進階搜尋


 
系統識別號 U0026-2208201417522600
論文名稱(中文) 應用孔彈性理論分析單層週期性載重及三層固定載重下之飽和土壤壓密行為
論文名稱(英文) Application of the poroelasticity theory for the consolidation analysis of saturated soils-periodic loading on a single-layered case and constant loading on a three-layered case
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 徐啓洋
研究生(英文) Chi-Yang Hsu
學號 n86011057
學位類別 碩士
語文別 中文
論文頁數 65頁
口試委員 指導教授-羅偉誠
口試委員-詹錢登
召集委員-陳主惠
口試委員-譚義績
口試委員-葉昭龍
中文關鍵字 壓密  固定載重  週期性載重  三層土壤 
英文關鍵字 consolidation  periodic loading  constant loading  three-layered 
學科別分類
中文摘要 本研究根據Terzaghi (1925) 及Biot (1941) 所提出之飽和土壤壓密理論,在假設單層土壤於固定以及正弦週期性載重下,且土壤表面及底層皆為透水層與大氣接觸,探討兩者之理論僅能單向度排水時之差異,和土壤在受到正弦週期性載重壓密時,土壤質地、週期性載重之週期及時間對超額孔隙水壓之影響。另一方面,本研究根據Schiffman and Stein (1970) 之層狀土壤壓密理論,在假設土壤間之交界面滿足超額孔隙水壓連續及流速連續之條件下,且土壤表面及底層皆為透水層與大氣接觸,將單層土壤壓密沉陷問題延伸至多層土壤,探討地層由三種不同質地之土壤 (砂土、壤土及黏土) 所組成時,其在地層中不同的排列順序對無因次超額孔隙水壓、土壤總沉陷量、各層土壤沉陷量及各層土壤沉陷量貢獻百分比之影響。
在假設土壤僅能單向度排水之條件下,Terzaghi與Biot理論間之差異僅為是否考慮土壤顆粒及水之壓縮性,由於土壤顆粒及水之統體模數極大,壓縮性極低,因此兩者之理論在一維度時無法顯現出差異。當土壤受正弦週期性載重作用壓密時,超額孔隙水壓不會完全消散,但會隨著時間趨於一動態平衡,達到動態平衡所需之時間與土壤質地及載重之週期有關
三層土壤受到固定載重作用而壓密時,不同的排列順序會影響到整層土壤的排水速率,上下層土壤排水特性之良窳對整層土壤之排水速率有很大的影響;在初始時 (10秒),層與層間土壤之排水速率則須同時考慮飽和水力傳導度之大小及距排水邊界之距離。達壓密沉陷穩定時,土壤總沉陷量不因土壤排列而異,各層土壤之沉陷量,則與統體模數呈負相關;整層土壤達壓密沉陷穩定所需時間與整層土壤之排水速率有關;在初始時,各層土壤間之沉陷量及沉陷量貢獻百分比與層與層間土壤之排水速率有關。
英文摘要 Soil consolidation plays an important role in practical applications of engineering, such as soil improvement by using the precompression method and disaster prevention of land subsidence. However, the stratum is usually composed of different types of soil and the surface load varied with time. In this study, the analytical solution for a one-dimensional problem was derived based on the consolidation theories respectively proposed by Terzaghi (1925) and Biot (1941). We derived the analytical solution for the excess pore pressure of the single-layered case and the three-layered case as well as soil settlement for the situation of free drainage surface on its top and base. This thesis explored the differences between these two theories on the assumption of one-dimensional drainage only. In addition, we discussed the consolidation process of saturated soils under constant or periodic loading on a single-layered soil and constant loading on a three-layered soil. The result shows that it has no differences in these two theories under the one-dimensional assumption. Our numerical results also show that the excess pore water pressure for a saturated soil layer subject to periodic loading does not dissipate completely, but it reached dynamic equilibrium. The time required to achieve dynamic equilibrium is sensitive to soil texture and the period of loading. In addition, for a three-layered soil subject to constant loading, the drainage rate of excess pore water pressure is affected by soil arrangement in the stratum. The drainage rate of the soil at the first layer and the third layer has a great impact on the whole stratum.
論文目次 摘要 I
誌謝 VII
目錄 VIII
表目錄 X
圖目錄 XI
符號說明 XII
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-3 研究目的及方法 5
1-4 本文架構 5
第二章 理論模式 7
2-1 壓密理論方程式 7
2-2 應力-應變關係式 7
2-3 單向度土壤壓密理論 8
2-3-1 Biot單向度壓密理論 8
2-3-2 Terzaghi單向度壓密理論 10
2-4 控制方程式 11
2-5 初始條件 13
2-6 邊界條件 14
2-6-1 單層土壤 14
2-6-2 三層土壤 16
第三章 數值模擬 21
3-1 土壤分類 21
3-2 彈性模數 22
3-3 模式相關參數 25
第四章 結果與討論 27
4-1 固定載重 27
4-2 正弦週期性載重 32
4-3 無因次超額孔隙水壓隨無因次深度及時間之變化 46
4-3-1 整層土壤之無因次超額孔隙水壓比較 46
4-3-2 各層土壤之無因次超額孔隙水壓比較 47
4-4 沉陷量隨時間之變化 48
4-4-1 整層土壤的沉陷量與達壓密沉陷穩定的時間 48
4-4-2 各層土壤之壓密沉陷量比較 49
第五章 結論與建議 55
5-1 結論 55
5-2 建議 58
參考文獻 60
附錄A 正交關係式 (Orthogonal Relation) 62
參考文獻 Biot, M. A., General theory of three-dimensional consolidation, Journal of Applied Physics, Vol. 12, no. 2, pp. 155-164, 1941.
Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid, I. Low-frequency range, Journal of the Acoustical Society of America, Vol. 28, no. 2, pp. 168-178, 1956.
Biot, M. A., and D. G. Willis, The elastic coefficient of the theory of consolidation, Journal of Applied Mechanics, Vol. 24, pp. 594-601, 1957.
Biot, M. A., Mechanics of deformation and acoustic propagation in porous media, Journal of Applied Physics, Vol. 33, no. 4, pp. 1482-1498, 1962.
Bulavin, P. E., V. M. Kashcheev, Solution of the non-homogeneous heat conduction equation for multilayered bodies, International Chemical Engineering, Vol. 5, no. 1, pp. 112-115, 1965.
Baligh, M. M., and J. N. Levadoux, Consolidation theory for cyclic loading, Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, no. 4, pp. 415-431, 1978.
Cai, Y. q., X. Liang, and S. M. Wu, one-dimensional consolidation of layered soils with impeded boundaries under time-dependent loadings, Applied Mathematics and Mechanics, Vol. 25, no. 8, pp. 937-944, 2004.
Das, B. M., Advanced Soil Mechanics, Taylor and Francis, Philadelphia, Pa, 1997.
Gibson, R. E., and M. J. L. Hussey, The theory of one-dimensional consolidation of saturated clays, Geotechnique, Vol. 36, no. 4, pp. 261-273, 1967.
Girsang, C. H., A numerical investigation of the seismic response of the aggregate pier foundation system, Master Thesis, Department of Civil Engineering, University of Virginia, Blacksburg, 2001.
Lee, P. K. K., K. H. Xie, and Y. K. Cheung, A study on one-dimensional consolidation of layered systems, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 16, pp. 815–831, 1992.
Rawls, W. J., J. R. Ahuja, and D. L. Brakensiek, Estimating soil hydraulic properties from soils data. Proceedings of Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, pp. 329-341, 1982.
Schiffman, R. L., and J. R. Stein, One-dimensional consolidation of layered systems, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 96, no. 4, pp. 1499-1504, 1970.
Terzaghi, K., Erdbaumechanik auf bodenphysikalischer grundlage, 1925.
Terzaghi, K., Sampling, testing and averaging, Proceedings of the Purdue Conference on Soil Mechanics and Its Applications, September, 2 to 6, pp.151,1940.
Tittle, C. W., Boundary value problems in composite media: quasi-orthogonal functions, Journal of Applied Physics, Vol. 36, no. 4, pp. 1486-1488, 1965.
Wilson, N.E., and M. M. Elgohary, Consolidation of soils under cyclic loading, Candian Geotechnical Journal, Vol. 2 no. 3, pp. 420-423, 1974.
Zienkiewicz, O. C., C. T. Chang, and P. Bettess, Drained, undrained, consolidating and dynamic behaviour assumptions in soils, Geotechnique, Vol. 30, pp. 385-395, 1980.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw