進階搜尋


 
系統識別號 U0026-2208201608491000
論文名稱(中文) 以多重物理量耦合模式探討垂直應力影響淺層地下水流傳輸現象之研究
論文名稱(英文) The Influence of Vertical Stress on Shallow Groundwater Flow Transport Phenomenon Using Multiphysics Modeling
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 104
學期 2
出版年 105
研究生(中文) 蔡光聖
研究生(英文) Kuang-Sheng Tsai
學號 L46021086
學位類別 碩士
語文別 中文
論文頁數 74頁
口試委員 指導教授-吳銘志
口試委員-丁澈士
口試委員-林大偉
口試委員-徐國錦
口試委員-陳瑞昇
中文關鍵字 地下水流  壓密作用  溶質傳輸  COMSOL Multiphysics 
英文關鍵字 Groundwater  Consolidation  Solute Transport  COMSOL Multiphysics 
學科別分類
中文摘要 溶質在地下水中擴散分佈的狀況,深受地下水流的影響;因此,瞭解溶質在地下水中的傳輸機制是相當重要的課題。在過去的相關研究中,已將各種自然條件下的傳輸機制理論發展得非常詳盡,也將影響傳輸機制的因子清楚的描述,如:移流、延散、吸附、化學反應、生物降解等。對於地下水流場以及溶質傳輸的狀況,經常使用由美國地質調查所(USGS)所發展的MODFLOW搭配MT3D來進行一系列的地下水流,以及溶質傳輸模擬。然而,在過去的研究中,並沒有針對地表荷重所引起地層因壓密作用導致之水文參數改變,進而影響地下水流場改變之探討。
本研究之目的旨在以地下水溶質傳輸現象的變化,分析探討地下水流場因應大型建築工程,如:摩天大樓、大型桶槽、大型儲窖等,所引起地層壓密作用的變化,進而探討地下水流場因應垂直應力之影響。本研究乃利用COMSOL Multiphysics(多重物理量耦合軟體)進行區域土體因應地表重物之設置,其所造成土壤局部的壓密和土體孔隙率的改變,進而影響土壤的水力傳導係數(hydraulic conductivity),以及其造成地下水流場變化之模擬。
根據Biot(1941)提出之三維孔彈性壓密理論,針對一均質均向之孔隙介質,頂端固定載重分別為10、30、50、100(ton/m2),利用COMSOL Multiphysics軟體進行土壤壓密和孔隙率變化之模擬,得其壓密變形量後,再由壓密變形量推算土體之孔隙率,以及利用Terzaghi(1925)經驗公式計算水力傳導係數之變化。結果顯示水力傳導係數變化分別為0.92%、1.84%、2.74%及5.44%。並由於壓密作用影響後續溶質傳輸機制,使溶質傳輸流線產生偏折以及彎曲的現象。
英文摘要 Understanding the groundwater contaminant transport and distributing condition is an important issue for groundwater resources conservation. The solute, however, migrates along with the groundwater flow; namely, to discuss the solute transport and distribution condition in groundwater, the realization of groundwater solute transport mechanism is a necessity. In the past, certain efforts have been set on the studies for development of governing theory for groundwater solute transport under natural conditions as well as detailed description for elements affecting the transport mechanism such as advection, dispersion, adsorption, chemical reaction, bio-degradation, …, etc. For modeling and describing the groundwater flow regime and solute transport condition, the USGS MODFLOW with MT3D were the most popular numerical model being used. however, up to now, has never been setup to compile the groundwater flow while the aquifer is undergoing the consolidation process. In addition, it does not either show the locally or regionally consolidated stratum of changed hydraulic characteristics influencing the groundwater flow regime, or reflect the various condition for solute transport.

The scope of this study is inferring the changes of groundwater solute transport condition to analyze as well as verify the changes of regional groundwater flow regime, which was influenced by stratum being consolidated due to large civil construction (e.g., skyscrapers, large storage tank, large storage cavern…, etc.). The influence of vertical stress on groundwater flow regime will then be investigated. COMSOL Multiphysics will be adopted to study the change of reginal groundwater flow regime by coupled modeling of the vertical stress and solute transport. The vertical stress was caused by the weight of overburden construction on ground surface; such heavy weight induces the local soil consolidation and changes the soil body porosity, as well as changes the hydraulic conductivity of the aquifer.
Based on Biot’s three dimensional consolidation theory, consider a uniform homogeneous isotropy porous media. The vertical stress is 10, 30, 50 and 100 (ton/m2) respectively. Using COMSOL to calculate the total settlement and using the result to estimate the porosity after consolidation. Finally using the empirical formula that Terzaghi established in 1925 to calculate the change of hydraulic conductivity. The result shows the change of hydraulic conductivity is 0.92%, 1.84%, 2.74% and 5.44% respectively. The model of the solute transport shows the head line was curved due to consolidation and the solute was slower about an hour than unconsolidated model.
論文目次 摘要 I
Extended Abstract II
誌謝 XIII
目錄 XIV
表目錄 XVI
圖目錄 XVII
符號表 XIX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 4
1.3 研究目的 7
1.4 研究流程 7
第二章 理論方法 9
2.1 水流理論 9
2.1.1 水流控制方程式 10
2.1.2 參數推估方法 12
2.1.3 影響參數的因素 21
2.2 壓密理論 22
2.2.1 單向度壓密理論 22
2.2.2 孔彈性理論 25
2.3 溶質傳輸 28
2.3.1 溶質傳輸控制方程式 29
第三章 COMSOL Multiphysics模式介紹 33
3.1 COMSOL簡介 33
3.1.1 多孔彈性模組 33
3.1.2 達西定律模組 35
3.1.3 多孔介質中稀釋物種的傳輸模組 35
3.2 壓密模式 36
3.2.1 模式建置 36
3.2.2 壓密模式與解析解比對 38
3.3 溶質傳輸模式 42
3.3.1 模式建置 42
3.3.2 溶質傳輸模式與解析解比對 44
第四章 模擬結果與討論 53
4.1 概念模式 53
4.1.1 多孔彈性模組 53
4.1.2 達西定律模組 54
4.1.3 多孔介質中稀釋物種傳輸模組 54
4.2 受壓密後K值推估方法 54
4.3 受壓密後孔隙率推估方法 55
4.4 壓密後之沉陷量 56
4.5 壓密後之孔隙率 59
4.6 壓密後之水力傳導係數 59
4.7 壓密後溶質傳輸情形 61
4.7.1 水平面之結果 62
4.7.2 垂直剖面之結果 65
第五章 結論與建議 69
5.1 結論 69
5.2 建議 69
參考文獻 70

參考文獻 王士榮(2009),序率孔彈性模式之研究,國立成功大學資源工程學系博士論文,台南,167p。
中國土木水利工程學會出版委員會(1996),土壤力學,台北:中國土木水利工程學會,262p。
江政昌(2007),漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解,國立中央大學應用地質系碩士論文,桃園,82p。
吳思磊(1996),整體性含水層特徵描述及參數推估方法,國立中央大學應用地質系碩士論文,桃園,128p。
李光敦(2012),水文學,台北: 五南圖書出版股份有限公司,385p。
周嫦娥(2015),臺灣水資源需求現況與管理策略工具,土木水利,42(4),19-29。
林年豐、李昌靜、鐘佐燊、田春聲(1990),環境水文地質學,北京: 地質出版社。
林業勳(2014),多含水層系統黏彈塑性地層下陷數值模式之建立,國立嘉義大學土木與水資源工程學系碩士論文,嘉義,110p。
凃佑霖、賴庚辛、陳瑞昇(2015),二維有限域溶質傳輸解析解,土壤及地下水污染整治,2(2),113-126。
洪志銘(2014),臺灣的地下水資源管理,經濟前瞻(151),30-33。
洪志銘、游景雲、黃德秀、葉長城(2014),我國地下水資源政策之研究,載於國立成功大學資源工程系(主編),第八屆地下水資源及水質保護研討會暨2014兩岸地下水與水文地質應用研討會,台南。
徐啓洋(2014),應用孔彈性理論分析單層週期性載重及三層固定載重下之飽和土壤壓密行為,國立成功大學水利及海洋工程學系碩士論文,台南,80p。
張志瑋(2012),以MQ無網格數值法分析孔彈性理論之研究,國立成功大學資源工程系碩士論文,台南,92p。
張志瑋、徐國錦(2011),孔彈性理論應用於水土資源保育監測可行性之探討,Journal of Taiwan Water Conservancy,59(2),87-97。
張善順(1996),破裂岩層中發散型示蹤劑試驗之模式分析,國立成功大學資源工程系碩士論文,台南,99p。
張惠如(2009),Terzaghi壓密理論數值方法之解析,國立中興大學土木工程學系碩士論文,台中,55p。
許澓傑(2015),以粒子追蹤法配合溶質傳輸模式探討污染物分佈之研究─以臺中大里工業區為例,國立成功大學地球科學系碩士論文,台南,94p。
陳世芳(1981),理論土壤力學與實用基礎工程(上),台北: 文笙書局,785p。
陳建銘(2005),地層下陷模擬程序之建立與應用—以大城鄉西港地區為例,國立成功大學土木工程系碩士論文,台南,171p。
陳農彬(2011),應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度,國立中央大學,桃園,97p。
齊士崢(1999),水資源與區域發展,環境與世界,(3),17-33。doi: 10.6304/eaw.1999.3.2
鄭由聖(2012),地下結構物影響地下水流場之研究-以台南市鐵路地下化為例,國立成功大學地球科學系碩士論文,台南,129p。

Agard, J., Alcamo, J., Ash, N., Arthurton, R., Barker, S., Barr, J., Fazel, A. (2007). Global Environment Outlook GEO4 Environment for Development. UNEP, ISBN, 572p.
Anderson, M. P. (1984). Movement of contaminants in groundwater: groundwater transport--advection and dispersion. Groundwater Contamination, 37-45.
Anderson, M. P., & Cherry, J. A. (1979). Using models to simulate the movement of contaminants through groundwater flow systems. Critical Reviews in Environmental Science and Technology, 9(2), 97-156.
Aysen, A. (2002). Soil mechanics: basic concepts and engineering applications: CRC Press, 455p.
Bear, J., and Corapcioglu, M. (1981). A mathematical model for consolidation in a thermoelastic aquifer due to hot water injection or pumping. Water Resources Research, 17(3), 723-736.
Biot, M. A. (1941). General theory of three‐dimensional consolidation. Journal of Applied Physics, 12(2), 155-164.
Carrizales, M., & Lake, L. W. (2009). Two-dimensional COMSOL simulation of heavy-oil recovery by electromagnetic heating. Paper presented at the COMSOL Conference held in Boston, Massachusetts, USA.
Chen, J. (1994a). Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity part II: Three-dimensional solution. International Journal of Solids and Structures, 31(2), 169-202.
Chen, J. (1994b). Time domain fundamental solution to Biot's complete equations of dynamic poroelasticity. Part I: two-dimensional solution. International Journal of Solids and Structures, 31(10), 1447-1490.
Conan, C., Bouraoui, F., Turpin, N., de Marsily, G., and Bidoglio, G. (2003). Modeling flow and nitrate fate at catchment scale in Brittany (France). Journal of Environmental Quality, 32(6), 2026-2032.
Cooper, H. H., and Jacob, C. (1946). A generalized graphical method for evaluating formation constants and summarizing well‐field history. Eos, Transactions American Geophysical Union, 27(4), 526-534.
Cryer, C. (1963). A comparison of the three-dimensional consolidation theories of Biot and Terzaghi. The Quarterly Journal of Mechanics and Applied Mathematics, 16(4), 401-412.
Dagan, G. (1987). Theory of solute transport by groundwater. Annual review of fluid mechanics, 19(1), 183-213.
Darcy, H. (1856). Les fontaines publiques de la ville de Dijon: exposition et application: Victor Dalmont.
De Wiest, R. J. (1966). On the storage coefficient and the equations of groundwater flow. Journal of Geophysical Research, 71(4), 1117-1122.
Freeman, T. T., Chalaturnyk, R. J., & Bogdanov, I. I. (2008). Fully coupled thermo-hydro-mechanical modeling by COMSOL Multiphysics, with applications in reservoir geomechanical characterization. Paper presented at the COMSOL Conf.
Geng, X., Xu, C., & Cai, Y. (2006). Non‐linear consolidation analysis of soil with variable compressibility and permeability under cyclic loadings. International Journal for Numerical and Analytical Methods in Geomechanics, 30(8), 803-821.
Gibson, R., England, G., & Hussey, M. (1967). The Theory of One-Dimensional Consolidation of Saturated Clays: 1. Finite Non-Linear Consildation of Thin Homogeneous Layers. Geotechnique, 17(3), 261-273.
Green, D., & Wang, H. (1990). Specific storage as a poroelastic coefficient. Water Resources Research, 26(7), 1631-1637.
Hanson, R. T. (1988). Aquifer-system compaction, Tucson Basin and Avra Valley, Arizona, 99p.
Hantush, M. S., & Jacob, C. E. (1955). Non‐steady radial flow in an infinite leaky aquifer. Eos, Transactions American Geophysical Union, 36(1), 95-100.
Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). MODFLOW-2000, the US Geological Survey modular ground-water model: User guide to modularization concepts and the ground-water flow process: US Geological Survey Reston, VA, USA, 121p.
Helm, D. C. (1975). One‐dimensional simulation of aquifer system compaction near Pixley, California: 1. Constant parameters. Water Resources Research, 11(3), 465-478.
Helm, D. C. (1976). One‐dimensional simulation of aquifer system compaction near Pixley, California: 2. Stress‐Dependent Parameters. Water Resources Research, 12(3), 375-391.
Hoffmann, J., Leake, S., Galloway, D., & Wilson, A. M. (2003). MODFLOW-2000 ground-water model--User guide to the subsidence and aquifer-system compaction (SUB) package: DTIC Document, 55p.
Kihm, J.-H., Kim, J.-M., Song, S.-H., & Lee, G.-S. (2007). Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system. Journal of Hydrology, 335(1), 1-14.
Kim, J. M., & Parizek, R. R. (1999). Three‐dimensional finite element modelling for consolidation due to groundwater withdrawal in a desaturating anisotropic aquifer system. International Journal for Numerical and Analytical Methods in Geomechanics, 23 (6), 549-571.
Kim, S., Hosseini, S. A., & Hovorka, S. D. (2007). Numerical Simulation: Field Scale Fluid Injection to a Porous Layer in relevance to CO2 Geological Storage.
Langevin, C. D., & Guo, W. (2006). MODFLOW/MT3DMS–Based Simulation of Variable‐Density Ground Water Flow and Transport. Ground Water, 44(3), 339-351.
Leake, S., & Hsieh, P. A. (1995). Simulation of deformation of sediments from decline of ground-water levels in an aquifer underlain by a bedrock step. US Geological Survey Open-File Report, 10-15.
Leake, S. A., & Galloway, D. L. (2010). Use of the SUB-WT Package for MODFLOW to simulate aquifer-system compaction in Antelope Valley, California, USA. Paper presented at the Land subsidence, associated hazards and the role of natural resources development: proceedings. Eighth International Symposium on Land Subsidence, Santiago de Querétaro, Mexico.
Lewis, R., Schrefler, B., & Simoni, L. (1991). Coupling versus uncoupling in soil consolidation. International Journal for Numerical and Analytical Methods in Geomechanics, 15(8), 533-548.
Lewis, T., Pivonka, P., & Smith, D. (2009). Theoretical investigation of the effects of consolidation on contaminant transport through clay barriers. International Journal for Numerical and Analytical Methods in Geomechanics, 33(1), 95-116.
Li, Q., Ito, K., Wu, Z., Lowry, C. S., Loheide, I., & Steven, P. (2009). COMSOL Multiphysics: A novel approach to ground water modeling. Ground Water, 47(4), 480-487.
Milan, V., & Andjelko, S. (1992). Determination of hydraulic conductivity of porous media from grain-size composition: Water Resources Publications, 83p.
Multiphysics, C. O. M. S. O. L. (2015). Introduction to COMSOL Multiphysics 5.1, 168p.
Narasimhan, T., & Kanehiro, B. (1980). A note on the meaning of storage coefficient. Water Resources Research, 16(2), 423-429.
Neuman, S. P. (1975). Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response. Water Resources Research, 11(2), 329-342.
Ogata, A., & Banks, R. B. (1961). A solution of the differential equation of longitudinal dispersion in porous media.
Peters, G. P., & Smith, D. W. (2002). Solute transport through a deforming porous medium. International Journal for Numerical and Analytical Methods in Geomechanics, 26(7), 683-717.
Prommer, H., Barry, D., & Zheng, C. (2003). MODFLOW/MT3DMS‐Based Reactive Multicomponent Transport Modeling. Ground Water, 41(2), 247-257.
Razafindratsima, S., Péron, O., Piscitelli, A., Gégout, C., Schneider, V., Barbecot, F., & Montavon, G. (2015). Transport properties of iodide in a sandy aquifer: Hydrogeological modelling and field tracer tests. Journal of Hydrology, 520, 61-68.
Souley, M., & Thoraval, A. (2011). Nonlinear mechanical and poromechanical analyses: comparison with analytical solutions. Paper presented at the COMSOL Conference 2011.
Tang, D., & Babu, D. (1979). Analytical solution of a velocity dependent dispersion problem. Water Resources Research, 15(6), 1471-1478.
Terzaghi, K. (1925). Erdbaumechanik. Vienna: Franz Deuticke.
Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice: John Wiley & Sons, 549p.
Theis, C. V. (1935). The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground‐water storage. Eos, Transactions American Geophysical Union, 16(2), 519-524.
Van Genuchten, M. T., & Alves, W. (1982). Analytical solutions of the one-dimensional convective-dispersive solute transport equation: United States Department of Agriculture, Economic Research Service, 156p.
Verruijt, A. (1969). Elastic Storage of Aquifers in Flow through porous media. edited by Roger M. deWiest: Academic Press.
Wang, H. (2000). Theory of linear poroelasticity with applications to geomechanics and hydrogeology: Princeton University Press, 287p.
Wang, H. F. (1993). Quasi-static poroelastic parameters in rock and their geophysical applications Experimental Techniques in Mineral and Rock Physics, Springer, 269-286.
Zheng, C., & Wang, P. P. (1999). MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user's guide: DTIC Document, 219p.
Zimmerman, R. W., Somerton, W. H., & King, M. S. (1986). Compressibility of porous rocks. Journal of Geophysical Research, 91(B12), 12765-12777.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw