lymph nodes relative to that in control animals. Since tumor-derived CCL22 is responsible for the accumulation of Tregs in certain cancer types, we also detected a significant increase of CCL22 in drug-treated tongue tissues and a concordant increase of both CCL22 and FOXP3 expression in 68 oral cancer patients. Kaplan-Meier survival curve analysis showed that high CCL22 patients tended to have poor clinical outcome related to those in low groups. The expression of inflammatory cytokines including IL-1 and TNF- in tumor microenvironment was one mechanism responsible for the increased CCL22 expression in oral cancer mouse model and oral cancer cells. Intratumor expression of CCL22 was not only functional in mediating CCR4-expressing T cell migration through paracrine release but also regulating oral cancer proliferation and migration in an autocrine manner. Although CCL22 was previously shown to recruit Tregs, more studies are needed to address the mechanisms responsible for the increased CCL22 in oral cancer and its function involved in the crosstalk of oral cancer cells and Tregs during oral carcinogenesis.

1-1 oral cancer 1
1-2 Tumor microenvironment 1
1-3 The role of MDSCs in cancer progression 2
1-4 The role of Tregs in cancer progression 3
1-5 CCL22, a chemotactic cytokine for Tregs 3
4-1 Cell lines 7
4-2 Oral cancer patient samples 7
4-3 Animals 7
4-4 Drug-induced oral cancer mouse model 8
4-5 Tissue collection 8
4-6 Isolation of peripheral blood mononuclear cells, spleenocytes and cervical lymph node cells 9
4-7 Flow cytometry 9
4-8 Hematoxylin and eosin staining 10
4-9 Quantitative reverse transcription and polymerase chain reaction 10
4-10 Conditioned medium collection 10
4-11 Doubling time 10
4-12 Wound-healing assay 11
4-13 Enzyme-linked immunosorbent assay for CCL22 11
4-14 Chemotaxis assay 11
4-15 Statistical analysis 12
5-1 The induction of oral lesions, reminiscent of SCC, by 4-NQO and arecoline 13
5-2 MDSCs and Tregs were differentially recruited during drug-induced oral cancer progression and Tregs might play a role in oral cancer progression 13
5-3 Tregs-associated genes were significantly induced during oral cancer induction and CCL22 expression was positively correlated with FOXP3 expression 14
5-4 The increase of CCL22 expression was associated with poor prognosis in oral cancer patients 15
5-5 Inflammatory cytokines induced CCL22 production during oral cancer progression in vivo and in vitro 16
5-6 Recombinant CCL22 or CCL22-bearing CM induced Jurkat T cells migration 16
5-7 Intratumoral CCL22 depletion reduced oral cancer cells proliferation and migration 17
5-8 Increased release of CCL22 in oral cancer patient sera 17
參考文獻 A. Floercken, A.T., A. Singh, W. Hopfenmüller, A. Pezzutto, B. Dörken and J. Westermann (2009). Modulation of regulatory T cells and myeloid-derived suppressor cells by sorafenib and sunitinib in renal cell carcinoma patients. Journal of Clinical Oncology e16002.
Anz, D., Rapp, M., Eiber, S., Koelzer, V.H., Thaler, R., Haubner, S., Knott, M., Nagel, S., Golic, M., Wiedemann, G.M., et al. (2015). Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 75, 4483-4493.
Araujo-Pires, A.C., Vieira, A.E., Francisconi, C.F., Biguetti, C.C., Glowacki, A., Yoshizawa, S., Campanelli, A.P., Trombone, A.P., Sfeir, C.S., Little, S.R., et al. (2015). IL-4/CCL22/CCR4 axis controls regulatory T-cell migration that suppresses inflammatory bone loss in murine experimental periodontitis. J Bone Miner Res 30, 412-422.
Ardolino, M., Hsu, J., and Raulet, D.H. (2015). Cytokine treatment in cancer immunotherapy. Oncotarget 6, 19346-19347.
Balkwill, F., and Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet 357, 539-545.
Brailo, V., Vucicevic-Boras, V., Lukac, J., Biocina-Lukenda, D., Zilic-Alajbeg, I., Milenovic, A., and Balija, M. (2012). Salivary and serum interleukin 1 beta, interleukin 6 and tumor necrosis factor alpha in patients with leukoplakia and oral cancer. Med Oral Patol Oral Cir Bucal 17, e10-15.
Castelvecchio, S., Ranucci, M., Bandera, F., Baryshnikova, E., Giacomazzi, F., Menicanti, L., Surgical, and Clinical Outcome Research, G. (2013). The additional prognostic value of left atrial volume on the outcome of patients after surgical ventricular reconstruction. Ann Thorac Surg 95, 141-147.
Chang, C.C., Yang, Y.J., Li, Y.J., Chen, S.T., Lin, B.R., Wu, T.S., Lin, S.K., Kuo, M.Y., and Tan, C.T. (2013). MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma. Oral Oncol 49, 923-931.
Chang, N.W., Pei, R.J., Tseng, H.C., Yeh, K.T., Chan, H.C., Lee, M.R., Lin, C., Hsieh, W.T., Kao, M.C., Tsai, M.H., et al. (2010). Co-treating with arecoline and 4-nitroquinoline 1-oxide to establish a mouse model mimicking oral tumorigenesis. Chem Biol Interact 183, 231-237.
Chen, D.S., and Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1-10.
Chen, Y.J., Chang, J.T., Liao, C.T., Wang, H.M., Yen, T.C., Chiu, C.C., Lu, Y.C., Li, H.F., and Cheng, A.J. (2008). Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci 99, 1507-1514.
Chu, M., Su, Y.X., Wang, L., Zhang, T.H., Liang, Y.J., Liang, L.Z., and Liao, G.Q. (2012). Myeloid-derived suppressor cells contribute to oral cancer progression in 4NQO-treated mice. Oral Dis 18, 67-73.
Clark, R.A., Huang, S.J., Murphy, G.F., Mollet, I.G., Hijnen, D., Muthukuru, M., Schanbacher, C.F., Edwards, V., Miller, D.M., Kim, J.E., et al. (2008). Human squamous cell carcinomas evade the immune response by down-regulation of vascular E-selectin and recruitment of regulatory T cells. J Exp Med 205, 2221-2234.
Clemente, A.M., Fadigati, G., Caporale, R., Marchese, D.G., Castronovo, G., Sannella, A.R., Severini, C., Verra, F., Garaci, E., Cozzolino, F., et al. (2013). Modulation of the immune and inflammatory responses by Plasmodium falciparum schizont extracts: role of myeloid dendritic cells in effector and regulatory functions of CD4+ lymphocytes. Infect Immun 81, 1842-1851.
Coussens, L.M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860-867.
Curiel, T.J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J.R., Zhang, L., Burow, M., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10, 942-949.
De Costa, A.M., and Young, M.R. (2011). Immunotherapy for head and neck cancer: advances and deficiencies. Anticancer Drugs 22, 674-681.
Diaz-Montero, C.M., Salem, M.L., Nishimura, M.I., Garrett-Mayer, E., Cole, D.J., and Montero, A.J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58, 49-59.
Faget, J., Biota, C., Bachelot, T., Gobert, M., Treilleux, I., Goutagny, N., Durand, I., Leon-Goddard, S., Blay, J.Y., Caux, C., et al. (2011). Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells. Cancer Res 71, 6143-6152.
Fu, J., Xu, D., Liu, Z., Shi, M., Zhao, P., Fu, B., Zhang, Z., Yang, H., Zhang, H., Zhou, C., et al. (2007). Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132, 2328-2339.
Gabrilovich, D.I., and Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9, 162-174.
Gabrilovich, D.I., Ostrand-Rosenberg, S., and Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12, 253-268.
Gallimore, A., and Godkin, A. (2008). Regulatory T cells and tumour immunity - observations in mice and men. Immunology 123, 157-163.
Gao, Q., Qiu, S.J., Fan, J., Zhou, J., Wang, X.Y., Xiao, Y.S., Xu, Y., Li, Y.W., and Tang, Z.Y. (2007). Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25, 2586-2593.
Gobert, M., Treilleux, I., Bendriss-Vermare, N., Bachelot, T., Goddard-Leon, S., Arfi, V., Biota, C., Doffin, A.C., Durand, I., Olive, D., et al. (2009). Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69, 2000-2009.
Godiska, R., Chantry, D., Raport, C.J., Sozzani, S., Allavena, P., Leviten, D., Mantovani, A., and Gray, P.W. (1997). Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med 185, 1595-1604.
Hiroki Ishii, S.T.a.K.M. (2015). Therapeutic strategy for cancer immunotherapy in head and neck cancer. Advances in Cellular and Molecular Otolaryngology 3.
Huang, B., Lei, Z., Zhao, J., Gong, W., Liu, J., Chen, Z., Liu, Y., Li, D., Yuan, Y., Zhang, G.M., et al. (2007). CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett 252, 86-92.
Junttila, M.R., and de Sauvage, F.J. (2013). Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346-354.
Karin, M., and Greten, F.R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5, 749-759.
Kindlund, B., Sjoling, A., Yakkala, C., Adamsson, J., Janzon, A., Hansson, L.E., Hermansson, M., Janson, P., Winqvist, O., and Lundin, S.B. (2016). CD4+ regulatory T cells in gastric cancer mucosa are proliferating and express high levels of IL-10 but little TGF-beta. Gastric Cancer.
Krishna Rao, S.V., Mejia, G., Roberts-Thomson, K., and Logan, R. (2013). Epidemiology of oral cancer in Asia in the past decade--an update (2000-2012). Asian Pac J Cancer Prev 14, 5567-5577.
Krishnan, R., Thayalan, D.K., Padmanaban, R., Ramadas, R., Annasamy, R.K., and Anandan, N. (2014). Association of serum and salivary tumor necrosis factor-alpha with histological grading in oral cancer and its role in differentiating premalignant and malignant oral disease. Asian Pac J Cancer Prev 15, 7141-7148.
Kumar, V., Patel, S., Tcyganov, E., and Gabrilovich, D.I. (2016). The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol 37, 208-220.
Le Bitoux, M.A., and Stamenkovic, I. (2008). Tumor-host interactions: the role of inflammation. Histochem Cell Biol 130, 1079-1090.
Lindau, D., Gielen, P., Kroesen, M., Wesseling, P., and Adema, G.J. (2013). The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138, 105-115.
Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. Nature 454, 436-444.
Marcus, A., Gowen, B.G., Thompson, T.W., Iannello, A., Ardolino, M., Deng, W., Wang, L., Shifrin, N., and Raulet, D.H. (2014). Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 122, 91-128.
Menetrier-Caux, C., Faget, J., Biota, C., Gobert, M., Blay, J.Y., and Caux, C. (2012). Innate immune recognition of breast tumor cells mediates CCL22 secretion favoring Treg recruitment within tumor environment. Oncoimmunology 1, 759-761.
Miller, A.M., Lundberg, K., Ozenci, V., Banham, A.H., Hellstrom, M., Egevad, L., and Pisa, P. (2006). CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177, 7398-7405.
Mizukami, Y., Kono, K., Kawaguchi, Y., Akaike, H., Kamimura, K., Sugai, H., and Fujii, H. (2008). Localisation pattern of Foxp3+ regulatory T cells is associated with clinical behaviour in gastric cancer. Br J Cancer 98, 148-153.
Mukaida, N., Sasaki, S., and Baba, T. (2014). Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment. Mediators Inflamm 2014, 170381.
Nishikawa, H., and Sakaguchi, S. (2010). Regulatory T cells in tumor immunity. Int J Cancer 127, 759-767.
Okazaki, Y., Tanaka, Y., Tonogi, M., and Yamane, G. (2002). Investigation of environmental factors for diagnosing malignant potential in oral epithelial dysplasia. Oral Oncol 38, 562-573.
Oleinika, K., Nibbs, R.J., Graham, G.J., and Fraser, A.R. (2013). Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 171, 36-45.
Ostrand-Rosenberg, S., and Sinha, P. (2009). Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182, 4499-4506.
Pastille, E., Bardini, K., Fleissner, D., Adamczyk, A., Frede, A., Wadwa, M., von Smolinski, D., Kasper, S., Sparwasser, T., Gruber, A.D., et al. (2014). Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res 74, 4258-4269.
Rodenburg, R.J., Brinkhuis, R.F., Peek, R., Westphal, J.R., Van Den Hoogen, F.H., van Venrooij, W.J., and van de Putte, L.B. (1998). Expression of macrophage-derived chemokine (MDC) mRNA in macrophages is enhanced by interleukin-1beta, tumor necrosis factor alpha, and lipopolysaccharide. J Leukoc Biol 63, 606-611.
Rodriguez, C.P., and Adelstein, D.J. (2010). Survival trends in head and neck cancer: opportunities for improving outcomes. Oncologist 15, 921-923.
Sakaguchi, S. (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531-562.
Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T cells and immune tolerance. Cell 133, 775-787.
Sakakura, K., Chikamatsu, K., Takahashi, K., Whiteside, T.L., and Furuya, N. (2006). Maturation of circulating dendritic cells and imbalance of T-cell subsets in patients with squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 55, 151-159.
Strauss, L., Bergmann, C., Szczepanski, M., Gooding, W., Johnson, J.T., and Whiteside, T.L. (2007). A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13, 4345-4354.
Tang, X.H., Knudsen, B., Bemis, D., Tickoo, S., and Gudas, L.J. (2004). Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clin Cancer Res 10, 301-313.
Trivedy, C.R., Craig, G., and Warnakulasuriya, S. (2002). The oral health consequences of chewing areca nut. Addict Biol 7, 115-125.
Tsujikawa, T., Yaguchi, T., Ohmura, G., Ohta, S., Kobayashi, A., Kawamura, N., Fujita, T., Nakano, H., Shimada, T., Takahashi, T., et al. (2013). Autocrine and paracrine loops between cancer cells and macrophages promote lymph node metastasis via CCR4/CCL22 in head and neck squamous cell carcinoma. Int J Cancer 132, 2755-2766.
Vey, N., Bourhis, J.H., Boissel, N., Bordessoule, D., Prebet, T., Charbonnier, A., Etienne, A., Andre, P., Romagne, F., Benson, D., et al. (2012). A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood 120, 4317-4323.
Wu, C.S., Wang, S.T., Liao, C.Y., and Wu, M.T. (2008). Differential CCR4 expression and function in cutaneous T-cell lymphoma cell lines. Kaohsiung J Med Sci 24, 577-590.

  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。

  • 如您有疑問,請聯絡圖書館