進階搜尋


下載電子全文  
系統識別號 U0026-2208201509171300
論文名稱(中文) 脈動式管流初始不穩定現象研究
論文名稱(英文) The study of initial unstable disturbances in pulsating pipe flow
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 103
學期 2
出版年 104
研究生(中文) 王仁暉
研究生(英文) Ren-Huei Wang
學號 P46021518
學位類別 碩士
語文別 中文
論文頁數 118頁
口試委員 指導教授-苗君易
口試委員-呂宗行
口試委員-周榮華
中文關鍵字 脈動式管流  不穩定擾動  EEMD  EMD  HHT  Wavelet transform  Rayleigh instability criterion  Mixing layer 
英文關鍵字 Pulsating pipe flow  Unstable disturbance  Ensemble Empirical Mode Decomposition  Empirical Mode Decomposition  HHT  Wavelet transform  Rayleigh instability criterion  Mixing layer 
學科別分類
中文摘要 本研究主要探討脈動式管流中之在過渡流時所發生的初始不穩定擾動現象,利用熱線測速儀(Hot wire)量測初始不穩定擾動發生時之流場速度剖面。使用Ensemble Empirical Mode Decomposition以及Empirical Mode Decomposition去除背景訊號截取出不穩定擾動分量,再將擾動分量搭配速度一次微分反曲點位置繪製成能譜圖,並利用Hilbert-Huang transform以及wavelet transform來計算不穩定擾動之特徵頻率,同時利用Rayleigh instability criterion 解釋初始不穩定擾動生成的所需條件以及Mixing layer 理論對初始不穩定擾動做出定性的分析,並整理歷屆資料嘗試找出各項實驗參數間與初始不穩定擾動之關係。利用上述分析方法及相關的理論和準則嘗試去解釋在過渡流時初始不穩定擾動發展的物理機制。
英文摘要 This study focused on initial instability disturbance phenomenon in the transition pulsating pipe flow. Using Hot-wire anemometer to measure the velocity profile when the unstable disturbance occurrence, then use Ensemble Empirical Mode Decomposition、Empirical Mode Decomposition and wavelet transform to analyzed the velocity signal, we found the disturbance region is effected by blockage ratio and Womersley number, also all the cases can satisfy Rayleigh instability criterion, but the value of non-dimensional frequency of mixing layer theorem only in the particular experiment situation can approach the value, so need to get more data to build the data base that can help us to do more discussion about the mechanism of initial unstable disturbances in pulsating pipe flow.
論文目次 目錄
摘要 III
符號說明 XXVIII
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 2
1.2.1層紊流轉換 2
1.2.2定常管流 3
1.2.3非定常管流 4
1.2.4 Rayleigh instability criterion 6
1.2.5反曲點成因 7
第二章 實驗設備 9
2.1 管流設備 9
2.2 流場控制器(Flow controller) 9
2.3 壓力孔(pressure taps) 10
2.4 壓力轉換器(Pressure transducer) 10
2.5 定溫型熱線測速儀(Constant temperature hot-wire anemometer) 10
2.6 訊號擷取系統 11
第三章 實驗方法與數據處理方法 12
3.1 流場基本量測方法 12
3.2 實驗參數 12
3.3 Hilbert Huang transform (HHT) 13
3.3.1經驗模態分離法 13
3.3.2總體經驗模態分解法 14
3.4 Hilbert transform(HT) 15
3.5 小波轉換(Wavelet Transform) 15
3.6無因次頻率值計算 16
3.7 擋板阻塞比選用 16
3.8速度剖面Curve fitting方式 17
3.9相位平均方法 17
第四章 實驗結果討論 18
4.1 流場基本特性 18
4.2 側向量測 18
4.2.1擾動出現區段比較 18
4.2.2相位差比較 19
4.2.3 HHT能譜圖比較 19
4.2.4擾動頻率值比較 20
4.2.5側向流場量測結果 20
4.3 軸向擾動發展 20
4.4不同阻塞比擾動特性比較 22
4.5頻率無因次化比較 26
4.6歷屆實驗資料整理探討 27
第五章 結論與未來建議 29
5.1 結論 29
5.2 未來建議 32
Reference 33


參考文獻 [1] Schlichting, H., “Boundary layer theory,” McGraw-Hill, 1960.
[2] Von,J,Rotta,“Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr”,Ing-Arch.vol. 24(4), pp 258-281, 1956.
[3] Squire, H. B., “on the stability for three-dimensional disturbances of viscous fluid flow between parallel walls,” Proc. R. Soc. Lond., vol. A 1933 142, pp. 8, 1933.
[4] Tollmien, W., “The production of turbulence,” NACA Technical Memo. 609, 1931..
[5] Lin, C. C., “The theory of hydrodynamic stability,” University Press, 1955.
[6] Eckhardt, B., Schneider, T. M., Hof, B., and Westerweel, J. (2007). Turbulence transition in pipe flow. Annu. Rev. Fluid Mech., 39, 447-468.
[7] Wygnanski, I. J., and Champagne, F. H., “On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug,” Journal of Fluid Mechanics, vol. 59, no. 02, pp. 281-335, 1973..
[8] Iguchi, M., Ohmi, M., and Fujii, Y., “Behavior of Turbulent Slug in a Transient Pipe Flow,” JSME Series II, vol. 32, no. 3, pp. 340-347, 1989..
[9] He, S., and Jackson, J. D., “A study of turbulence under conditions of transient flow in a pipe,” Journal of Fluid Mechanics, vol. 408, no. -1, pp. 1-38, 2000.
[10] Nishihara, K., Nakahata, Y., Ueda, Y., W. KNISELY, C., Sasaki, Y., and Iguchi, M. (2010). Effect of initial acceleration history on transition to turbulence in pipe flow. 実験力学,10(Special_Issue), s20-s25.
[11] Womersley, J. R., “Method for the calculation of velocity, rate of Flow and viscous drag in arteries when the pressure gradient is known,” J. Physiol., vol. 127, pp. 553-563, 1955.
[12] Uchida, S., “The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe,” Zeitschrift für Angewandte Mathematik und Physik (ZAMP), vol. 7, no. 5, pp. 403-422, 1956.
[13] Shemer, L., Wygnanski, I., and Kit, E., “Pulsating flow in a pipe ” J. Fluid. Mech., vol. 153, pp. 313-337, 1984.
[14] He, S., and Jackson, J. D., “An experimental study of pulsating turbulent flow in a pipe,” European Journal of Mechanics B/Fluids, vol. 28, pp. 309-320, 2009.
[15] Sergeev, S. I., “Fluid oscillations in pipes at moderate Reynolds numbers,” Mekhanika Zhidkost i Gaza vol. 1, no. 1, pp. 168-170, 1966.
[16] Hino, M., Sawamoto, M., and Takasu, S., “Experiments on transition to turbulence in an oscillatory pipe flow,” Journal of Fluid Mechanics, vol. 75, no. 02, pp. 193-207, 1976.
[17] Hussain, A. K. M. F., and Reynolds, W. C., “The mechanics of an organized wave in turbulent shear flow,” Journal of Fluid Mechanics, vol. 41, no. 02, pp. 241-258, 1970.
[18] Hussain, A. K. M. F., and Reynolds, W. C., “The mechanics of an organized wave in turbulent shear flow. Part 2. Experimental results,” Journal of Fluid Mechanics, vol. 54, no. 02, pp. 241-261, 1972.
[19] Sarpkaya, T., “Coherent structures in oscillatory boundary layers,” Journal of Fluid Mechanics, vol. 253, no. -1, pp. 105-140, 1993.
[20] Miller, J. A., and Fejer, A. A., “Transition phenomena in oscillating boundary-layer flows,” Journal of Fluid Mechanics, vol. 18, no. 03, pp. 438-448, 1964.
[21] Obremski, H. J., and Fejer, A. A., “Transition in oscillating boundary layer flows,” Journal of Fluid Mechanics, vol. 29, no. 01, pp. 93-111, 1967.
[22] Ohmi, M., Iguchi, M., and Ikuo, U., “Transition to turbulence in a pulsatile pipe flow part 1, Wave forms and distribution of pulsatie velocities near transition region,” Bulletin of the JSME, vol. 25, no. 200, pp. 182-189, 1982.
[23] Iguchi, M., and Ohmi, M., “Transition to turbulence in a pulsatile pipe flow( 3rd report, flow regimes and the conditions describing the generation and decay of turbulence),” Bulletin of the JSME, vol. 27, no. 231, pp. 1873-1880, 1984.
[24] Iguchi, M., and Ohmi, M., “Transition to turbulence in a pulsatile pipe flow part 2, Characteristics f reversing flow accopanied by relaminarization,” Bulletn of the JSME, vol. 25, no. 208, pp. 1529-1536, 1982.
[25] Iguchi, M., Urahata, I., and Ohmi, M., “Turbulent slug and velocity field in the inlet region for pulsatile pipe flow,” JSME, vol. 30, no. 261, pp. 414-422, 1987.
[26] 黃日暉, “應用MEMS熱膜感測器於非定常管流層紊流轉換之初始發展探討,” 成功大學航太所碩士論文(2010), 2010.
[27] 羅洪森, “應用MEMS熱膜感測器與希爾伯特黃轉換分析脈動式管流之初始不穩定現象,” 成功大學航太所碩士論文(2010), 2010.
.
[28] Lo, H. S., and Miau, J. J., “An experimental study on laminar-turbulent transition in a pulsating pipe flow,” Journal of Aeronautics, Astronautics and Aviations, Series A, vol. 43, no. 1, pp. 17-26, 2011.
[29] 劉 昊, “脈動式管流初始不穩定之現象探討,” 成功大學航太所碩士論文(2012).
[30] 戴君毅., “脈動式管流初始不穩定之現象探討,” 成功大學航太所碩士論文, 2013.
[31] 簡廷瑋., “脈動式管流初始不穩定之現象探討,” 成功大學航太所碩士論文, 2014.
[32] 杜榮國, “MEMS 熱膜感測器設計製造及應用於探討非定常流動分離現象,” 成功大學航太所碩士論文(2003)
[33] Mei. C.C., “Inviscid instability mechanism of parrallel flows”,Lecture note of fluid dynamics pp.1-3, Massachusetts Institute of Technology, 2007 .
[34] Boashash, B., “Estimating and Interpreting The Instantaneous Frequency of a Signal-Part 1: Fundamentals,” IEEE, vol. 80, no. 4, 1992.
[35] Boashash, B., “Estimating and Interpreting the Instantaneous Frequency of a Signal-Part 2: Algorithms and Applications,” IEEE, vol. 80, no. 4, 1992.
[36] Huang, R., and Shen, Z., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” The Royal Society, vol. 454, pp. 903-995, 1998.
[37] Huang, N. E., Shen, Z., and Long, S. R., “A NEW VIEW OF NONLINEAR WATER WAVES: The Hilbert Spectrum1,” Annual Review of Fluid Mechanics, vol. 31, no. 1, pp. 417-457, 1999.
.
[38] Huang, N. E., Shen, Z., and Long, S. R., “A NEW VIEW OF NONLINEAR WATER WAVES: The Hilbert Spectrum1,” Annual Review of Fluid Mechanics, vol. 31, no. 1, pp. 417-457, 1999.
[39] Wu, Z., and Huang, N. E., “A study of the cahracteristics of white noise using the empirical mode decomposition method,” The Royal Society, vol. 460, pp. 1597-1611, 2003.
[40] Flandrin, P., Rilling, G., and Goncalvews, P., “Empirical Mode Decomposition as a Filter Bank,” IEEE Signal Processing Letters, vol. 11, no. 2, pp. 112-114, 2004.
[41] Huang, N. E., “Ensemble Empirical Mode Decomposition : A noise assisted data analysis method,” Advances in Adaptive Data Analysis, vol. 1, pp. 1-41, 2008.
[42] Huang, N. E., “A review on Hilbert-Huang transform : Method and its applications to geophysical studies,” Reviews of Geophysics, vol. 46, 2007.
.[43] Monkewltz P. A. , Huerre Patrick, “Influence of the velocity ratio on the spatial instability of mixing layers” ,Physics of Fluids vol 25,1982.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw