進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208201609540400
論文名稱(中文) 應用因子實驗設計進行TFT玻璃基板清洗製程參數設定之研究
論文名稱(英文) Experiment Design for Parameters Setting in TFT Substrate Clean Process
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩士在職專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 104
學期 2
出版年 105
研究生(中文) 呂瓊茹
研究生(英文) Chung-Lu Lu
學號 R37021189
學位類別 碩士
語文別 中文
論文頁數 42頁
口試委員 指導教授-黃宇翔
口試委員-翁慈宗
口試委員-蔡青志
口試委員-胡政宏
中文關鍵字 實驗設計 
英文關鍵字 TFT Cleaning Process  Experimental Design 
學科別分類
中文摘要 台灣在TFT產業一直以來擁有外商獨佔技術的優先權,在市場需求持續強勁的增加之下,台灣不斷的擴廠提升產能,以期持續增加整個事業體的獲利。但隨著壟斷技術的限制被打開及面板市場價格的落底,台灣面板廠要生存就必需在品質上尋求穩定的完美,並降低成本擁有競爭優勢,才能在技術上與強國的產能抗衡。玻璃基板品質最重要的便是表面潔淨度而目前玻璃基板洗淨製程的補液參數,主要是依據工廠裝機時工程師的初步設定,但實際上有多個影響因子在整個補液系統中須被探討。
本研究採取實驗設計(DOE, Design of experiment)來探討相關因子的特性,使用DOE可同時改變多個自變數來規劃有系統的實驗,並由變異數分析找出影響濃度及其變異的顯著因子,評估主因子及水準範圍內所呈現的品質特性。此研究不但定義出洗淨製程的補液系統中定量幫浦及清洗槽的顯著重要因子,更降低了濃度變異及減少洗劑原液的耗用量,結果顯示洗劑原液使用量減少了40%,同時濃度變異也降低了56%,不只穩定了玻璃潔淨度的品質亦協助個案工廠達到製造成本的降低。
英文摘要 This study aims to identify the key factors to ensure the stability of the detergent concentration in the TFT-LCD substrate cleaning process. The 2k-p fractional factorial experiment is subsequently conducted to investigate the five factors, which are the pump frequency, pump stroke length and three timing points of providing detergent (T1, T2, and T3) in the substrate cleaning process. The ANOVA results show that the three factors are significant in controlling detergent concentration and concentration variation between the pump frequency and timing points of providing detergent in washer tanks 1 and 2. The results show that the pump frequency and timing points of providing detergent in washer tanks 1 and 2 in the low level would ensure the stability of the detergent concentration and the consumption amount would also decrease. The implications of the detergent concentration with pump and timing points of providing detergent in washer tanks are also discussed.
論文目次 摘要 I
英文延伸摘要 II
誌謝 VII
目錄 VIII
圖目錄 X
表目錄 XI
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的 2
第四節 研究範圍與重要性 3
第五節 研究流程 3
第六節 論文架構 5
第二章 文獻探討 6
第一節 TFT玻璃基板產業 6
一、TFT玻璃基板的需求發展 6
二、TFT玻璃基板清洗目的與製程 7
第二節 因子實驗設計 9
一、因子實驗設計方法探討 10
二、2k因子設計 10
三、部分因子設計 11
四、變異數分析 11
第三節 因子實驗在工程上的應用 13
小節 15
第三章 研究方法 16
第一節 問題描述 16
一、玻璃清洗製程補液系統 16
二、補液控制系統及相關參數 17
第二節 研究架構 19
第三節 部分因子實驗設計 21
第四章 實驗結果與討論 23
第一節 資料介紹 23
第二節 實驗設計與統計分析 23
第三節 實驗因子再驗證 35
第四節 討論 37
第五章 結論與建議 38
第一節 研究貢獻 38
第二節 未來研究方向 39
參考文獻 40
參考文獻 元榮載 & 李麗. (2011). Increase TFT LCD Yield by Improvement of Clean Room Airflow. 2011製程工程師夏季會議,355-360.
呂政冀. (2009). 應用部分因子實驗設計進行 LED 磊晶之 MOCVD 製程最佳參數之研究. 成功大學工業與資訊管理學系碩士在職專班學位論文, 1-47.
林明輝(2009).量產經驗值牽動製程良率TFT LCD玻璃基板技術門檻高
Website: http://www.mem.com.tw/article_content.asp?sn=0906290016
王芳芳. (2007). 結合田口與多準則決策方法求解穩健供應鏈資訊共享策略. 成功大學製造工程研究所學位論文.
Nixon Shen.(2006).TFT製程玻璃基板洗淨原理
Website: http://www.docin.com/p-56376888.html
Buang, M. S., Abdullah, S. A., & Saedon, J. (2015). Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology. Optimization, 1, 31185.
Chen, J. C., Chen, T. L., Pratama, B. R., & Tu, Q. F. (2016). Capacity planning with ant colony optimization for TFT-LCD array manufacturing. Journal of Intelligent Manufacturing, 1-19.
Chockalingam, P., Kok, C. K., & Vijayaram, T. R. (2013). Surface Roughness Prediction Model for Grinding of Composite Laminate Using Factorial Design. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 7(4), 731-735.
Duran, J. E., Mohseni, M., & Taghipour, F. (2010). Design improvement of immobilized photocatalytic reactors using a CFD-Taguchi combined method. Industrial & Engineering Chemistry Research, 50(2), 824-831.
Lin, C. E., & Lin, C. M. (2014). Quality Improvement in Cleaning Process for TFT-LCD Production. Journal of Aeronautics, Astronautics and Aviation, 46(4), 249-257+.
Lin, C. S., Shih, S. J., Lu, A. T., Hung, S. S., & Chiu, C. C. (2012). The quality improvement of PI coating process of TFT-LCD panels with Taguchi methods. Optik-International Journal for Light and Electron Optics, 123(8), 703-710.
Lin, D. Y. M., & Yeh, L. C. (2015). Evaluating visual performance for older and young adults in using TFT-LCD: Effects of display polarity, line spacing and font size. source: SOP Transactions on Psychology, 2(1), 8-15.
Manvikar, P., & Purohit, G. K. (2013). Roughness and Hardness of 60/40 Cu-Zn Alloy. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 7(11), 2150-2152.
Montgomery,D. C. (2008). Design and analysis of experiments. John Wiley & Sons.
Moreno-Dorado, F. J., Moreno, C., Pinto-Ganfornina, J. J., Bethencourt-Núñez, M., & Poce-Fatou, J. A. (2008). A Lab Experience To Illustrate the Physicochemical Principles of Detergency. J. Chem. Educ, 85(2), 266.
Muhammad, N., & Manurung, Y. H. (2012, November). Design parameters selection and optimization of weld zone development in resistance spot welding. In Proceedings of World Academy of Science, Engineering and Technology (No. 71, p. 1220). World Academy of Science, Engineering and Technology (WASET).
Peng, D. X. (2014). Optimization of chemical mechanical polishing parameters on surface roughness of steel substrate with aluminum nanoparticles via Taguchi approach. Industrial Lubrication and Tribology, 66(6), 685-690.
Petit, J., & Moore, J. (2010, July). Eliminating solvents in resist removal processes using low-cost detergents. In 2010 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC) (pp. 301-306). IEEE.
Poce-Fatou, J. A. (2006). A superficial overview of detergency. J. Chem. Educ, 83(8), 1147.
Prabhu, P. R., Kulkarni, S. M., & Sharma, S. S. (2010). Influence of deep cold rolling and low plasticity burnishing on surface hardness and surface roughness of AISI 4140 steel. World Academy of Science, Engineering and Technology, 72, 619-624.
Raksiri, C., & Chatchaikulsiri, P. (2010). CNC Wire-Cut Parameter Optimized Determination of the Stair Shape Workpiece. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 4(10), 924-929.
Senussi, G. H. (2007). Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304-Austenitic Stainless Steel. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 1, 159-164.
Sundaravadivu, K., Arun, B., & Saravanan, K. (2011, November). Design of fractional order PID controller for liquid level control of spherical tank. In Control System, Computing and Engineering (ICCSCE), 2011 IEEE International Conference on (pp. 291-295). IEEE.
Sztendur, E. M., & Diamond, N. T. (2012, November). Using Fractional Factorial Designs for Variable Importance in Random Forest Models. In Proceedings of World Academy of Science, Engineering and Technology (No. 71, p. 1974). World Academy of Science, Engineering and Technology (WASET).
Viola, J., & Ángel, L. (2013, May). Design of a fractional PI controller to control a flow and level system. In 2013 25th Chinese Control and Decision Conference (CCDC) (pp. 1211-1216). IEEE.
Wang, C. C., Jiang, B. C., & Wei, S. K. (2014). Improvement of TFT-LCD quality in high-temperature operation from customer complaints. Journal of Technology, 29(1), 49-55.
Yeol, O. E., Mitsumori, K., & Miyazawa, S. (2000). Cleaning method and apparatus for the same. U.S. Patent No. 6,039,815. Washington, DC: U.S. Patent and Trademark Office.
Yoonsung Chung.(2015).IHS Quarterly Large Area TFT Panel Shipment Report at 2015
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw