進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208201421221300
論文名稱(中文) 硼同位素在氧化物吸附過程之分化行為及其在海洋pH代用指標之潛力評估
論文名稱(英文) Boron isotopic fractionation during oxide sorption processes and its application for oceanic pH estimation in the past seawater
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 林彥伯
研究生(英文) Yen-Po Lin
學號 L46004050
學位類別 碩士
語文別 中文
論文頁數 49頁
口試委員 指導教授-游鎮烽
口試委員-楊懷仁
口試委員-何恭算
中文關鍵字 硼同位素  pH  吸附  沉澱 
英文關鍵字 Boron isotope  pH  adsorption  precipitation 
學科別分類
中文摘要 本研究主要用於瞭解環境pH對硼同位素分化的機制,進行生物性碳酸鈣標準品測定、pH控制無機沉澱實驗與pH控制氧化物吸附等實驗。生物性碳酸鈣標準品測定選用兩種標準品JCp-1(珊瑚)與JCt-1(巨蚌),兩者皆生長於低緯度淺海環境中,兩者硼同位素組成分別為24.2‰與16.2‰,顯示硼在共沉澱過程生物所產生的額外同位素分化,會受生物種屬影響有極大差異。無機碳酸鈣沉澱實驗可避免生物造成的分化效應,前人無機碳酸鈣沉澱的硼同位素比值與硼酸根離子理論值相符,此次無機沉澱實驗在過氧化狀態下進行,實驗結果與硼酸根理論值在中性環境下有顯著差異(∆11B=8.2‰, pH=8),沉澱過程可能受到過氧化硼酸根離子(Peroxoborate, (OH)3BOOH-)影響,使碳酸鈣在過氧化環境下無法精確紀錄環境中的硼酸根離子訊號。海洋沉積物的吸附作用為硼在海洋裡的重要輸出,針鐵礦與水鈉錳礦等氧化物在吸附作用所記錄的硼同位素比值對環境pH變化反應靈敏,本次吸附實驗吸附材料選用實驗室合成的鉻鐵氧化物,在弱鹼性的環境(pH=8~10)吸附能力最佳(Kd=55.3),吸附相的硼同位素組成隨環境pH變化顯著呈現高度正相關(pH=5.7~11.7, ∆11B S-L.=-23.6~9.8‰, R2=0.9738),將氧化物吸附相的硼同位素比值應用於過去海洋pH的估算,藉由比較兩種化學組成相的硼同位素組成差異,可降低推算過去海水硼同位素組成對pH估算的誤差。
英文摘要 In present study, we investigated the boron isotopic distributions in various specimens, including marine carbonates, inorganic precipitated calcite and adsorbed B on oxide surface, and the associating isotopic fractionation under different pH conditions. The δ11B values in the biogenic calcium carbonates were 24.2‰ and 16.2‰ in corals JCp-1 and giant clam JCt-1, respectively. The distinct δ11B values in the two specimens suggest that biogenic effects strongly influence the boron isotopic fractionation factor in carbonates under similar seawater pH conditions. Our batch experiment was conducted under peroxidic conditions. The δ11B in the performed carbonate was distinct with that of theoretical calculations. It indicates that the boron isotopic compositions are significantly influenced by the peroxoborate rather than the borate during the carbonate formation. The equilibrium constant and potential boron isotopic fractionation during the sorption processes onto oxide surface was evaluated as well. The maximum boron sorption occurs at 8
論文目次 第 1 章 前言 1
1.1 硼同位素: 1
1.2 硼同位素在PH值代用指標上的應用 4
1.3 研究目的: 6
第 2 章 研究方法 7
2.1 生物性碳酸鈣硼同位素測定: 7
2.2 PH控制無機沉澱實驗 8
2.3 吸附實驗 8
2.3.1 鉻鐵氧化物吸附動力學實驗: 9
2.3.2 pH控制鉻鐵化物吸附實驗 10
2.4 硼濃度與同位素測定: 11
2.4.1 濃度測定: 11
2.4.2 微昇華純化處理: 12
2.4.3 硼同位素測定 13
第 3 章 結果 15
3.1 生物性碳酸鈣硼同位素測定: 15
3.2 PH控制無機沉澱實驗 17
3.2.1 pH控制無機沉澱實驗硼濃度變化 17
3.2.2 pH控制無機沉澱實驗同位素分化: 18
3.3 鉻鐵氧化物吸附動力學實驗: 18
3.4 PH控制鉻鐵氧化物吸附實驗 20
3.4.1 pH控制鉻鐵氧化物吸附實驗分配係數比較: 20
3.4.2 pH控制鉻鐵氧化物吸附實驗同位素分化: 22
第 4 章 討論 23
4.1 生物性碳酸鈣沉澱過程硼同位素之分化 23
4.2 PH控制無機沉澱過程硼同位素分化 28
4.3 PH控制吸附實驗硼濃度與硼同位素變化機制 32
4.3.1 pH控制吸附過程實驗硼濃度變化機制 32
4.3.2 pH控制實驗吸附過程硼同位素變化機制 34
4.4 以吸附過程硼同位素分化行為作為PH代用指標之潛力評估 38
第 5 章 結論 43
第 6 章 引用文獻 45

參考文獻 王子豪,游鎮烽,劉厚均,林彥伯(2014)利用硼同位素探討雪球地球事件的氣候變遷。
中華民國地質學會與中華民國地球物理學會103年年會發表。
劉佳勳,(2013) 以化學過氧沉澱(COP)技術回收含硼酸廢液研究。成功大學化學工程學系碩士論文。
Barrado E., Pieto F., Garay F.J., Medina J. and Vega M., (2002) Characterisation of
nickel-bearing ferrites obtained as by-products of hydrochemical waste water purification processes, Electrochim. Acta 47,203-209.
Coplen T., Bo¨hlke J., De Bievre P., Ding T., Holden N., Hopple J., Krouse H., Lamberty A., Peiser H. and Revesz K. (2002) Isotope-abundance variations of selected elements: (IUPAC technical report). Pure Appl. Chem. 74, 1987–2017.
Durrant M.C., Davies D.M. and Deary M.E., (2011) Dioxaborirane: a highly reactive peroxide that is the likely intermediate in borate catalysed electrophilic reactions of hydrogen peroxide in alkaline aqueous solution. Org. Biomol. Chem., 9, 7249.
Erdema M. and Tumen F., (2004) Chromium removal from aqueous solution by the ferrite process. Journal of Hazardous Materials.109 (18), 71-77.
Foster G.L., (2008) Seawater pH, pCO2 and [CO32− ] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett.271, 254–266.
Foster G.L., Lear C.H. and Rae J.W.B., (2012) The evolution of pCO2, ice volume and climate during the middle Miocene Earth Planet. Sci. Lett.341-344, 243–254.
Goldberg S. and Glaubig R. A., (1986) Boron adsorption and silicon release by the
clay minerals kaolinite, montmorillonite and illite. Soil Sci. Soc. Am. J. 50, 1442–1446.
Honisch B., Hemming N.G., Grottoli A. G., Amat A., Hanson G.N., and Bijma, J., (2004) Assessing scleractinian corals as recorders for paleo-pH: empirical calibration and vital effects. Geochim. Cosmochim. Acta 68(18), 3675–3685.
Inoue M., Nohara M., Okai T., Suzuki A., and Kawahata H., (2004) Concentrations of trace elements in carbonate reference materials coral JCp-1 and giant clam JCt-1 by inductivelycoupled plasma-mass spectrometry, Geostan. Geoanal. Res.,28(3), 411–416.
Ishikawa T. and Nagaishi K., (2011) High-precision isotopic analysis of boron by
positive thermal ionization mass spectrometry with sample preheating. Journal of Analytical Atomic Spectrometry 26,359-365.
Kakihana H., Kotaka M., Satoh S., Nomura M.and Okamoto M., (1977)
Fundamental studies on the ion-exchange separation of boron isotopes. Bull. Chem. Soc. Jpn. 50, 158–163.
Krief S., Hendy E.J., Fine M., Yam R., Meibom A., Foster G.L.and Shemesh A.,
(2010)Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta 74, 4988–5001.
Lemarchand D., Gaillardet J., Lewin E. and Allegre C.J., (2000) The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH.Nature 408, 951 – 954.
Lemarchand D., Gaillardet J., Lewin E. and Allegre C.J., (2002) Boron isotope systematic in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chem. Geol. 190, 123 – 140.
Lemarchand E., Schott J. and Gaillardet J., (2005) Boron isotopic fractionation related to boron sorptionon humic acid and structure of surface complexes formed. Geochim. Cosmochim. Acta 69, 3519–3533.
Lemarchand E., Schott J. and Gaillardet J., (2007) How surface complexes impact boron isotope fractionation: evidence from Fe and Mn oxides sorption experiments. Earth Planet. Sci. Lett.260, 277–296.
Liu Y. and Tossell J.A., (2005) Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates. Geochim.Cosmochim. Acta 69, 3995–4006.
Milliman J.D. and Syvitski J.P.M., (1992) Geomorphic/tectonic control of sediment
discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525 – 544.
Oi T., Kato J., Ossaka T. and Kakihana, H., (1991) Boron isotope fractionation accompanying boron mineral formation from aqueous boric acid–sodium hydroxide solutions at 25 °C,Geochem. J. 25 377–385.
Oi T., (2000) Calculations of reduced partition function ratios of monomeric and dimeric boric acids and borates by the ab initio molecular orbital theory. J. Nucl. Sci. Technol. 37, 166–172.
Okai T., Suzuki A., Kawahata H., Terashima S. and Imai N., (2002) Preparation of a new Geological Survey of Japan geochemical reference material: Coral JCp-1. Geostandards Newslett. 26, 95–99.
Palmer M. R., Spivack A. J. and Edmond J. M., (1987) Temperature and pH controls over isotopic fractionation during absorption of boron marine clay. Geochim. Cosmochim. Acta 51, 2319–2323.
Palmer M.R., Swihart G.H., (1996) Boron isotope geochemistry: an overview. In: Crew, E.S. and Anovitz, L.M. Eds.), Boron: Mineralogy Petrology and Geochemistry Mineral. Soc. Am.
Rae J.W.B., Foster G.L., Schmidt D.N. and Elliott T., (2011) Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system.Earth Planet. Sci.Lett.302, 403–413.
Rollion-Bard C., Blamart D., Trebosc J., Tricot G., Mussi A. and Cuif J.-P., (2011) Boron isotopes as pH proxy: a new look at boron speciation in deep-sea corals using 11B MAS NMR and EELS. Geochim. Cosmochim. Acta 75, 1003–1012.
Sanyal A., Hemming N.G., Hanson G.N. and Broecker W.S., (1995). Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373, 234–236.
Sanyal A, Nugent N., Reeder R.J. and Bijma J., (2000) Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochim. Cosmochim.Acta 64, 1551–1555.
Spivack A.J., Palmer M.R. and Edmond J.M., (1987) The sedimentary cycle of the
boron isotopes. Geochim. Cosmochim. Acta 51, 1939 – 1949.
Spivack A.J. and Edmond J.M., (1987) Boron isotope exchange between seawater and the oceanic crust. Geochim. Cosmochim. Acta 51, 1033 – 1043.
Spivack A.J., You C.F. and Smith J., (1993) Foraminiferal boron isotope ratios as a
proxy for surface ocean pH over the past 21 Myr. Nature 363, 149–151.
Smith H.J., Spivack A.J., Staudigel H. and Hart S.R., (1995) The boron isotopic
composition of altered oceanic crust. Chem.Geol. 126, 119 – 135.
Su C. and Suarez D. L., (1995) Coordination of adsorbed boron: A FTIR spectroscopic study. Environ. Sci. Technol. 29, 302–311.
Wang B.S., You C.F., Huang K.F., Wu S.F., Aggarwal S.K., Chung C.H. and Lin, P.Y., (2010) Direct separation of boron from Na- and Ca- rich matrices by sublimation for stable isotope measurement by MC-ICP-MS. Talanta 82, 1378–1384.
You C.F., Spivack A.J., Smith J.H. and Gieskes J.M., (1993) Mobilization of boron in convergent margins: implications for the boron geochemical cycle. Geology 21, 207 – 210.
You C.F., Spivack A.J., Gieskes J.M., Rosenbauer R.and Bishoff J.L., (1995) Experimental study of boron geochemistry: implica- tions for fluid processes in subduction zones. Geochim. Cosmochim. Acta 59 (12), 2435 – 2442.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw